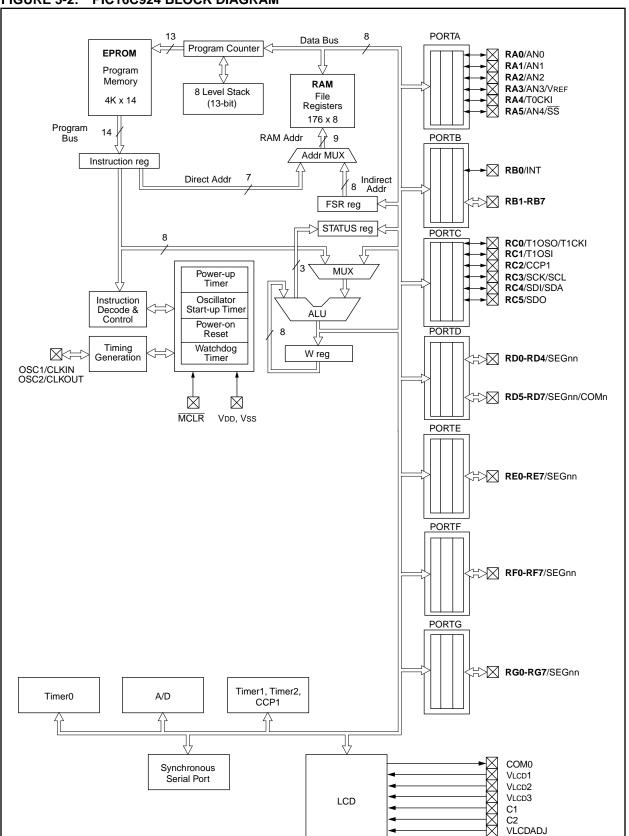


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

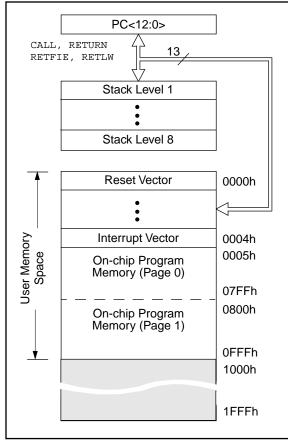
Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI
Peripherals	LCD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	OTP
EEPROM Size	
RAM Size	176 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc923-04-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-1: PIC16C9XX PINOUT DESCRIPTION (Cont.'d)

Pin Name	DIP Pin#	PLCC Pin#	TQFP Pin#	Pin Type	Buffer Type	Description
VLCD3	19	20	11	Р	_	LCD Voltage.
Vdd	20, 60	22, 64	12, 52	Р	—	Digital power.
Vss	6, 21	7, 23	13, 62	Р	_	Ground reference.
NC	-	1	_	_	—	These pins are not internally connected. These pins should be left unconnected.
Legend: I = input — = Not us		P = pow	er TL input	L = LCD Driver ST = Schmitt Trigger input		


4.0 MEMORY ORGANIZATION

4.1 Program Memory Organization

The PIC16C9XX family has a 13-bit program counter capable of addressing an 8K x 14 program memory space.

Only the first 4K x 14 (0000h-0FFFh) is physically implemented. Accessing a location above the physically implemented addresses will cause a wraparound. The reset vector is at 0000h and the interrupt vector is at 0004h.

FIGURE 4-1: PROGRAM MEMORY MAP AND STACK

4.2 Data Memory Organization

The data memory is partitioned into four Banks which contain the General Purpose Registers and the Special Function Registers. Bits RP1 and RP0 are the bank select bits.

RP1:RP0 (STATUS<6:5>)

11 = Bank 3 (180h-1FFh)

10 = Bank 2 (100h-17Fh)

01 = Bank 1 (80h-FFh)

00 = Bank 0 (00h-7Fh)

The lower locations of each Bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers implemented as static RAM. All four banks contain special function registers. Some "high use" special function registers are mirrored in other banks for code reduction and quicker access.

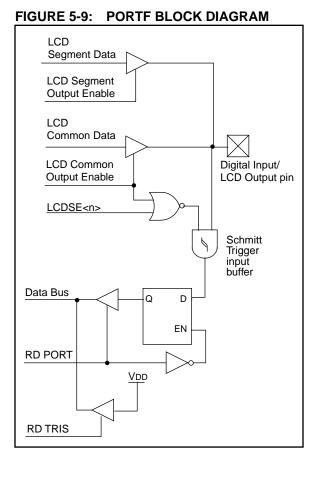
4.2.1 GENERAL PURPOSE REGISTER FILE

The register file can be accessed either directly, or indirectly through the File Select Register FSR (Section 4.5).

The following General Purpose Registers are not physically implemented:

- F0h-FFh of Bank 1
- 170h-17Fh of Bank 2
- 1F0h-1FFh of Bank 3

These locations are used for common access across banks.


5.6 PORTF and TRISF Register

PORTF is an digital input only port. Each pin is multiplexed with an LCD segment driver. These pins have Schmitt Trigger input buffers.

- **Note 1:** On a Power-on Reset these pins are configured as LCD segment drivers.
- Note 2: To configure the pins as a digital port, the corresponding bits in the LCDSE register must be cleared. Any bit set in the LCDSE register overrides any bit settings in the corresponding TRIS register.

EXAMPLE 5-6: INITIALIZING PORTF

BCF STATUS, RP0	;Select Bank2
BSF STATUS, RP1	;
BCF LCDSE,SE16	;Make all PORTF
BCF LCDSE, SE12	digital inputs;

TABLE 5-11: PORTF FUNCTIONS

Name	Bit#	Buffer Type	Function				
RF0/SEG12	bit0	ST	Digital input or Segment Driver12				
RF1/SEG13	bit1	ST	Digital input or Segment Driver13				
RF2/SEG14	bit2	ST	Digital input or Segment Driver14				
RF3/SEG15	bit3	ST	Digital input or Segment Driver15				
RF4/SEG16	bit4	ST	Digital input or Segment Driver16				
RF5/SEG17	bit5	ST	Digital input or Segment Driver17				
RF6/SEG18	bit6	ST	Digital input or Segment Driver18				
RF7/SEG19	bit7	ST	Digital input or Segment Driver19				

Legend: ST = Schmitt Trigger input

TABLE 5-12: SUMMARY OF REGISTERS ASSOCIATED WITH PORTF

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets
107h	PORTF	RF7	RF6	RF5	RF4	RF3	RF2	RF1	RF0	0000 0000	0000 0000
187h	TRISF	PORTF Data Direction Control Register								1111 1111	1111 1111
10Dh	LCDSE	SE29	SE27	SE20	SE16	SE12	SE9	SE5	SE0	1111 1111	1111 1111

Legend: Shaded cells are not used by PORTF.

TABLE 10-3: REGISTERS ASSOCIATED WITH TIMER1, CAPTURE AND COMPARE

Address	Name	Bit 7	Bit 6	Bit 5	Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0					Value on Power-on Reset	Value on all other Resets
0Bh, 8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	LCDIF	ADIF ⁽¹⁾	—	_	SSPIF	CCP1IF	TMR2IF	TMR1IF	00 0000	00 0000
8Ch	PIE1	LCDIE	ADIE ⁽¹⁾	_	_	SSPIE	CCP1IE	TMR2IE	TMR1IE	00 0000	00 0000
87h	TRISC	_	_	PORTC Data Direction Control Register							11 1111
0Eh	TMR1L	Holding	register fo	or the Least S	Significant By	rte of the 16-b	oit TMR1 reg	ister		xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding	register fo	or the Most S	ignificant By	te of the 16-bi	it TMR1 regi	ster		xxxx xxxx	uuuu uuuu
10h	T1CON	_		T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
15h	CCPR1L	Capture	Capture/Compare/PWM1 (LSB)							xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture	Capture/Compare/PWM1 (MSB)							xxxx xxxx	uuuu uuuu
17h	CCP1CON	_	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used in these modes. Note 1: Bits ADIE and ADIF reserved on the PIC16C923, always maintain these bits clear.

TABLE 10-4: REGISTERS ASSOCIATED WITH PWM AND TIMER2

Address	Name	Bit 7	Bit 6	6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0						Value on Power-on Reset	Value on all other Resets
0Bh, 8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	LCDIF	ADIF ⁽¹⁾	_	_	SSPIF	CCP1IF	TMR2IF	TMR1IF	00 0000	00 0000
8Ch	PIE1	LCDIE	ADIE ⁽¹⁾	_	_	SSPIE	CCP1IE	TMR2IE	TMR1IE	00 0000	00 0000
87h	TRISC	— PORTC Data Direction Control Register							11 1111	11 1111	
11h	TMR2	Timer2	module's reg	gister						0000 0000	0000 0000
92h	PR2	Timer2	module's Pe	riod register						1111 1111	1111 1111
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
15h	CCPR1L	Capture	Capture/Compare/PWM1 (LSB)							xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture	Capture/Compare/PWM1 (MSB)							xxxx xxxx	uuuu uuuu
17h	CCP1CON	_	_	- CCP1X CCP1Y CCP1M3 CCP1M2 CCP1M1 CCP1M							00 0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used in this mode. Note 1: Bits ADIE and ADIF reserved on the PIC16C923, always maintain these bits clear.

Г

FIGURE 11-2: SSPCON: SYNC SERIAL PORT CONTROL REGISTER (ADDRESS 14h)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	R = Readable bit
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n =Value at POR reset
bit 7:	WCOL: We 1 = The SS (must be c 0 = No col	SPBUF reg	jister is w		e it is still ti	ransmitting	the previo	us word
bit 6:	SSPOV: R	eceive Ov	erflow Ind	icator bit				
	the data in if only tran	byte is rece SSPSR is smitting da tion (and t	lost. Ove ata, to avo	rflow can c oid setting	only occur overflow.	in slave mo In master i	ode. The us	revious data. In case of overflov er must read the SSPBUF, eve werflow bit is not set since eac egister.
	$\frac{\ln I^2 C \mod}{1 = A \text{ byte}}$ in transmit 0 = No over	is received mode. SS						ous byte. SSPOV is a "don't care
bit 5:	SSPEN: S	ynchronou	s Serial F	ort Enable	e bit			
	$0 = \text{Disable}$ $\frac{\ln l^2 C \mod l}{l + l^2}$	es serial po es serial p <u>de</u> es the seria	ort and co al port and	nfigures th configure	nese pins	as I/O port	pins as sei	rt pins rial port pins
bit 4:	CKP : Cloc In SPI mod 1 = Idle sta 0 = Idle sta In I^2 C mod SCK relea	k Polarity S de ate for cloc ate for cloc de se control	Select bit k is a higł	n level	s must be	properly c	onfigured a	is input or output.
	1 = Enable 0 = Holds		clock stra	tch) (Llead	to onsure	, data sotu	n time)	
bit 3-0:	SSPM3:S3 0000 = SP 0001 = SP 0010 = SP 0100 = SP 0100 = SP 0101 = SP 0110 = I ² C 0111 = I ² C	SPM0: Syr Pl master m Pl master m Pl master m Pl master m Pl slave mo Cl slave mo Cl slave mo Cl slave mo Cl slave mo Cl slave mo	achronous node, cloc node, cloc node, cloc de, clock de, clock de, clock de, 7-bit a de, 10-bit controlle de, 7-bit a	Serial Pol k = Fosc/4 k = Fosc/6 k = TMR2 = SCK pin = SCK pin ddress address d master n ddress wit	rt Mode Si 4 16 54 . SS pin ci . SS pin ci node (slav th start an	elect bits ontrol enal ontrol disa re idle) d stop bit i	bled. bled. SS ca	

To enable the serial port, SSP Enable bit, SSPEN (SSPCON<5>) must be set. To reset or reconfigure SPI mode, clear bit SSPEN, re-initialize the SSPCON register, and then set bit SSPEN. This configures the SDI, SDO, SCK, and SS pins as serial port pins. For the pins to behave as the serial port function, they must have their data direction bits (in the TRISC register) appropriately programmed. That is:

- SDI must have TRISC<4> set
- SDO must have TRISC<5> cleared
- SCK (Master mode) must have TRISC<3> cleared
- SCK (Slave mode) must have TRISC<3> set
- SS must have TRISA<5> set

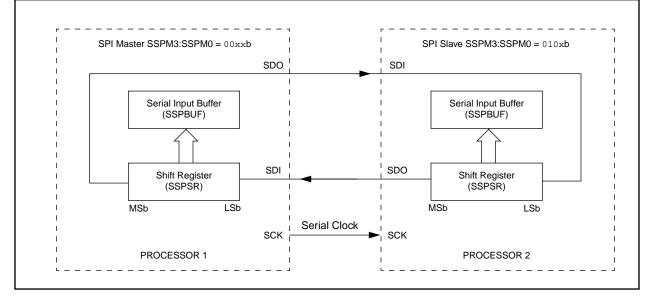
Any serial port function that is not desired may be overridden by programming the corresponding data direction (TRIS) register to the opposite value. An example would be in master mode where you are only sending data (to a display driver), then both SDI and \overline{SS} could be used as general purpose outputs by clearing their corresponding TRIS register bits.

Figure 11-4 shows a typical connection between two microcontrollers. The master controller (Processor 1) initiates the data transfer by sending the SCK signal. Data is shifted out of both shift registers on their programmed clock edge, and latched on the opposite edge of the clock. Both processors should be programmed to same Clock Polarity (CKP), then both controllers would send and receive data at the same time. Whether the data is meaningful (or dummy data) depends on the application software. This leads to three scenarios for data transmission:

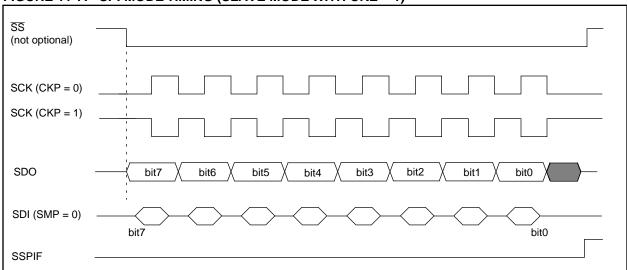
- Master sends data Slave sends dummy data
- Master sends data Slave sends data
- Master sends dummy data Slave sends data

The master can initiate the data transfer at any time because it controls the SCK. The master determines when the slave (Processor 2) is to broadcast data by the firmware protocol.

In master mode the data is transmitted/received as soon as the SSPBUF register is written to. If the SPI is only going to receive, the SCK output could be disabled (programmed as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPBUF register as if a normal received byte (interrupts and status bits appropriately set). This could be useful in receiver applications as a "line activity monitor" mode.


In slave mode, the data is transmitted and received as the external clock pulses appear on SCK. When the last bit is latched the interrupt flag bit SSPIF (PIR1<3>) is set.

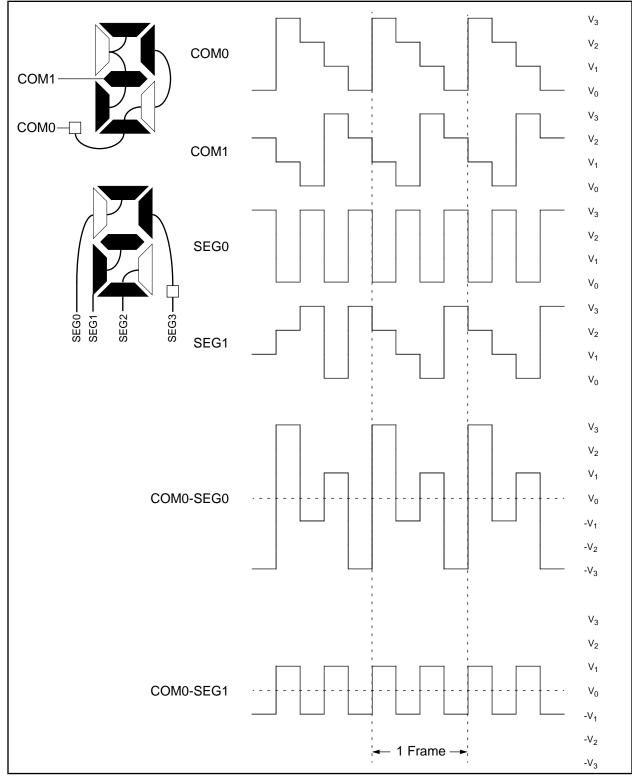
The clock polarity is selected by appropriately programming bit CKP (SSPCON<4>). This then would give waveforms for SPI communication as shown in Figure 11-5, Figure 11-6, and Figure 11-7 where the MSB is transmitted first. In master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:


- Fosc/4 (or Tcy)
- Fosc/16 (or 4 Tcy)
- Fosc/64 (or 16 Tcy)
- Timer2 output/2

This allows a maximum bit clock frequency (at 8 MHz) of 2 MHz. When in slave mode the external clock must meet the minimum high and low times.

In sleep mode, the slave can transmit and receive data and wake the device from sleep.

FIGURE 11-4: SPI MASTER/SLAVE CONNECTION


FIGURE 11-7: SPI MODE TIMING (SLAVE MODE WITH CKE = 1)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets
0Bh, 8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	LCDIF	ADIF ⁽¹⁾	_	_	SSPIF	CCP1IF	TMR2IF	TMR1IF	00 0000	00 0000
8Ch	PIE1	LCDIE	ADIE ⁽¹⁾	—	_	SSPIE	CCP1IE	TMR2IE	TMR1IE	00 0000	00 0000
13h	SSPBUF	Synchro	nous Serial	Port Receiv	ve Buffer/Tra	ansmit Reg	ster	-		XXXX XXXX	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
85h	TRISA	_	_	PORTA Da	ata Direction		11 1111	11 1111			
87h	TRISC	_	_	PORTC D	PORTC Data Direction Control Register						11 1111
94h	SSPSTAT	SMP	CKE	D/Ā	Р	S	R/W	UA	BF	0000 0000	0000 0000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the SSP in SPI mode. Note 1: Bits ADIE and ADIF are reserved on the PIC16C923, always maintain these bits clear.

PIC16C9XX

FIGURE 13-5: WAVEFORMS IN 1/2 MUX, 1/3 BIAS DRIVE

14.8 Power-down Mode (SLEEP)

Power-down mode is entered by executing a $\ensuremath{\mathtt{SLEEP}}$ instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the \overline{PD} bit (STATUS<3>) is cleared, the \overline{TO} (STATUS<4>) bit is set, and the oscillator driver is turned off. The I/O ports maintain the status they had, before the SLEEP instruction was executed (driving high, low, or hi-impedance).

For lowest current consumption in this mode, place all I/O pins at either VDD, or VSS, ensure no external circuitry is drawing current from the I/O pin, power-down the A/D, disable external clocks. Pull all I/O pins, that are hi-impedance inputs, high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or VSS for lowest current consumption. The contribution from on-chip pull-ups on PORTB should be considered.

The $\overline{\text{MCLR}}$ pin must be at a logic high level (VIHMC).

14.8.1 WAKE-UP FROM SLEEP

The device can wake up from SLEEP through one of the following events:

- 1. External reset input on $\overline{\text{MCLR}}$ pin.
- 2. Watchdog Timer Wake-up (if WDT was enabled).
- 3. Interrupt from RB0/INT pin, RB port change, or some peripheral interrupts.

External $\overline{\text{MCLR}}$ Reset will cause a device reset. All other events are considered a continuation of program execution and cause a "wake-up". The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits in the STATUS register can be used to determine the cause of device reset. The $\overline{\text{PD}}$ bit, which is set on power-up is cleared when SLEEP is invoked. The $\overline{\text{TO}}$ bit is cleared if a WDT time-out occurred (and caused wake-up).

The following peripheral interrupts can wake the device from SLEEP:

- 1. TMR1 interrupt. Timer1 must be operating as an asynchronous counter.
- 2. SSP (Start/Stop) bit detect interrupt.
- 3. SSP transmit or receive in slave mode (SPI/I²C).
- 4. CCP capture mode interrupt.
- 5. A/D conversion (when A/D clock source is RC).
- 6. Special event trigger (Timer1 in asynchronous mode using an external clock).
- 7. LCD module.

Other peripherals can not generate interrupts since during SLEEP, no on-chip Q clocks are present.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

14.8.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs **before** the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the TO bit will not be set and PD bits will not be cleared.
- If the interrupt occurs during or after the execution of a SLEEP instruction, the device will immediately wake up from sleep. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the TO bit will be set and the PD bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the \overline{PD} bit. If the \overline{PD} bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

BSF	Bit Set f				BTFSC
Syntax:	[<i>label</i>] BS	SF f,b			Syntax:
Operands:	$0 \le f \le 12$ $0 \le b \le 7$				Operands:
Operation:	$1 \rightarrow (f < b$	>)			Operation:
Status Affected:	None				Status Affected
Encoding:	01	01bb	bfff	ffff	Encoding:
Description:	Bit 'b' in re	gister 'f' i	s set.		Description:
Words:	1				
Cycles:	1				
Q Cycle Activity:	Q1	Q2	Q3	Q4	
	Decode	Read	Process	Write	Words:
		register 'f'	data	register 'f'	Cycles:
Example	BSF	FLAG_F	Q Cycle Activit		
	Before In After Inst	FLAG_R	lf Skip		
					Example

	Bit Test,	Skip if Cle	ear					
	[<i>label</i>] BT	FSC f,b						
ds:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$							
on:	skip if (f) = 0							
ffected:	None							
g:	01 10bb bfff ffff							
tion:	If bit 'b' in register 'f' is '1' then the next instruction is executed. If bit 'b', in register 'f', is '0' then the next instruction is discarded, and a NOP is executed instead, making this a 2Tcy instruction.							
	1							
	1(2)							
Activity:	Q1	Q2	Q3	Q4				
	Decode	Read register 'f'	Process data	No- Operation				
If Skip:	(2nd Cyc	le)						
	Q1	Q2	Q3	Q4				
	No- Operation	No- Operation	No- Operation	No- Operation				
Э	HERE BTFSC FLAG,1 FALSE GOTO PROCESS_CODE TRUE •							
	Before Instruction PC = address HERE After Instruction if FLAG<1> = 0, PC = address TRUE if FLAG<1>=1, PC = address FALSE							

PIC16C9XX

INCF	Increment f	INCFSZ	Increment f, Skip if 0
Syntax:	[<i>label</i>] INCF f,d	Syntax:	[<i>label</i>] INCFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$
Operation: Status Affected:	(f) + 1 \rightarrow (destination) Z	Operation:	(f) + 1 \rightarrow (destination), skip if result = 0
Encoding: Description: Words: Cycles: Q Cycle Activity:	001010dfffffffThe contents of register 'f' are incremented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.1112Q1Q2Q3Q4Write to	Status Affected: Encoding: Description: Words:	001111dfffffffThe contents of register 'f' are incremented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.If the result is 1, the next instruction is executed. If the result is 0, a NOP is executed instead making it a 2Tcy instruction.1
Example	Decode Read register 'f' Process data Write to destination INCF CNT , 1	Cycles: Q Cycle Activity:	1(2) Q1 Q2 Q3 Q4 Decode Read register 'f' Process Write to destination
	Before Instruction CNT = 0xFF Z = 0 After Instruction CNT = 0x00 Z = 1	If Skip:	(2nd Cycle)Q1Q2Q3Q4No- OperationNo- OperationNo- Operation
		Example	HERE INCFSZ CNT, 1 GOTO LOOP CONTINUE • • • • Before Instruction PC = address HERE After Instruction

CNT = CNT + 1 if CNT= 0, PC = address CONTINUE

if $CNT \neq 0$, PC = address HERE +1

IORLW	Inclusive OR Literal with W									
Syntax:	[label]	IORLW	k							
Operands:	$0 \le k \le 255$									
Operation:	(W) .OR.	$k \rightarrow (W)$	I							
Status Affected:	Z									
Encoding:	11	1000	kkkk	kkkk						
Description:	The contents of the W register is OR'ed with the eight bit literal 'k'. The result is placed in the W register.									
Words:	1									
Cycles:	1									
Q Cycle Activity:	Q1	Q2	Q3	Q4						
	Decode	Read literal 'k'	Process data	Write to W						
Example	IORLW	0x35								
	Before Instruction									
	W = 0x9A After Instruction									
		W =	0xBF							
		Z =	1							

IORWF	Inclusive C	OR W v	vith f					
Syntax:	[label] IC	ORWF	f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$							
Operation:	(W) .OR. (f) \rightarrow (destination)							
Status Affected:	Z							
Encoding:	00 0	0100	dfff	ffff				
Description:	Inclusive OR ter 'f'. If 'd' is W register. If back in regis	0 the re 'd' is 1	sult is place	ced in the				
Words:	1							
Cycles:	1							
Q Cycle Activity:	Q1	Q2	Q3	Q4				
		Read egister 'f'	Process data	Write to destination				
Example	IORWF		RESULT,	0				
	Before Insti RE W	ruction ESULT						
	After Instru	ction	0,101					
	RE W	ESULT	= 0x13 = 0x93					

vv	=	UX
Z	=	1

SUBWF	Subilaci	W from f									
Syntax:	[label]	SUBWF	f,d								
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$	7									
Operation:	(f) - (W) –	→ (destina	ation)								
Status Affected:	C, DC, Z	C, DC, Z									
Encoding:	00	0010	dfff	ffff							
Description:	Subtract (2 ister from r stored in th result is sto	egister 'f'. I e W regist	f 'd' is 0 the er. If 'd' is 1	e result is the							
Words:	1										
Cycles:	1										
Q Cycle Activity:	Q1	Q2	Q3	Q4							
	Decode	Read register 'f'	Process data	Write to destinatior							
Example 1:	SUBWF	REG1,1	1								
	Before Instruction										
	REG1 W C Z	= = =	3 2 ? ?								
	After Instruction										
	REG1 W C Z	= = =	1 2 1; result is 0	positive							
Example 2:	Before Instruction										
	REG1 W C Z	= = =	2 2 ? ?								
	After Instruction										
	REG1 W C Z	= = =	0 2 1; result is 1	zero							
Example 3:	Before Ins	struction									
	REG1 W C Z	= = =	1 2 ? ?								
	After Instr	uction									
	REG1 W C Z	= = =	0xFF 2 0; result is 0	negative							

SWAPF	Swap Nibbles in f									
Syntax:	[<i>label</i>] SWAPF f,d									
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$									
Operation:	$(f<3:0>) \rightarrow (destination<7:4>),$ $(f<7:4>) \rightarrow (destination<3:0>)$									
Status Affected:	None									
Encoding:	00 1110 dfff ffff									
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0 the result is placed in W register. If 'd' is 1 the result is placed in register 'f'.									
Words:	1									
Cycles:	1									
Q Cycle Activity:	Q1 Q2 Q3 Q4									
	Decode Read register 'f' Process Write to destination									
Example	SWAPF REG, 0 Before Instruction									
	REG1 = 0xA5									
	After Instruction									
	After Instruction REG1 = 0xA5 W = 0x5A									
TRIS	REG1 = 0xA5									
TRIS Syntax:	REG1 = 0xA5 W = 0x5A									
-	REG1 = 0xA5 W = 0x5A Load TRIS Register									
Syntax:	REG1 = 0xA5 W = 0x5A Load TRIS Register [/abel] TRIS f									
Syntax: Operands:	$\begin{array}{rcl} REG1 &=& 0xA5\\ W &=& 0x5A \end{array}$									
Syntax: Operands: Operation:	$\begin{array}{rcl} REG1 &=& 0xA5\\ W &=& 0x5A \end{array}$									
Syntax: Operands: Operation: Status Affected:	$\begin{array}{rcl} REG1 &=& 0xA5\\ W &=& 0x5A \end{array}$ $\begin{array}{rcl} \textbf{Load TRIS Register} \\ \hline \\ \textbf{[label]} & TRIS & f\\ 5 \leq f \leq 7\\ \hline \\ (W) \rightarrow TRIS register f;\\ \hline \\ \textbf{None} \end{array}$									
Syntax: Operands: Operation: Status Affected: Encoding:	$\begin{array}{rcl} REG1 &=& 0xA5\\ W &=& 0x5A \end{array}$ $\begin{array}{rcl} \textbf{Load TRIS Register} \\ \hline \\ $									
Syntax: Operands: Operation: Status Affected: Encoding: Description:	$\begin{array}{rcl} REG1 &=& 0xA5\\ W &=& 0x5A \end{array}$ $\begin{array}{rcl} \hline \\ \hline $									
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words:	$\begin{array}{rcl} REG1 &=& 0xA5\\ W &=& 0x5A \end{array}$ $\begin{array}{rcl} \textbf{Load TRIS Register} \\ \hline \\ \textbf{[label]} & TRIS & f\\ 5 \leq f \leq 7\\ (W) \rightarrow TRIS register f;\\ \hline \\ \textbf{None} \\ \hline \hline \\ 00 & 0000 & 0110 & 0fff\\ \hline \\ \hline \\ \textbf{The instruction is supported for code compatibility with the PIC16C5X products. Since TRIS registers are readable and writable, the user can directly address them. \\ \hline 1 \end{array}$									

17.1 DC Characteristics:

PIC16C923/924-04 (Commercial, Industrial) PIC16C923/924-08 (Commercial, Industrial)

DC	CHARACTERIS	FICS

Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial and

 $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial

Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions
D001 D001A	Supply Voltage	Vdd	4.0 4.5		6.0 5.5	V V	XT, RC and LP osc configuration HS osc configuration
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V	
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See Power-on Reset section for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	(Note 6) See Power-on Reset section for details
D010	Supply Current (Note 2)	Idd	-	2.7	5	mA	XT and RC osc configuration Fosc = 4 MHz, VDD = 5.5V (Note 4)
D011			-	22.5	48	μA	LP osc configuration, Fosc = 32 kHz , VDD = 4.0V
D012			-	3.5	7	mA	HS osc configuration Fosc = 8 MHz, VDD = 5.5V
D020	Power-down Current (Note 3)	IPD	-	1.5	21	μA	VDD = 4.0V
	Module Differential Cur- rent (Note 5)						
D021	Watchdog Timer	∆IWDT	-	6.0	20	μA	VDD = 4.0V
D022*	LCD Voltage Generation w/internal RC osc enabled	∆ILCDRC	-	40	55	μA	VDD = 4.0V (Note 7)
D024*	LCD Voltage Generation w/Timer1 @ 32.768 kHz	∆ILCDT1	-	33	60	μA	VDD = 4.0V (Note 7)
D025*	Timer1 oscillator	∆IT1osc	-	10.6	17	μA	VDD = 4.0V
D026*	A/D Converter	ΔIAD	-	1.0	-	μA	A/D on, not converting

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD \overline{MCLR} = VDD.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

5: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: PWRT must be enabled for slow ramps.

7: Δ ILCDT1 and Δ ILCDRC includes the current consumed by the LCD Module and the voltage generation circuitry. This does not include current dissipated by the LCD panel.

17.2 DC Characteristics:

PIC16LC923/924-04 (Commercial, Industrial)

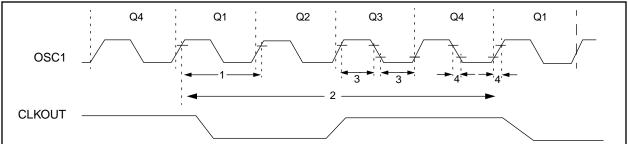
DC CHA	ARACTERISTICS		Standard Operating Conditions (unless otherwise stated)Operating temperature -40° C $\leq TA \leq +85^{\circ}$ C for industrial and 0° C $\leq TA \leq +70^{\circ}$ C for commercial					
Param No.			Conditions					
D001	Supply Voltage	Vdd	2.5	-	6.0	V	LP, XT, RC osc configuration	
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V		
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See Power-on Reset section for details	
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	(Note 6) See Power-on Reset section for details	
D010	Supply Current (Note 2)	Idd	-	2.0	3.8	mA	XT and RC osc configuration Fosc = 4 MHz, $VDD = 3.0V$ (Note 4)	
D011			-	13.5	30	μA	LP osc configuration, Fosc = 32 kHz, VDD = 4.0V	
D020	Power-down Current (Note 3)	IPD	-	0.9	5	μA	VDD = 3.0V	
	Module Differential Cur- rent (Note 5)							
D021	Watchdog Timer	ΔIWDT	-	6.0	20	μA	VDD = 3.0V	
D022*	LCD Voltage Generation w/internal RC osc enabled	∆ILCDRC	-	36	50	μA	VDD = 3.0V (Note 7)	
D024*	LCD Voltage Generation w/Timer1 @ 32.768 kHz	∆ILCDT1	-	15	29	μA	VDD = 3.0V (Note 7)	
D025*	Timer1 oscillator	∆l⊤1osc	-	3.1	6.5	μA	VDD = 3.0V	
D026*	A/D Converter	ΔIAD	-	1.0	-	μA	A/D on, not converting	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

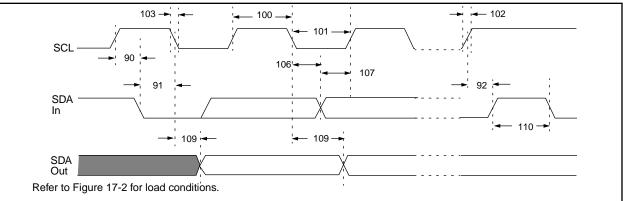

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD \overline{MCLR} = VDD.

- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
- 6: PWRT must be enabled for slow ramps.
- 7: Δ ILCDT1 and Δ ILCDRC includes the current consumed by the LCD Module and the voltage generation circuitry. This does not include current dissipated by the LCD panel.

17.5 <u>Timing Diagrams and Specifications</u>

FIGURE 17-3: EXTERNAL CLOCK TIMING

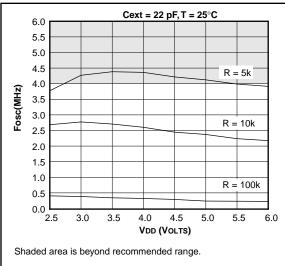

TABLE 17-4: EXTERNAL CLOCK TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	Fosc	External CLKIN Frequency	DC		4	MHz	XT and RC osc mode
		(Note 1)	DC	_	8	MHz	HS osc mode
			DC	—	200	kHz	LP osc mode
		Oscillator Frequency	DC		4	MHz	RC osc mode
		(Note 1)	0.1	—	4	MHz	XT osc mode
			4	_	8	MHz	HS osc mode
			5		200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250		—	ns	XT and RC osc mode
		(Note 1)	125	—	—	ns	HS osc mode
			5		—	μs	LP osc mode
		Oscillator Period	250		—	ns	RC osc mode
		(Note 1)	250	—	10,000	ns	XT osc mode
			125	—	250	ns	HS osc mode
			5		—	μs	LP osc mode
2	TCY	Instruction Cycle Time (Note 1)	500		DC	ns	TCY = 4/FOSC
3	TosL,	External Clock in (OSC1) High or	50		—	ns	XT oscillator
	TosH	Low Time	2.5	—	_	μs	LP oscillator
			10	_	—	ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise or	—	_	25	ns	XT oscillator
	TosF	Fall Time	-	—	50	ns	LP oscillator
			_	—	15	ns	HS oscillator

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

FIGURE 17-13:I²C BUS DATA TIMING


TABLE 17-11:I²C BUS DATA REQUIREMENTS

Parameter Sym No.		Characteristic	Min	Max	Units	Conditions	
100* Thigh	Тнідн	Clock high time	100 kHz mode	4.0	-	μs	Device must operate at a mini mum of 1.5 MHz
			SSP Module	1.5TCY	-		
101*	TLOW	Clock low time	100 kHz mode	4.7	-	μs	Device must operate at a mini- mum of 1.5 MHz
			SSP Module	1.5TCY	-		
102*	TR	SDA and SCL rise time	100 kHz mode	_	1000	ns	
103*	TF	SDA and SCL fall time	100 kHz mode	_	300	ns	
90*	TSU:STA	START condition setup time	100 kHz mode	4.7	-	μs	Only relevant for repeated START condition
91*	THD:STA	START condition hold time	100 kHz mode	4.0	-	μs	After this period the first clock pulse is generated
106*	THD:DAT	Data input hold time	100 kHz mode	0	—	ns	
107*	TSU:DAT	Data input setup time	100 kHz mode	250	—	ns	
92*	Tsu:sto	STOP condition setup time	100 kHz mode	4.7	_	μs	
109*	ΤΑΑ	Output valid from clock	100 kHz mode	_	3500	ns	Note 1
110*	TBUF	Bus free time	100 kHz mode	4.7	-	μs	Time the bus must be free before a new transmission can start
D102*	Cb	Bus capacitive loading		—	400	pF	

* Characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

FIGURE 18-9: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

FIGURE 18-10:TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

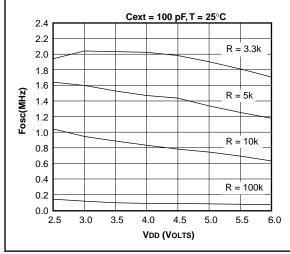


FIGURE 18-11:TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

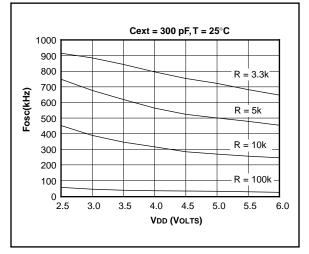
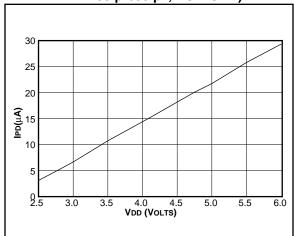
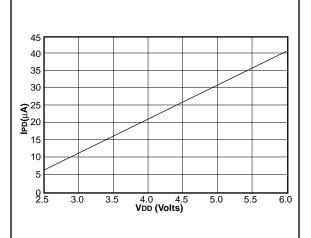




FIGURE 18-12:TYPICAL IPD vs. TIMER1 ENABLED (32 kHz, RC0/RC1 = 33 pF/33 pF, RC MODE)

FIGURE 18-13:MAXIMUM IPD vs. TIMER1 ENABLED (32 kHz, RC0/RC1 = 33 pF/33 pF, 85°C TO -40°C, RC MODE)

Data based on process characterization samples. See first page of this section for details.