



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                    |
|----------------------------|---------------------------------------------------------------------------|
| Core Processor             | PIC                                                                       |
| Core Size                  | 8-Bit                                                                     |
| Speed                      | 4MHz                                                                      |
| Connectivity               | I <sup>2</sup> C, SPI                                                     |
| Peripherals                | LCD, POR, PWM, WDT                                                        |
| Number of I/O              | 25                                                                        |
| Program Memory Size        | 7KB (4K x 14)                                                             |
| Program Memory Type        | OTP                                                                       |
| EEPROM Size                | -                                                                         |
| RAM Size                   | 176 x 8                                                                   |
| Voltage - Supply (Vcc/Vdd) | 2.5V ~ 6V                                                                 |
| Data Converters            | -                                                                         |
| Oscillator Type            | External                                                                  |
| Operating Temperature      | 0°C ~ 70°C (TA)                                                           |
| Mounting Type              | Surface Mount                                                             |
| Package / Case             | 68-LCC (J-Lead)                                                           |
| Supplier Device Package    | 68-PLCC (24.23x24.23)                                                     |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16lc923-04-l |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong





#### 4.2.2.2 OPTION REGISTER

The OPTION register is a readable and writable register which contains various control bits to configure the TMR0/WDT prescaler, the external RB0/INT pin interrupt, TMR0, and the weak pull-ups on PORTB. **Note:** To achieve a 1:1 prescaler assignment for the TMR0 register, assign the prescaler to the Watchdog Timer.

# FIGURE 4-4: OPTION REGISTER (ADDRESS 81h, 181h)

| R/W-1    | R/W-1                                                                                                                                                 | R/W-1                                                     | R/W-1                                 | R/W-1                                     | R/W-1                    | R/W-1              | R/W-1 |                  |  |  |  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------|-------------------------------------------|--------------------------|--------------------|-------|------------------|--|--|--|
| RBPU     | INTEDG                                                                                                                                                | TOCS                                                      | TOSE                                  | PSA                                       | PS2                      | PS1                | PS0   | R = Readable bit |  |  |  |
| bit7     | bit0<br>W = Writable bit<br>U = Unimplemented bit,<br>read as '0'<br>- n = Value at POR reset                                                         |                                                           |                                       |                                           |                          |                    |       |                  |  |  |  |
| bit 7:   | <b>RBPU</b> : PORTB Pull-up Enable bit         1 = PORTB pull-ups are disabled         0 = PORTB pull-ups are enabled by individual port latch values |                                                           |                                       |                                           |                          |                    |       |                  |  |  |  |
| bit 6:   | INTEDG: Interrupt Edge Select bit<br>1 = Interrupt on rising edge of RB0/INT pin<br>0 = Interrupt on falling edge of RB0/INT pin                      |                                                           |                                       |                                           |                          |                    |       |                  |  |  |  |
| bit 5:   | <b>TOCS</b> : TMI<br>1 = Transiti<br>0 = Interna                                                                                                      | R0 Clock<br>ion on RA<br>al instructi                     | Source S<br>4/T0CKI<br>on cycle o     | elect bit<br>pin<br>clock (CLK            | OUT)                     |                    |       |                  |  |  |  |
| bit 4:   | <b>TOSE</b> : TMF<br>1 = Increm<br>0 = Increm                                                                                                         | R0 Source<br>ent on hig<br>ent on lov                     | e Edge Se<br>gh-to-low<br>w-to-high   | elect bit<br>transition<br>transition     | on RA4/T00<br>on RA4/T00 | CKI pin<br>CKI pin |       |                  |  |  |  |
| bit 3:   | <b>PSA</b> : Pres<br>1 = Presca<br>0 = Presca                                                                                                         | caler Ass<br>Iler is ass<br>Iler is ass                   | ignment b<br>igned to t<br>igned to t | bit<br>he WDT<br>he Timer0                | module                   |                    |       |                  |  |  |  |
| bit 2-0: | <b>PS2:PS0</b> :                                                                                                                                      | Prescaler                                                 | Rate Sel                              | ect bits                                  |                          |                    |       |                  |  |  |  |
|          | Bit Value                                                                                                                                             | TMR0 R                                                    | ate WD                                | Γ Rate                                    |                          |                    |       |                  |  |  |  |
|          | 000<br>001<br>010<br>100<br>101<br>110<br>111                                                                                                         | 1:2<br>1:4<br>1:8<br>1:16<br>1:32<br>1:64<br>1:12<br>1:25 | 8 1:<br>8 1:<br>6 1:                  | 1<br>2<br>4<br>8<br>16<br>32<br>64<br>128 |                          |                    |       |                  |  |  |  |

# PIC16C9XX

#### 4.2.2.4 PIE1 REGISTER

This register contains the individual enable bits for the peripheral interrupts.

#### Note: Bit PEIE (INTCON<6>) must be set to enable any peripheral interrupt.

# FIGURE 4-6: PIE1 REGISTER (ADDRESS 8Ch)

| R/W-0    | R/W-0                                                                                                                                                     | U-0                                  | U-0                                      | R/W-0                   | R/W-0        | R/W-0        | R/W-0        |                  |  |  |  |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------|-------------------------|--------------|--------------|--------------|------------------|--|--|--|
| LCDIE    | ADIE <sup>(1)</sup>                                                                                                                                       | _                                    | _                                        | SSPIE                   | CCP1IE       | TMR2IE       | TMR1IE       | R = Readable bit |  |  |  |
| bit7     | bit0<br>W = Writable bit<br>U = Unimplemer<br>read as '0'<br>- n = Value at PO                                                                            |                                      |                                          |                         |              |              |              |                  |  |  |  |
| bit 7:   | bit 7: LCDIE: LCD Interrupt Enable bit<br>1 = Enables the LCD interrupt<br>0 = Disables the LCD interrupt                                                 |                                      |                                          |                         |              |              |              |                  |  |  |  |
| bit 6:   | <ul> <li>ADIE: A/D Converter Interrupt Enable bit<sup>(1)</sup></li> <li>1 = Enables the A/D interrupt</li> <li>0 = Disables the A/D interrupt</li> </ul> |                                      |                                          |                         |              |              |              |                  |  |  |  |
| bit 5-4: | Unimpler                                                                                                                                                  | nented: R                            | ead as '0                                |                         |              |              |              |                  |  |  |  |
| bit 3:   | <b>SSPIE</b> : Sy<br>1 = Enabl<br>0 = Disab                                                                                                               | ynchronou<br>es the SS<br>les the SS | ıs Serial F<br>P interrup<br>SP interrup | Port Interru<br>t<br>ot | ipt Enable b | bit          |              |                  |  |  |  |
| bit 2:   | <b>CCP1IE</b> : CCP1 Interrupt Enable bit<br>1 = Enables the CCP1 interrupt<br>0 = Disables the CCP1 interrupt                                            |                                      |                                          |                         |              |              |              |                  |  |  |  |
| bit 1:   | <b>TMR2IE</b> : TMR2 to PR2 Match Interrupt Enable bit<br>1 = Enables the TMR2 to PR2 match interrupt<br>0 = Disables the TMR2 to PR2 match interrupt     |                                      |                                          |                         |              |              |              |                  |  |  |  |
| bit 0:   | <b>TMR1IE</b> : TMR1 Overflow Interrupt Enable bit<br>1 = Enables the TMR1 overflow interrupt<br>0 = Disables the TMR1 overflow interrupt                 |                                      |                                          |                         |              |              |              |                  |  |  |  |
| Note 1:  | Bit ADIE i                                                                                                                                                | s reserve                            | d on the P                               | IC16C923                | 8, always m  | aintain this | s bit clear. |                  |  |  |  |

# 5.0 PORTS

Some pins for these ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

# 5.1 PORTA and TRISA Register

The RA4/T0CKI pin is a Schmitt Trigger input and an open drain output. All other RA port pins have TTL input levels and full CMOS output drivers. All RA pins have data direction bits (TRISA register) which can configure these pins as output or input.

Setting a bit in the TRISA register puts the corresponding output driver in a hi-impedance mode. Clearing a bit in the TRISA register puts the contents of the output latch on the selected pin.

Reading the PORTA register reads the status of the pins whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified, and then written to the port data latch.

Pin RA4 is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin.

For the PIC16C924 only, other PORTA pins are multiplexed with analog inputs and the analog VREF input. The operation of each pin is selected by clearing/setting the control bits in the ADCON1 register (A/D Control Register1).

| Note: | On a Power-on Reset, these pins are con-  |
|-------|-------------------------------------------|
|       | figured as analog inputs and read as '0'. |

The TRISA register controls the direction of the RA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

#### **EXAMPLE 5-1: INITIALIZING PORTA**

| BCF   | STATUS, | RPO ; | Select Bank0          |
|-------|---------|-------|-----------------------|
| BCF   | STATUS, | RP1   |                       |
| CLRF  | PORTA   | ;     | Initialize PORTA      |
| BSF   | STATUS, | RPO # |                       |
| MOVLW | 0xCF    | ;     | Value used to         |
|       |         | ;     | initialize data       |
|       |         | ;     | direction             |
| MOVWF | TRISA   | ;     | Set RA<3:0> as inputs |
|       |         | ;     | RA<5:4> as outputs    |
|       |         | ;     | RA<7:6> are always    |
|       |         | ;     | read as '0'.          |

#### FIGURE 5-1: BLOCK DIAGRAM OF PINS RA3:RA0 AND RA5



#### FIGURE 5-2: BLOCK DIAGRAM OF RA4/T0CKI PIN



#### 5.2 PORTB and TRISB Register

PORTB is an 8-bit wide bi-directional port. The corresponding data direction register is TRISB. Setting a bit in the TRISB register puts the corresponding output driver in a hi-impedance input mode. Clearing a bit in the TRISB register puts the contents of the output latch on the selected pin(s).

#### EXAMPLE 5-2: INITIALIZING PORTB

| BCF   | STATUS, | RP0 | ; | Select Bank0          |
|-------|---------|-----|---|-----------------------|
| BCF   | STATUS, | RP1 |   |                       |
| CLRF  | PORTB   |     | ; | Initialize PORTB      |
| BSF   | STATUS, | RP0 | ; |                       |
| MOVLW | 0xCF    |     | ; | Value used to         |
|       |         |     | ; | initialize data       |
|       |         |     | ; | direction             |
| MOVWF | TRISB   |     | ; | Set RB<3:0> as inputs |
|       |         |     | ; | RB<5:4> as outputs    |
|       |         |     | ; | RB<7:6> as inputs     |
|       |         |     |   |                       |

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit  $\overline{\text{RBPU}}$  (OPTION<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are also disabled on a Power-on Reset.

#### FIGURE 5-3: BLOCK DIAGRAM OF RB3:RB0 PINS



Four of PORTB's pins, RB7:RB4, have an interrupt on change feature. Only pins configured as inputs can cause this interrupt to occur (i.e. any RB7:RB4 pin configured as an output is excluded from the interrupt on change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are OR'ed together to generate the RB Port Change Interrupt with flag bit RBIF (INTCON<0>).

This interrupt can wake the device from SLEEP. The user, in the interrupt service routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition, and allow flag bit RBIF to be cleared.

This interrupt on mismatch feature, together with software configurable pull-ups on these four pins allow easy interface to a keypad and make it possible for wake-up on key-depression. Refer to the *Embedded Control Handbook, "Implementing Wake-Up on Key Stroke"* (AN552).

The interrupt on change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt on change feature. Polling of PORTB is not recommended while using the interrupt on change feature.

#### FIGURE 5-4: BLOCK DIAGRAM OF RB7:RB4 PINS



#### 5.7 PORTG and TRISG Register

PORTG is an digital input only port. Each pin is multiplexed with an LCD segment driver. These pins have Schmitt Trigger input buffers.

- Note 1: On a Power-on Reset these pins are configured as LCD segment drivers.
- **Note 2:** To configure the pins as a digital port, the corresponding bits in the LCDSE register must be cleared. Any bit set in the LCDSE register overrides any bit settings in the corresponding TRIS register.

# EXAMPLE 5-7: INITIALIZING PORTG

BCF STATUS,RP0 ;Select Bank2 BSF STATUS,RP1 ; BCF LCDSE,SE27 ;Make all PORTG BCF LCDSE,SE20 ;and PORTE<7> ;digital inputs



# TABLE 5-13: PORTG FUNCTIONS

| Name      | Bit# | Buffer Type | Function                                                            |  |  |  |
|-----------|------|-------------|---------------------------------------------------------------------|--|--|--|
| RG0/SEG20 | bit0 | ST          | Digital input or Segment Driver20                                   |  |  |  |
| RG1/SEG21 | bit1 | ST          | Digital input or Segment Driver21                                   |  |  |  |
| RG2/SEG22 | bit2 | ST          | Digital input or Segment Driver22                                   |  |  |  |
| RG3/SEG23 | bit3 | ST          | Digital input or Segment Driver23                                   |  |  |  |
| RG4/SEG24 | bit4 | ST          | Digital input or Segment Driver24                                   |  |  |  |
| RG5/SEG25 | bit5 | ST          | Digital input or Segment Driver25                                   |  |  |  |
| RG6/SEG26 | bit6 | ST          | Digital input or Segment Driver26                                   |  |  |  |
| RG7/SEG28 | bit7 | ST          | Digital input or Segment Driver28 (not available on 64-pin devices) |  |  |  |

Legend: ST = Schmitt Trigger input

#### TABLE 5-14: SUMMARY OF REGISTERS ASSOCIATED WITH PORTG

| Address | Name  | Bit 7 | Bit 6      | Bit 5 | Bit 4     | Bit 3     | Bit 2 | Bit 1 | Bit 0 | Value on<br>Power-on<br>Reset | Value on all other resets |
|---------|-------|-------|------------|-------|-----------|-----------|-------|-------|-------|-------------------------------|---------------------------|
| 108h    | PORTG | RG7   | RG6        | RG5   | RG4       | RG3       | RG2   | RG1   | RG0   | 0000 0000                     | 0000 0000                 |
| 188h    | TRISG | PORTG | Data Direc |       | 1111 1111 | 1111 1111 |       |       |       |                               |                           |
| 10Dh    | LCDSE | SE29  | SE27       | SE20  | SE16      | SE12      | SE9   | SE5   | SE0   | 1111 1111                     | 1111 1111                 |

Legend: Shaded cells are not used by PORTG.

#### 5.8 <u>I/O Programming Considerations</u>

#### 5.8.1 BI-DIRECTIONAL I/O PORTS

Any instruction which writes, operates internally as a read followed by a write operation. The BCF and BSF instructions, for example, read the register into the CPU, execute the bit operation and write the result back to the register. Caution must be used when these instructions are applied to a port with both inputs and outputs defined. For example, a BSF operation on bit5 of PORTB will cause all eight bits of PORTB to be read into the CPU. Then the BSF operation takes place on bit5 and PORTB is written to the output latches. If another bit of PORTB is used as a bi-directional I/O pin (e.g., bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the input mode, no problem occurs. However, if bit0 is switched into output mode later on, the contents of the data latch may now be unknown.

Reading the port register, reads the values of the port pins. Writing to the port register writes the value to the port latch. When using read-modify-write instructions (ex. BCF, BSF) on a port, the value of the port pins is read, the desired operation is done to this value, and this value is then written to the port latch.

Example 5-8 shows the effect of two sequential read-modify-write instructions on an I/O port.

#### EXAMPLE 5-8: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

;Initial PORT settings: PORTB<7:4> Inputs
; PORTB<3:0> Outputs
;PORTB<7:6> have external pull-ups and are
;not connected to other circuitry
.

| /                  |    |              |           |
|--------------------|----|--------------|-----------|
| ;                  |    | PORT latch   | PORT pins |
| ;                  |    |              |           |
| BCF PORTB, 7       | ;  | 01pp pppp    | 11pp pppp |
| BCF PORTB, 6       | ;  | 10pp pppp    | 11pp pppp |
| BCF STATUS, RP1    | ;  |              |           |
| BSF STATUS, RPO    | ;  |              |           |
| BCF TRISB, 7       | ;  | 10pp pppp    | 11pp pppp |
| BCF TRISB, 6       | ;  | 10pp pppp    | 10pp pppp |
| ;                  |    |              |           |
| ;Note that the use | er | may have exp | ected the |
| ;pin values to be  | 0  | 0pp ppp. The | 2nd BCF   |
|                    | -  |              |           |

;caused RB7 to be latched as the pin value ;(high).

A pin actively outputting a Low or High should not be driven from external devices at the same time in order to change the level on this pin ("wired-or", "wired-and"). The resulting high output currents may damage the chip.

#### 5.8.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 5-11). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should be such to allow the pin voltage to stabilize (load dependent) before the next instruction which causes that file to be read into the CPU is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

| PC                      | X PC                             | X PC + 1                         | X  | PC + 2                | PC + 3      | This example shows a write to PORT                                                         |
|-------------------------|----------------------------------|----------------------------------|----|-----------------------|-------------|--------------------------------------------------------------------------------------------|
| fetched                 | MOVWF PORTB<br>write to<br>PORTB | MOVF PORTB,W                     |    | NOP                   | NOP         | Note that:                                                                                 |
| RB7:RB0                 |                                  | <u>.</u>                         | X  |                       |             | data setup time = (0.25TCY - TPD)                                                          |
| 1                       |                                  | 1<br>1<br>1<br>1                 |    | Port pin sampled here | 1<br>1<br>1 | where Tcy = instruction cycle<br>TPD = propagation delay                                   |
| Instruction<br>executed |                                  | MOVWF PORTB<br>write to<br>PORTB | MO | VF PORTB,W            | NOP         | Therefore, at higher clock frequencie<br>a write followed by a read may be pro<br>lematic. |
| 1                       |                                  | 1                                | 1  | 1                     | 1<br>1      |                                                                                            |

# FIGURE 5-11: SUCCESSIVE I/O OPERATION

#### 8.3 <u>Timer1 Operation in Asynchronous</u> <u>Counter Mode</u>

If control bit  $\overline{T1SYNC}$  (T1CON<2>) is set, the external clock input is not synchronized. The timer continues to increment asynchronous to the internal phase clocks. The timer will continue to run during SLEEP and can generate an interrupt on overflow which will wake-up the processor. However, special precautions in software are needed to read-from or write-to the Timer1 register pair (TMR1H:TMR1L) (Section 8.3.2).

In asynchronous counter mode, Timer1 cannot be used as a time-base for capture or compare operations.

# 8.3.1 EXTERNAL CLOCK INPUT TIMING WITH UNSYNCHRONIZED CLOCK

If control bit  $\overline{T1SYNC}$  is set, the timer will increment completely asynchronously. The input clock must meet certain minimum high time and low time requirements, as specified in timing parameters 45, 46, and 47.

#### 8.3.2 READING AND WRITING TMR1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L while the timer is running, from an external asynchronous clock, will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself poses certain problems since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers while the register is incrementing. This may produce an unpredictable value in the timer register.

Reading the 16-bit value requires some care. Example 8-1 is an example routine to read the 16-bit timer value. This is useful if the timer cannot be stopped.

# EXAMPLE 8-1: READING A 16-BIT FREE-RUNNING TIMER

```
; All interrupts are disabled
  MOVE
         TMR1H, W ;Read high byte
  MOVWF TMPH
                   ;
  MOVF
         TMR1L, W ;Read low byte
  MOVWE TMPL
                   ;
  MOVF
         TMR1H, W ;Read high byte
         TMPH, W ;Sub 1st read
  SUBWF
                   ; with 2nd read
  BTFSC STATUS,Z ;Is result = 0
        CONTINUE ;Good 16-bit read
  GOTO
; TMR1L may have rolled over between the read
 of the high and low bytes. Reading the high
;
 and low bytes now will read a good value.
;
  MOVF
         TMR1H, W ;Read high byte
  MOVWF
         TMPH
         TMR1L, W ;Read low byte
  MOVE
  MOVWF TMPL
                   ;
; Re-enable the Interrupt (if required)
                   ;Continue with your code
CONTINUE
```

# 8.4 <u>Timer1 Oscillator</u>

A crystal oscillator circuit is built in between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit T1OSCEN (T1CON<3>). The oscillator is a low power oscillator rated up to 200 kHz. It will continue to run during SLEEP. It is primarily intended for a 32 kHz crystal. Table 8-1 shows the capacitor selection for the Timer1 oscillator.

The Timer1 oscillator is identical to the LP oscillator. The user must provide a software time delay to ensure proper oscillator start-up.

# TABLE 8-1: CAPACITOR SELECTION FOR THE TIMER1 OSCILLATOR

| Osc Type                                                      | Freq                                                                                                                                                                                                                                                                                                                    | C2                   |              |  |  |  |  |  |  |
|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|--|--|--|--|--|--|
| LP                                                            | 32 kHz                                                                                                                                                                                                                                                                                                                  | 33 pF                | 33 pF        |  |  |  |  |  |  |
|                                                               | 100 kHz                                                                                                                                                                                                                                                                                                                 | 15 pF                | 15 pF        |  |  |  |  |  |  |
|                                                               | 200 kHz                                                                                                                                                                                                                                                                                                                 | 15 pF                | 15 pF        |  |  |  |  |  |  |
| These values are for design guidance only.                    |                                                                                                                                                                                                                                                                                                                         |                      |              |  |  |  |  |  |  |
| Crystals Tested:                                              |                                                                                                                                                                                                                                                                                                                         |                      |              |  |  |  |  |  |  |
| 32.768 kHz                                                    | Epson C-001R32.768K-A ± 20 PPM                                                                                                                                                                                                                                                                                          |                      |              |  |  |  |  |  |  |
| 100 kHz                                                       | Epson C-2 1                                                                                                                                                                                                                                                                                                             | 100.00 KC-P ± 20 PPM |              |  |  |  |  |  |  |
| 200 kHz                                                       | STD XTL 20                                                                                                                                                                                                                                                                                                              | 0.000 kHz            | $\pm$ 20 PPM |  |  |  |  |  |  |
| Note 1: Higl<br>of o<br>time<br>2: Sind<br>cha<br>reso<br>ate | <ul> <li>200 kHz STD XTL 200.000 kHz ± 20 PPM</li> <li>Note 1: Higher capacitance increases the stability of oscillator but also increases the start-up time.</li> <li>2: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropri-</li> </ul> |                      |              |  |  |  |  |  |  |

# 11.0 SYNCHRONOUS SERIAL PORT (SSP) MODULE

The Synchronous Serial Port (SSP) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, dis-

play drivers, A/D converters, etc. The SSP module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I<sup>2</sup>C)

Refer to Application Note AN578, "Use of the SSP Module in the  $I^2C$  Multi-Master Environment."

#### FIGURE 11-1: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS 94h)

| R/W-0  | R/W-0                                                                                                                                                                                                                                                                                                                             | R-0                                                              | R-0                                            | R-0                                     | R-0          | R-0                           | R-0                          |                                                                                      |  |  |  |  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------|-----------------------------------------|--------------|-------------------------------|------------------------------|--------------------------------------------------------------------------------------|--|--|--|--|
| SMP    | CKE                                                                                                                                                                                                                                                                                                                               | D/Ā                                                              | Р                                              | S                                       | R/W          | UA                            | BF                           | R = Readable bit                                                                     |  |  |  |  |
| bit7   |                                                                                                                                                                                                                                                                                                                                   |                                                                  |                                                |                                         |              |                               | bitO                         | W = Writable bit<br>U = Unimplemented bit,<br>read as '0'<br>- n =Value at POR reset |  |  |  |  |
| bit 7: | SMP: SPI data input sample phase         SPI Master Mode         1 = Input data sampled at end of data output time         0 = Input data sampled at middle of data output time         SPI Slave Mode         SMP must be cleared when SPI is used in slave mode                                                                 |                                                                  |                                                |                                         |              |                               |                              |                                                                                      |  |  |  |  |
| bit 6: | <ul> <li>6: CKE: SPI Clock Edge Select (Figure 11-5, Figure 11-6, and Figure 11-7)<br/><u>CKP = 0</u><br/>1 = Data transmitted on rising edge of SCK<br/>0 = Data transmitted on falling edge of SCK<br/><u>CKP = 1</u><br/>1 = Data transmitted on falling edge of SCK<br/>0 = Data transmitted on rising edge of SCK</li> </ul> |                                                                  |                                                |                                         |              |                               |                              |                                                                                      |  |  |  |  |
| bit 5: | <b>D/A</b> : Data/Address bit (I <sup>2</sup> C mode only)<br>1 = Indicates that the last byte received or transmitted was data<br>0 = Indicates that the last byte received or transmitted was address                                                                                                                           |                                                                  |                                                |                                         |              |                               |                              |                                                                                      |  |  |  |  |
| bit 4: | <b>P</b> : Stop<br>dete<br>1 = Indi<br>0 = Stop                                                                                                                                                                                                                                                                                   | bit (I <sup>2</sup> C n<br>ected last<br>cates tha<br>p bit was  | node only.<br>)<br>It a stop bi<br>not detect  | This bit is o<br>t has been<br>ed last  | leared wher  | the SSP m<br>t (this bit is   | nodule is dis<br>'0' on RESI | sabled, or when the Start bit was                                                    |  |  |  |  |
| bit 3: | <b>S</b> : Start<br>dete<br>1 = Indi<br>0 = Sta                                                                                                                                                                                                                                                                                   | bit (I <sup>2</sup> C r<br>ected last<br>cates tha<br>rt bit was | node only.<br>)<br>It a start bi<br>not detect | This bit is o<br>t has been<br>ted last | cleared wher | n the SSP n<br>t (this bit is | nodule is dis<br>'0' on RESI | sabled, or when the Stop bit was<br>ET)                                              |  |  |  |  |
| bit 2: | <b>R</b> $\overline{W}$ : Read/Write bit information (I <sup>2</sup> C mode only)<br>This bit holds the R/W bit information following the last address match. This bit is only valid from the address match to the next start bit, stop bit, or $\overline{ACK}$ bit.<br>1 = Read<br>0 = Write                                    |                                                                  |                                                |                                         |              |                               |                              |                                                                                      |  |  |  |  |
| bit 1: | <b>UA</b> : Update Address (10-bit I <sup>2</sup> C mode only)<br>1 = Indicates that the user needs to update the address in the SSPADD register<br>0 = Address does not need to be updated                                                                                                                                       |                                                                  |                                                |                                         |              |                               |                              |                                                                                      |  |  |  |  |
| bit 0: | <ul> <li>BF: Buffer Full Status bit<br/><u>Receive</u> (SPI and I<sup>2</sup>C modes)<br/>1 = Receive complete, SSPBUF is full<br/>0 = Receive not complete, SSPBUF is empty<br/><u>Transmit</u> (I<sup>2</sup>C mode only)<br/>1 = Transmit in progress, SSPBUF is full<br/>0 = Transmit complete, SSPBUF is empty</li> </ul>    |                                                                  |                                                |                                         |              |                               |                              |                                                                                      |  |  |  |  |

#### 11.3.1 SLAVE MODE

In slave mode, the SCL and SDA pins must be configured as inputs (TRISC<4:3> set). The SSP module will override the input state with the output data when required (slave-transmitter).

When an address is matched or the data transfer after an address match is received, the hardware automatically will generate the acknowledge ( $\overline{ACK}$ ) pulse, and then load the SSPBUF register with the received value currently in the SSPSR register.

There are certain conditions that will cause the SSP module not to give this  $\overline{ACK}$  pulse. These are if either (or both):

- a) The buffer full bit BF (SSPSTAT<0>) was set before the transfer was received.
- b) The overflow bit SSPOV (SSPCON<6>) was set before the transfer was received.

In this case, the SSPSR register value is not loaded into the SSPBUF, but bit SSPIF (PIR1<3>) is set. Table 11-3 shows what happens when a data transfer byte is received, given the status of bits BF and SSPOV. The shaded cells show the condition where user software did not properly clear the overflow condition. Flag bit BF is cleared by reading the SSPBUF register while bit SSPOV is cleared through software.

The SCL clock input must have a minimum high and low time for proper operation. The high and low times of the  $I^2C$  specification as well as the requirement of the SSP module is shown in timing parameter #100 and parameter #101.

#### 11.3.1.1 ADDRESSING

Once the SSP module has been enabled, it waits for a START condition to occur. Following the START condition, the 8-bits are shifted into the SSPSR register. All incoming bits are sampled with the rising edge of the clock (SCL) line. The value of register SSPSR<7:1> is compared to the value of the SSPADD register. The

address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match, and the BF and SSPOV bits are clear, the following events occur:

- a) The SSPSR register value is loaded into the SSPBUF register.
- b) The buffer full bit, BF is set.
- c) An ACK pulse is generated.
- d) SSP interrupt flag bit, SSPIF (PIR1<3>) is set (interrupt is generated if enabled) - on the falling edge of the ninth SCL pulse.

In 10-bit address mode, two address bytes need to be received by the slave (Figure 11-10). The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. Bit  $R/\overline{W}$  (SSPSTAT<2>) must specify a write so the slave device will receive the second address byte. For a 10-bit address the first byte would equal '1111 0 A9 A8 0', where A9 and A8 are the two MSbs of the address. The sequence of events for a 10-bit address is as follows, with steps 7- 9 for slave-transmitter:

- 1. Receive first (high) byte of Address (bits SSPIF, BF, and bit UA (SSPSTAT<1>) are set).
- 2. Update the SSPADD register with second (low) byte of Address (clears bit UA and releases the SCL line).
- 3. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 4. Receive second (low) byte of Address (bits SSPIF, BF, and UA are set).
- 5. Update the SSPADD register with the first (high) byte of Address, if match releases SCL line, this will clear bit UA.
- 6. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 7. Receive repeated START condition.
- 8. Receive first (high) byte of Address (bits SSPIF and BF are set).
- 9. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.

| Status Bits as Data<br>Transfer is Received |       |                    | Generate ACK | Set bit SSPIF<br>(SSP Interrupt occurs |  |
|---------------------------------------------|-------|--------------------|--------------|----------------------------------------|--|
| BF                                          | SSPOV | $SSPSR \to SSPBUF$ | Pulse        | if enabled)                            |  |
| 0                                           | 0     | Yes                | Yes          | Yes                                    |  |
| 1                                           | 0     | No                 | No           | Yes                                    |  |
| 1                                           | 1     | No                 | No           | Yes                                    |  |
| 0                                           | 1     | No                 | No           | Yes                                    |  |

# TABLE 11-3: DATA TRANSFER RECEIVED BYTE ACTIONS

# 12.2 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 9.5 TAD per 8-bit conversion. The source of the A/D conversion clock is software selected. The four possible options for TAD are:

- 2Tosc
- 8Tosc
- 32Tosc
- Internal RC oscillator

For correct A/D conversions, the A/D conversion clock (TAD) must be selected to ensure a minimum TAD time of 1.6  $\mu s.$ 

Table 12-1 shows the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

# 12.3 Configuring Analog Port Pins

The ADCON1 and TRISA registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS2:CHS0 bits and the TRIS bits.

- Note 1: When reading the port register, all pins configured as analog inputs will read as cleared (a low level). Pins configured as digital inputs, will convert an analog input. Analog levels on a digitally configured input will not affect the conversion accuracy.
- **Note 2:** Analog levels on any pin that is defined as a digital input (including the AN4:AN0 pins), may cause the input buffer to consume current that is out of the devices specification.

# TABLE 12-1: TAD vs. DEVICE OPERATING FREQUENCIES

| A/D Clock S | Source (TAD) | Device Frequency          |                           |                               |                         |  |  |
|-------------|--------------|---------------------------|---------------------------|-------------------------------|-------------------------|--|--|
| Operation   | ADCS1:ADCS0  | 8 MHz                     | 5 MHz                     | 1.25 MHz                      | 333.33 kHz              |  |  |
| 2Tosc       | 00           | 250 ns <sup>(2)</sup>     | 400 ns <sup>(2)</sup>     | 1.6 μs                        | 6 μs                    |  |  |
| 8Tosc       | 01           | 1 μs                      | 1.6 μs                    | 6.4 μs                        | 24 μs <sup>(3)</sup>    |  |  |
| 32Tosc      | 10           | 4 μs                      | 6.4 μs                    | 25.6 μs <b><sup>(3)</sup></b> | 96 μs <sup>(3)</sup>    |  |  |
| RC          | 11           | 2 - 6 μs <sup>(1,4)</sup> | 2 - 6 μs <sup>(1,4)</sup> | 2 - 6 μs <sup>(1,4)</sup>     | 2 - 6 μs <sup>(1)</sup> |  |  |

Legend: Shaded cells are outside of recommended range.

Note 1: The RC source has a typical TAD time of 4  $\mu$ s.

2: These values violate the minimum required TAD time.

3: For faster conversion times, the selection of another clock source is recommended.

4: When derived frequency is greater than 1 MHz, the RC A/D conversion clock source is recommended for sleep mode only

5: For extended voltage devices (LC), please refer to the electrical specifications section.

#### 13.6 **Configuring the LCD Module**

The following is the sequence of steps to follow to configure the LCD module.

- 1. Select the frame clock prescale using bits LP3:LP0 (LCDPS<3:0>).
- 2. Configure the appropriate pins to function as segment drivers using the LCDSE register.
- 3. Configure the LCD module for the following using the LCDCON register.
- Multiplex mode and Bias, bits -LMUX1:LMUX0

- Timing source, bits CS1:CS0
- Voltage generation, bit VGEN
- Sleep mode, bit SLPEN
- 4. Write initial values to pixel data registers, LCDD00 through LCDD15.
- 5. Clear LCD interrupt flag, LCDIF (PIR1<7>), and if desired, enable the interrupt by setting bit LCDIE (PIE1<7>).
- 6. Enable the LCD module, by setting bit LCDEN (LCDCON<7>).

#### TABLE 13-4: SUMMARY OF REGISTERS ASSOCIATED WITH THE LCD MODULE

| Address                 | Name   | Bit 7                        | Bit 6                        | Bit 5                        | Bit 4         | Bit 3         | Bit 2         | Bit 1         | Bit 0         | Value on<br>Power-on<br>Reset | Value on<br>all other<br>Resets |
|-------------------------|--------|------------------------------|------------------------------|------------------------------|---------------|---------------|---------------|---------------|---------------|-------------------------------|---------------------------------|
| 0Bh, 8Bh,<br>10Bh, 18Bh | INTCON | GIE                          | PEIE                         | TOIE                         | INTE          | RBIE          | TOIF          | INTF          | RBIF          | 0000 000x                     | 0000 000u                       |
| 0Ch                     | PIR1   | LCDIF                        | ADIF <sup>(1)</sup>          | _                            | _             | SSPIF         | CCP1IF        | TMR2IF        | TMR1IF        | 00 0000                       | 00 0000                         |
| 8Ch                     | PIE1   | LCDIE                        | ADIE <sup>(1)</sup>          | _                            | _             | SSPIE         | CCP1IE        | TMR2IE        | TMR1IE        | 00 0000                       | 00 0000                         |
| 10h                     | T1CON  | _                            | _                            | T1CKPS1                      | T1CKPS0       | T1OSCEN       | T1SYNC        | TMR1CS        | TMR10N        | 00 0000                       | uu uuuu                         |
| 10Dh                    | LCDSE  | SE29                         | SE27                         | SE20                         | SE16          | SE12          | SE9           | SE5           | SE0           | 1111 1111                     | 1111 1111                       |
| 10Eh                    | LCDPS  | _                            | _                            | _                            | _             | LP3           | LP2           | LP1           | LP0           | 0000                          | 0000                            |
| 10Fh                    | LCDCON | LCDEN                        | SLPEN                        | —                            | VGEN          | CS1           | CS0           | LMUX1         | LMUX0         | 00-0 0000                     | 00-0 0000                       |
| 110h                    | LCDD00 | SEG07<br>COM0                | SEG06<br>COM0                | SEG05<br>COM0                | SEG04<br>COM0 | SEG03<br>COM0 | SEG02<br>COM0 | SEG01<br>COM0 | SEG00<br>COM0 | xxxx xxxx                     | uuuu uuuu                       |
| 111h                    | LCDD01 | SEG15<br>COM0                | SEG14<br>COM0                | SEG13<br>COM0                | SEG12<br>COM0 | SEG11<br>COM0 | SEG10<br>COM0 | SEG09<br>COM0 | SEG08<br>COM0 | xxxx xxxx                     | uuuu uuuu                       |
| 112h                    | LCDD02 | SEG23<br>COM0                | SEG22<br>COM0                | SEG21<br>COM0                | SEG20<br>COM0 | SEG19<br>COM0 | SEG18<br>COM0 | SEG17<br>COM0 | SEG16<br>COM0 | xxxx xxxx                     | uuuu uuuu                       |
| 113h                    | LCDD03 | SEG31<br>COM0                | SEG30<br>COM0                | SEG29<br>COM0                | SEG28<br>COM0 | SEG27<br>COM0 | SEG26<br>COM0 | SEG25<br>COM0 | SEG24<br>COM0 | xxxx xxxx                     | uuuu uuuu                       |
| 114h                    | LCDD04 | SEG07<br>COM1                | SEG06<br>COM1                | SEG05<br>COM1                | SEG04<br>COM1 | SEG03<br>COM1 | SEG02<br>COM1 | SEG01<br>COM1 | SEG00<br>COM1 | xxxx xxxx                     | uuuu uuuu                       |
| 115h                    | LCDD05 | SEG15<br>COM1                | SEG14<br>COM1                | SEG13<br>COM1                | SEG12<br>COM1 | SEG11<br>COM1 | SEG10<br>COM1 | SEG09<br>COM1 | SEG08<br>COM1 | xxxx xxxx                     | uuuu uuuu                       |
| 116h                    | LCDD06 | SEG23<br>COM1                | SEG22<br>COM1                | SEG21<br>COM1                | SEG20<br>COM1 | SEG19<br>COM1 | SEG18<br>COM1 | SEG17<br>COM1 | SEG16<br>COM1 | xxxx xxxx                     | uuuu uuuu                       |
| 117h                    | LCDD07 | SEG31<br>COM1 <sup>(2)</sup> | SEG30<br>COM1                | SEG29<br>COM1                | SEG28<br>COM1 | SEG27<br>COM1 | SEG26<br>COM1 | SEG25<br>COM1 | SEG24<br>COM1 | xxxx xxxx                     | սսսս սսսս                       |
| 118h                    | LCDD08 | SEG07<br>COM2                | SEG06<br>COM2                | SEG05<br>COM2                | SEG04<br>COM2 | SEG03<br>COM2 | SEG02<br>COM2 | SEG01<br>COM2 | SEG00<br>COM2 | xxxx xxxx                     | սսսս սսսս                       |
| 119h                    | LCDD09 | SEG15<br>COM2                | SEG14<br>COM2                | SEG13<br>COM2                | SEG12<br>COM2 | SEG11<br>COM2 | SEG10<br>COM2 | SEG09<br>COM2 | SEG08<br>COM2 | xxxx xxxx                     | uuuu uuuu                       |
| 11Ah                    | LCDD10 | SEG23<br>COM2                | SEG22<br>COM2                | SEG21<br>COM2                | SEG20<br>COM2 | SEG19<br>COM2 | SEG18<br>COM2 | SEG17<br>COM2 | SEG16<br>COM2 | xxxx xxxx                     | uuuu uuuu                       |
| 11Bh                    | LCDD11 | SEG31<br>COM2 <sup>(2)</sup> | SEG30<br>COM2 <sup>(2)</sup> | SEG29<br>COM2                | SEG28<br>COM2 | SEG27<br>COM2 | SEG26<br>COM2 | SEG25<br>COM2 | SEG24<br>COM2 | xxxx xxxx                     | uuuu uuuu                       |
| 11Ch                    | LCDD12 | SEG07<br>COM3                | SEG06<br>COM3                | SEG05<br>COM3                | SEG04<br>COM3 | SEG03<br>COM3 | SEG02<br>COM3 | SEG01<br>COM3 | SEG00<br>COM3 | xxxx xxxx                     | uuuu uuuu                       |
| 11Dh                    | LCDD13 | SEG15<br>COM3                | SEG14<br>COM3                | SEG13<br>COM3                | SEG12<br>COM3 | SEG11<br>COM3 | SEG10<br>COM3 | SEG09<br>COM3 | SEG08<br>COM3 | xxxx xxxx                     | uuuu uuuu                       |
| 11Eh                    | LCDD14 | SEG23<br>COM3                | SEG22<br>COM3                | SEG21<br>COM3                | SEG20<br>COM3 | SEG19<br>COM3 | SEG18<br>COM3 | SEG17<br>COM3 | SEG16<br>COM3 | xxxx xxxx                     | uuuu uuuu                       |
| 11Fh                    | LCDD15 | SEG31<br>COM3 <sup>(2)</sup> | SEG30<br>COM3 <sup>(2)</sup> | SEG29<br>COM3 <sup>(2)</sup> | SEG28<br>COM3 | SEG27<br>COM3 | SEG26<br>COM3 | SEG25<br>COM3 | SEG24<br>COM3 | xxxx xxxx                     | uuuu uuuu                       |

 x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the LCD Module.
 These bits are reserved on the PIC16C923, always maintain these bits clear. Legend:

Note 2: These pixels do not display, but can be used as general purpose RAM.

| TABLE 14-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS | (Cont.'d) |
|---------------------------------------------------------|-----------|
|---------------------------------------------------------|-----------|

| Register               | Applicab | le Devices | Power-on Reset | MCLR Resets<br>WDT Reset | Wake-up via<br>WDT or<br>Interrupt |
|------------------------|----------|------------|----------------|--------------------------|------------------------------------|
| LCDSE                  | 923      | 924        | 1111 1111      | 1111 1111                | սսսս սսսս                          |
| LCDPS                  | 923      | 924        | 0000           | 0000                     | uuuu                               |
| LCDCON                 | 923      | 924        | 00-0 0000      | 00-0 0000                | uu-u uuuu                          |
| LCDD00<br>to<br>LCDD15 | 923      | 924        | XXXX XXXX      | <u>uuuu</u> uuuu         | սսսս սսսս                          |
| TRISF                  | 923      | 924        | 1111 1111      | 1111 1111                | uuuu uuuu                          |
| TRISG                  | 923      | 924        | 1111 1111      | 1111 1111                | սսսս սսսս                          |

Legend: u = unchanged, x = unknown, -= unimplemented bit, read as '0', q = value depends on condition Note 1: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 14-5 for reset value for specific condition.

4: Bits PIE1<6> and PIR1<6> are reserved on the PIC16C923, always maintain these bits clear.

5: PORTA values when read.

#### FIGURE 14-11:EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)



- Note 1: External Power-on Reset circuit is required only if VDD power-up slope is too slow. The diode D helps discharge the capacitor quickly when VDD powers down.
  - 2: R < 40 kΩ is recommended to make sure that voltage drop across R does not violate the device's electrical specification.
  - 3: R1 =  $100\Omega$  to  $1 k\Omega$  will limit any current flowing into  $\overline{\text{MCLR}}$  from external capacitor C in the event of  $\overline{\text{MCLR}}$ /VPP pin breakdown due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS).

#### FIGURE 14-12:EXTERNAL BROWN-OUT PROTECTION CIRCUIT 1



# FIGURE 14-13:EXTERNAL BROWN-OUT PROTECTION CIRCUIT 2



such that:  

$$V_{DD} \bullet \frac{R1}{R1 + R2} = 0.7V$$

2: Resistors should be adjusted for the characteristics of the transistors.

# PIC16C9XX

| CLRWDT                                                                                                                                 | Clear Watchdog Timer                                                                                                                               |                  |                 |                             |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------|-----------------------------|--|--|--|
| Syntax:                                                                                                                                | [ label ]                                                                                                                                          | CLRWD1           | Г               |                             |  |  |  |
| Operands:                                                                                                                              | None                                                                                                                                               |                  |                 |                             |  |  |  |
| Operation:                                                                                                                             | $\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \ prescaler, \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \end{array}$ |                  |                 |                             |  |  |  |
| Status Affected:                                                                                                                       | TO, PD                                                                                                                                             |                  |                 |                             |  |  |  |
| Encoding:                                                                                                                              | 00                                                                                                                                                 | 0000             | 0110            | 0100                        |  |  |  |
| Description: CLRWDT instruction resets the Watc<br>dog Timer. It also resets the presca<br>of the WDT. Status bits TO and PD a<br>set. |                                                                                                                                                    |                  |                 | Watch-<br>escaler<br>PD are |  |  |  |
| Words:                                                                                                                                 | 1                                                                                                                                                  |                  |                 |                             |  |  |  |
| Cycles:                                                                                                                                | 1                                                                                                                                                  |                  |                 |                             |  |  |  |
| Q Cycle Activity:                                                                                                                      | Q1                                                                                                                                                 | Q2               | Q3              | Q4                          |  |  |  |
|                                                                                                                                        | Decode                                                                                                                                             | No-<br>Operation | Process<br>data | Clear<br>WDT<br>Counter     |  |  |  |
| Example                                                                                                                                | CLRWDT                                                                                                                                             |                  |                 |                             |  |  |  |
| Before Instruction<br>WDT counter                                                                                                      |                                                                                                                                                    |                  | nter =          | ?                           |  |  |  |
| After Instruction<br>WDT counter = $0x$<br>WDT prescaler= $0$<br>TO = $1$<br>PD = $1$                                                  |                                                                                                                                                    |                  |                 | 0x00<br>0<br>1<br>1         |  |  |  |

| Complement f                                                                                                                                            |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| [ label ]                                                                                                                                               | COMF                                                                                                                                                                                                                                                                                                           | f,d                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| $\begin{array}{l} 0 \leq f \leq 12 \\ d \in \ [0,1] \end{array}$                                                                                        | 27                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| $(\bar{f}) \rightarrow (des$                                                                                                                            | stination                                                                                                                                                                                                                                                                                                      | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Z                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| 00                                                                                                                                                      | 1001                                                                                                                                                                                                                                                                                                           | dfff                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ffff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| The contents of register 'f' are comple-<br>mented. If 'd' is 0 the result is stored in<br>W. If 'd' is 1 the result is stored back in<br>register 'f'. |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| 1                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| 1                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Q1                                                                                                                                                      | Q2                                                                                                                                                                                                                                                                                                             | Q3                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Q4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Decode                                                                                                                                                  | Read<br>register<br>'f'                                                                                                                                                                                                                                                                                        | Process<br>data                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Write to destination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| COMF                                                                                                                                                    | REG                                                                                                                                                                                                                                                                                                            | G1,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Before Instruction                                                                                                                                      |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| $\begin{array}{rcl} REG1 &=& 0x13\\ After Instruction && \\ REG1 &=& 0x13\\ W &=& 0xEC \end{array}$                                                     |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Decreme                                                                                                                                                 | ent f                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| [ <i>label</i> ] D                                                                                                                                      | ECF f,d                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| $0 \le f \le 12$<br>$d \in [0,1]$                                                                                                                       | 27                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| (f) - 1 $\rightarrow$                                                                                                                                   | (destinat                                                                                                                                                                                                                                                                                                      | ion)                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| ()                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Z                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Z 00                                                                                                                                                    | 0011                                                                                                                                                                                                                                                                                                           | dfff                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | fff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Z<br>Decremen<br>result is sta<br>1 the result                                                                                                          | 0011<br>t register<br>ored in the<br>It is stored                                                                                                                                                                                                                                                              | dfff<br>'f'. If 'd' is (<br>e W registe<br>d back in re                                                                                                                                                                                                                                                                                                                                                                                                                | ffff<br>) the<br>er. If 'd' is<br>egister 'f'.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| Z<br>00<br>Decremen<br>result is str<br>1 the result<br>1                                                                                               | 0011<br>t register<br>ored in the<br>It is stored                                                                                                                                                                                                                                                              | dfff<br>'f'. If 'd' is (<br>e W registe<br>d back in re                                                                                                                                                                                                                                                                                                                                                                                                                | ffff<br>) the<br>er. If 'd' is<br>egister 'f'.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| Z<br>Decremen<br>result is str<br>1 the resul<br>1                                                                                                      | 0011<br>t register<br>ored in the<br>It is stored                                                                                                                                                                                                                                                              | dfff<br>'f'. If 'd' is (<br>e W registe<br>d back in re                                                                                                                                                                                                                                                                                                                                                                                                                | ffff<br>) the<br>er. If 'd' is<br>egister 'f'.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| Z<br>Decremen<br>result is str<br>1 the result<br>1<br>Q1                                                                                               | 0011<br>t register<br>ored in the<br>t is stored                                                                                                                                                                                                                                                               | dfff<br>'f'. If 'd' is (<br>e W registe<br>d back in re                                                                                                                                                                                                                                                                                                                                                                                                                | ffff<br>) the<br>er. If 'd' is<br>egister 'f'.<br>Q4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| Z<br>Decremen<br>result is str<br>1 the resul<br>1<br>1<br>Q1<br>Decode                                                                                 | 0011<br>t register<br>ored in the<br>t is stored<br>Q2<br>Read<br>register<br>'f                                                                                                                                                                                                                               | dfff<br>'f'. If 'd' is (<br>e W registe<br>back in re<br>back in re<br>Q3<br>Process<br>data                                                                                                                                                                                                                                                                                                                                                                           | ffff<br>0 the<br>er. If 'd' is<br>egister 'f'.<br>Q4<br>Write to<br>destination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Z<br>00<br>Decremen<br>result is str<br>1 the result<br>1<br>1<br>Q1<br>Decode<br>DECF                                                                  | 0011<br>t register<br>ored in the<br>t is stored<br>Q2<br>Read<br>register<br>'f'                                                                                                                                                                                                                              | dfff<br>'f'. If 'd' is (<br>e W registe<br>d back in re<br>Q3<br>Process<br>data                                                                                                                                                                                                                                                                                                                                                                                       | ffff<br>) the<br>er. If 'd' is<br>egister 'f'.<br>Q4<br>Write to<br>destination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|                                                                                                                                                         | $[ label ]$ $0 \le f \le 12$ $d \in [0,1]$ $(\bar{f}) \rightarrow (de: Z)$ $\boxed{00}$ The contermented. If<br>W. If 'd' is<br>register 'f'.<br>1<br>1<br>Q1<br>$\boxed{Decode}$ $COMF$ Before In<br>After Inst<br><b>Decremented</b><br>$[label] \ D$ $0 \le f \le 12$ $d \in [0,1]$ $(f) - 1 \rightarrow 0$ | [ <i>label</i> ] COMF<br>0 ≤ f ≤ 127<br>d ∈ [0,1]<br>( $\overline{f}$ ) → (destination)<br>Z<br>00 1001<br>The contents of reg<br>mented. If 'd' is 0 the<br>W. If 'd' is 1 the resu<br>register 'f'.<br>1<br>1<br>Q1 Q2<br>Decode Read<br>register<br>'f'<br>COMF REG<br>Before Instruction<br>REG1<br>After Instruction<br>REG1<br>After Instruction<br>REG1<br>W<br>Decrement f<br>[ <i>label</i> ] DECF f,d<br>0 ≤ f ≤ 127<br>d ∈ [0,1]<br>(f) - 1 → (destination) | [ <i>label</i> ] COMF f,d<br>0 ≤ f ≤ 127<br>d ∈ [0,1]<br>( $\overline{f}$ ) → (destination)<br>Z<br>00 1001 dfff<br>The contents of register 'f' are<br>mented. If 'd' is 0 the result is stored<br>register 'f'.<br>1<br>1<br>2<br>Q1 Q2 Q3<br>Q1 Q2 Q3<br>Q1 Q2 Q3<br>Q1 Q2 Q3<br>Q1 Q2 Q3<br>Q2 Q3<br>Q1 Q2 Q3<br>Q1 Q2 Q3<br>Q2 Q3<br>Q1 Q2 Q3<br>Q1 Q2 Q3<br>Q1 Q2 Q3<br>Q1 Q2 Q3<br>Q2 Q3<br>Q1 Q2 Q3<br>Q1 Q2 Q3<br>Q2 Q3<br>Q1 Q2 Q3<br>Q2 Q3<br>Q1 Q2 Q3<br>Q3<br>Q1 Q2 Q3<br>Q2 Q3<br>Q1 Q2 Q3<br>Q2 Q3<br>Q1 Q2 Q3<br>Q3<br>Q1 Q2 Q3<br>Q2 Q3<br>Q2 Q3<br>Q3<br>Q1 Q2 Q3<br>Q3<br>Q3<br>Q1 Q2 Q3<br>Q3<br>Q2 Q3<br>Q3<br>Q2 Q3<br>Q2 Q3<br>Q3<br>Q3<br>Q1 Q2 Q3<br>Q3<br>Q3<br>Q2 Q3<br>Q3<br>Q3<br>Q2 Q3<br>Q3<br>Q3<br>Q2 Q3<br>Q3<br>Q3<br>Q3<br>Q2 Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q2 Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3<br>Q3 |  |  |  |

# **17.0 ELECTRICAL CHARACTERISTICS**

| Absolute Maximum Ratings †                                                                               |                                        |
|----------------------------------------------------------------------------------------------------------|----------------------------------------|
| Ambient temperature under bias                                                                           | 55°C to +125°C                         |
| Storage temperature                                                                                      | 65°C to +150°C                         |
| Voltage on any pin with respect to Vss (except VDD, MCLR, and RA4)                                       | 0.3V to (VDD + 0.3V)                   |
| Voltage on VDD with respect to Vss                                                                       | -0.3V to +7.5V                         |
| Voltage on MCLR with respect to Vss                                                                      | 0V to +14V                             |
| Voltage on RA4 with respect to Vss                                                                       | 0V to +14V                             |
| Total power dissipation (Note 1)                                                                         | 1.0W                                   |
| Maximum current out of Vss pin                                                                           |                                        |
| Maximum current into VDD pin                                                                             |                                        |
| Input clamp current, Iık (Vı < 0 or Vı > VDD)                                                            | ±20 mA                                 |
| Output clamp current, Ioк (Vo < 0 or Vo > VDD)                                                           | ±20 mA                                 |
| Maximum output current sunk by any I/O pin                                                               | 10 mA                                  |
| Maximum output current sourced by any I/O pin                                                            | 10 mA                                  |
| Maximum current sunk by all Ports combined                                                               | 200 mA                                 |
| Maximum current sourced by all Ports combined                                                            | 200 mA                                 |
| <b>Note 1:</b> Power dissipation is calculated as follows: PDIS = VDD x {IDD - $\sum$ IOH} + $\sum$ {(VD | D - VOH) x IOH} + $\Sigma$ (VOI x IOL) |

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

# TABLE 17-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

| osc |       | PIC16C923-04<br>PIC16C924-04 |       | PIC16C923-08<br>PIC16C924-08 |               | PIC16LC923-04<br>PIC16LC924-04                            |       | CL Devices          |
|-----|-------|------------------------------|-------|------------------------------|---------------|-----------------------------------------------------------|-------|---------------------|
|     | Vdd:  | 4.0V to 6.0V                 | VDD:  | 4.5V to 5.5V                 | Vdd:          | 2.5V to 6.0V                                              | Vdd:  | 2.5V to 6.0V        |
| PC  | IDD:  | 5 mA max. at 5.5V            | IDD:  | 2.7 mA typ. at 5.5V          | IDD:          | 3.8 mA max. at 3.0V                                       | IDD:  | 5 mA max. at 5.5V   |
|     | IPD:  | 21 μA max. at 4V             | IPD:  | 1.5 μA typ. at 4V            | IPD:          | 5 μA max. at 3V                                           | IPD:  | 21 μA max. at 4V    |
|     | Freq: | 4 MHz max.                   | Freq: | 4 MHz max.                   | Freq:         | 4 MHz max.                                                | Freq: | 4 MHz max.          |
|     | VDD:  | 4.0V to 6.0V                 | Vdd:  | 4.5V to 5.5V                 | VDD:          | 2.5V to 6.0V                                              | VDD:  | 2.5V to 6.0V        |
| XT  | IDD:  | 5 mA max. at 5.5V            | IDD:  | 2.7 mA typ. at 5.5V          | IDD:          | 3.8 mA max. at 3.0V                                       | IDD:  | 5 mA max. at 5.5V   |
|     | IPD:  | 21 μA max. at 4V             | IPD:  | 1.5 μA typ. at 4V            | IPD:          | 5 μA max. at 3V                                           | IPD:  | 21 µA max. at 4V    |
|     | Freq: | 4 MHz max.                   | Freq: | 4 MHz max.                   | Freq:         | 4 MHz max.                                                | Freq: | 4 MHz max.          |
|     | Vdd:  | 4.5V to 5.5V                 | VDD:  | 4.5V to 5.5V                 |               |                                                           | VDD:  | 4.5V to 5.5V        |
| ЦС  | IDD:  | 3.5 mA typ. at 5.5V          | IDD:  | 7 mA max. at 5.5V            | Dong          | Do not upo in LIC mode                                    |       | 7 mA max. at 5.5V   |
| 113 | IPD:  | 1.5 μA typ. at 4.5V          | IPD:  | 1.5 μA typ. at 4.5V          |               |                                                           | IPD:  | 1.5 μA typ. at 4.5V |
|     | Freq: | 4 MHz max.                   | Freq: | 8 MHz max.                   |               |                                                           | Freq: | 8 MHz max.          |
|     | Vdd:  | 4.0V to 6.0V                 |       |                              |               |                                                           | VDD:  | 2.5V to 6.0V        |
|     | IDD:  | 22.5 μA typ.                 |       |                              |               | $2.5 \times 100.0 \times$                                 | IDD:  | 30 µA max.          |
| LP  |       | at 32 kHz, 4.0V              | Do no | ot use in LP mode            | יסטן.<br>וסט. | $50 \mu\text{A}$ max. at $52 \text{KHz}$ , $5.0 \text{V}$ |       | at 32 kHz, 3.0V     |
|     | IPD:  | 1.5 μA typ. at 4.0V          |       |                              | Eroa          | 200  kHz may                                              | IPD:  | 5 µA max. at 3.0V   |
|     | Freq: | 200 kHz max.                 |       |                              | Fied.         | 200 NI 12 IIIAX.                                          | Freq: | 200 kHz max.        |

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

# 17.4 <u>Timing Parameter Symbology</u>

The timing parameter symbols have been created following one of the following formats:

| 1. TppS2pp            | S                                   | 3. TCC:ST | (I <sup>2</sup> C specifications only) |
|-----------------------|-------------------------------------|-----------|----------------------------------------|
| 2. TppS               |                                     | 4. Ts     | (I <sup>2</sup> C specifications only) |
| т                     |                                     |           |                                        |
| F                     | Frequency                           | Т         | Time                                   |
| Lowercas              | e letters (pp) and their meanings:  |           |                                        |
| рр                    |                                     |           |                                        |
| сс                    | CCP1                                | osc       | OSC1                                   |
| ck                    | CLKOUT                              | rd        | RD                                     |
| cs                    | CS                                  | rw        | RD or WR                               |
| di                    | SDI                                 | sc        | SCK                                    |
| do                    | SDO                                 | ss        | SS                                     |
| dt                    | Data in                             | tO        | ТОСКІ                                  |
| io                    | I/O port                            | t1        | T1CKI                                  |
| mc                    | MCLR                                | wr        | WR                                     |
| Uppercas              | e letters and their meanings:       |           |                                        |
| S                     |                                     |           |                                        |
| F                     | Fall                                | P         | Period                                 |
| н                     | High                                | R         | Rise                                   |
| 1                     | Invalid (Hi-impedance)              | V         | Valid                                  |
| L                     | Low                                 | Z         | Hi-impedance                           |
| I <sup>2</sup> C only |                                     |           |                                        |
| AA                    | output access                       | High      | High                                   |
| BUF                   | Bus free                            | Low       | Low                                    |
| Tcc:st (l             | <sup>2</sup> C specifications only) |           |                                        |
| СС                    |                                     |           |                                        |
| HD                    | Hold                                | SU        | Setup                                  |
| ST                    |                                     |           |                                        |
| DAT                   | DATA input hold                     | STO       | STOP condition                         |
| STA                   | START condition                     |           |                                        |

# FIGURE 17-2: LOAD CONDITIONS



#### **ON-LINE SUPPORT**

Microchip provides two methods of on-line support. These are the Microchip BBS and the Microchip World Wide Web (WWW) site.

Use Microchip's Bulletin Board Service (BBS) to get current information and help about Microchip products. Microchip provides the BBS communication channel for you to use in extending your technical staff with microcontroller and memory experts.

To provide you with the most responsive service possible, the Microchip systems team monitors the BBS, posts the latest component data and software tool updates, provides technical help and embedded systems insights, and discusses how Microchip products provide project solutions.

The web site, like the BBS, is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape or Microsoft Explorer. Files are also available for FTP download from our FTP site.

#### Connecting to the Microchip Internet Web Site

The Microchip web site is available by using your favorite Internet browser to attach to:

#### www.microchip.com

The file transfer site is available by using an FTP service to connect to:

#### ftp.mchip.com/biz/mchip

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Datasheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

- Latest Microchip Press Releases
- Technical Support Section with Frequently Asked
   Questions
- Design Tips
- Device Errata
- Job Postings
- Microchip Consultant Program Member Listing
- Links to other useful web sites related to Microchip Products

#### **Connecting to the Microchip BBS**

Connect worldwide to the Microchip BBS using either the Internet or the CompuServe<sup>®</sup> communications network.

#### Internet:

You can telnet or ftp to the Microchip BBS at the address: mchipbbs.microchip.com

#### CompuServe Communications Network:

When using the BBS via the Compuserve Network, in most cases, a local call is your only expense. The Microchip BBS connection does not use CompuServe membership services, therefore you do not need CompuServe membership to join Microchip's BBS. There is no charge for connecting to the Microchip BBS. The procedure to connect will vary slightly from country to country. Please check with your local CompuServe agent for details if you have a problem. CompuServe service allow multiple users various baud rates depending on the local point of access.

The following connect procedure applies in most locations.

- 1. Set your modem to 8-bit, No parity, and One stop (8N1). This is not the normal CompuServe setting which is 7E1.
- 2. Dial your local CompuServe access number.
- 3. Depress the <Enter> key and a garbage string will appear because CompuServe is expecting a 7E1 setting.
- 4. Type +, depress the <Enter> key and "Host Name:" will appear.
- 5. Type MCHIPBBS, depress the <Enter> key and you will be connected to the Microchip BBS.

In the United States, to find CompuServe's phone number closest to you, set your modem to 7E1 and dial (800) 848-4480 for 300-2400 baud or (800) 331-7166 for 9600-14400 baud connection. After the system responds with "Host Name:", type NETWORK, depress the <Enter> key and follow CompuServe's directions.

For voice information (or calling from overseas), you may call (614) 723-1550 for your local CompuServe number.

Microchip regularly uses the Microchip BBS to distribute technical information, application notes, source code, errata sheets, bug reports, and interim patches for Microchip systems software products. For each SIG, a moderator monitors, scans, and approves or disapproves files submitted to the SIG. No executable files are accepted from the user community in general to limit the spread of computer viruses.

#### Systems Information and Upgrade Hot Line

The Systems Information and Upgrade Line provides system users a listing of the latest versions of all of Microchip's development systems software products. Plus, this line provides information on how customers can receive any currently available upgrade kits.The Hot Line Numbers are:

1-800-755-2345 for U.S. and most of Canada, and

1-602-786-7302 for the rest of the world.

**Trademarks:** The Microchip name, logo, PIC, PICSTART, PICMASTER and PRO MATE are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. PICmicro, ICSP, MPLAB and *fuzzy*LAB are trademarks and SQTP is a service mark of Microchip in the U.S.A.

*fuzzy*TECH is a registered trademark of Inform Software Corporation. IBM, IBM PC-AT are registered trademarks of International Business Machines Corp. Pentium is a trademark of Intel Corporation. Windows is a trademark and MS-DOS, Microsoft Windows are registered trademarks of Microsoft Corporation. CompuServe is a registered trademark of CompuServe Incorporated.

All other trademarks mentioned herein are the property of their respective companies.