

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 0 0 0 0 0 0	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI
Peripherals	LCD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	176 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	68-LCC (J-Lead)
Supplier Device Package	68-PLCC (24.23x24.23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc923t-04-l

Email: info@E-XFL.COM

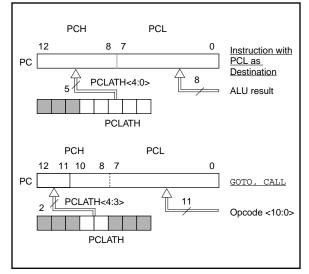
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 4-2: REGISTER FILE MAP

	File Address		File Address		File Address	ŀ	File Address
Indirect addr.(1)	00h	Indirect addr.(1)	80h	Indirect addr.(1)	100h	Indirect addr.(1)	180h
TMR0	01h	OPTION	81h	TMR0	101h	OPTION	181h
PCL	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h		105h		185h
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186h
PORTC	07h	TRISC	87h	PORTF	107h	TRISF	187h
PORTD	08h	TRISD	88h	PORTG	108h	TRISG	188h
PORTE	09h	TRISE	89h		109h		189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh
PIR1	0Ch	PIE1	8Ch		10Ch		18Ch
	0Dh		8Dh	LCDSE	10Dh		18Dh
TMR1L	0Eh	PCON	8Eh	LCDPS	10Eh		18Eh
TMR1H	0Fh	1001	8Fh	LCDCON	10Fh		18Fh
T1CON	10h		90h	LCDD00	110h		190h
TMR2	11h		91h	LCDD00	111h		191h
T2CON	12h	PR2	92h	LCDD01	112h		192h
SSPBUF	13h	SSPADD	93h	LCDD02	113h		193h
SSPCON	14h	SSPADD	9311 94h	LCDD03	114h		193h
CCPR1L	15h	33F3TAI	9411 95h		115h		195h
CCPR1H	16h		96h	LCDD05	116h		196h
CCP1CON	17h		901 97h	LCDD06	117h		1901
COFICON	1711 18h			LCDD07	118h		1971 198h
	19h		98h	LCDD08	119h		199h
	1Ah		99h	LCDD09	11Ah		1990 19Ah
	1Bh		9Ah	LCDD10	11Bh		19An 19Bh
	1Ch		9Bh	LCDD11	11Ch		
	1Dh		9Ch	LCDD12	11Dh		19Ch
ADRES ⁽²⁾	1Eh		9Dh	LCDD13	11Eh		19Dh
ADRES(=) ADCON0 ⁽²⁾	1En 1Fh	ADCON1 ⁽²⁾	9Eh	LCDD14	11Fh		19Eh
ADCONU /		ADCON1-	9Fh	LCDD15	120h		19Fh
	20h		A0h		12011		1A0h
General Purpose		General Purpose Register					
Register			EFh		16F		1EFh
-		Mapped in Bank 0 70h-7Fh	F0h	Mapped in Bank 0 70h-7Fh	170	Mapped in Bank 0 70h-7Fh	1F0h
	7Fh		FFh		17F		1FFh
Bank 0		Bank 1		Bank 2		Bank 3	
		Note 1: Not a p	hysical reg	a memory locations ister. e not implemented			

TABLE 4-1: SPECIAL FUNCTION REGISTER SUMMARY (Cont.'d)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets
Bank 3											
180h	INDF	Addressing	this location	uses conten	ts of FSR to	address data	memory (no	t a physical r	egister)	0000 0000	0000 0000
181h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
182h	PCL	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	0000 0000
183h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
184h	FSR	Indirect data	a memory ad	dress pointe	r					XXXX XXXX	uuuu uuuu
185h	_	Unimpleme	nted							-	_
186h	TRISB	PORTB Dat	ta Direction R	egister						1111 1111	1111 1111
187h	TRISF	PORTF Dat	a Direction R	egister						1111 1111	1111 1111
188h	TRISG	PORTG Da	ta Direction F	Register						1111 1111	1111 1111
189h	_	Unimpleme	nted							_	_
18Ah	PCLATH	_	_	_	Write Buffe	r for the uppe	er 5 bits of the	e PC		0 0000	0 0000
18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
18Ch	_	Unimpleme	nted							-	_
18Dh	_	Unimpleme	nted							-	_
18Eh	_	Unimpleme	nted							-	_
18Fh	_	Unimpleme	nted							-	_
190h	_	Unimpleme	nted							_	_
191h	_	Unimpleme	nted							_	_
192h	_	Unimpleme	nted							_	_
193h	_	Unimpleme	nted							_	_
194h	_	Unimpleme	nted							_	_
195h	_	Unimpleme	nted							_	_
196h	_	Unimpleme	nted							-	_
197h	_	Unimpleme	nted							_	_
198h	_	Unimpleme	nted							-	_
199h	_	Unimpleme	Unimplemented						-	_	
19Ah	_	Unimpleme	Unimplemented						-	_	
19Bh	_	Unimpleme	nted							_	—
19Ch	_	Unimpleme	Unimplemented						_	—	
19Dh	_	Unimpleme	Unimplemented —						_	_	
19Eh	_	Unimpleme	nted							_	_
19Fh	_	Unimpleme	nted							_	_


Legend:

d: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0', shaded locations are unimplemented, read as '0'.
1: Registers ADRES, ADCON0, and ADCON1 are not implemented in the PIC16C923, read as '0'.
2: These bits are reserved on the PIC16C923, always maintain these bits clear.
3: These pixels do not display, but can be used as general purpose RAM.
4: PIC16C923 reset values for PORTA: --xx xxxx for a POR, and --uu uuuu for all other resets, PIC16C924 reset values for PORTA: --0x 0000 when read.
5: Bit1 of ADCON0 is reserved on the PIC16C924, always maintain this bit clear. Note

4.3 PCL and PCLATH

The program counter (PC) is 13-bits wide. The low byte comes from the PCL register, which is a readable and writable register. The upper bits (PC<12:8>) are not readable, but are indirectly writable through the PCLATH register. On any reset, the upper bits of the PC will be cleared. Figure 4-9 shows the two situations for the loading of the PC. The upper example in the figure shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in the figure shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

FIGURE 4-9: LOADING OF PC IN DIFFERENT SITUATIONS

4.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256 byte block). Refer to the application note *"Implementing a Table Read"* (AN556).

4.3.2 STACK

The PIC16CXXX family has an 8 level deep x 13-bit wide hardware stack. The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

- **Note 1:** There are no status bits to indicate stack overflow or stack underflow conditions.
- Note 2: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW, and RETFIE instructions, or the vectoring to an interrupt address.

4.4 Program Memory Paging

PIC16C9XX devices are capable of addressing a continuous 8K word block of program memory. The CALL and GOTO instructions provide only 11 bits of address to allow branching within any 2K program memory page. When doing a CALL or GOTO instruction the upper 2 bits of the address are provided by PCLATH<4:3>. When doing a CALL or GOTO instruction, the user must ensure that the page select bits are programmed so that the desired program memory page is addressed. If a return from a CALL instruction (or interrupt) is executed, the entire 13-bit PC is pushed onto the stack. Therefore, manipulation of the PCLATH<4:3> bits are not required for the return instructions (which POPs the address from the stack).

Note: The PIC16C9XX ignores paging bit PCLATH<4>, which is used to access program memory pages 2 and 3. The use of PCLATH<4> as a general purpose read/write bit is not recommended since this may affect upward compatibility with future products.

TABLE 5-1:PORTA FUNCTIONS

Name	Bit#	Buffer	Function
RA0/AN0 ⁽¹⁾	bit0	TTL	Input/output or analog input
RA1/AN1 ⁽¹⁾	bit1	TTL	Input/output or analog input
RA2/AN2 ⁽¹⁾	bit2	TTL	Input/output or analog input
RA3/AN3/VREF ⁽¹⁾	bit3	TTL	Input/output or analog input or VREF
RA4/T0CKI	bit4	ST	Input/output or external clock input for Timer0 Output is open drain type
RA5/AN4/SS (1)	bit5	TTL	Input/output or analog input or slave select input for synchronous serial port

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: The AN and VREF functions are for the A/D module and are only implemented on the PIC16C924.

TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets
05h	PORTA		—	RA5	RA4	RA3	RA2	RA1	RA0	(2)	(2)
85h	TRISA	—	—	PORTA D	PORTA Data Direction Control Register					11 1111	11 1111
9Fh ⁽¹⁾	ADCON1	—	—	_	_	_	PCFG2	PCFG1	PCFG0	000	000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

Note 1: The ADCON1 register is implemented on the PIC16C924 only.

2: PIC16C923 reset values for PORTA: --xx xxxx for a POR, and --uu uuuu for all other resets, PIC16C924 reset values for PORTA: --0x 0000 when read.

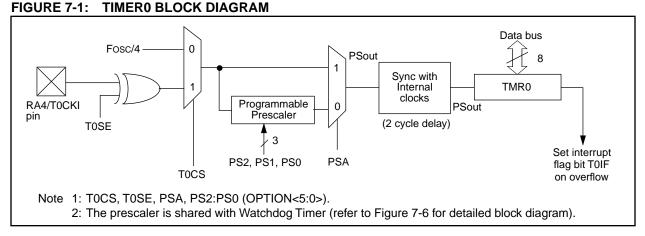
7.0 TIMER0 MODULE

The Timer0 module has the following features:

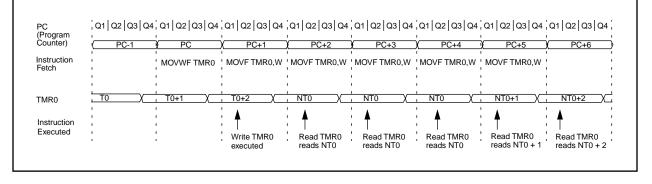
- 8-bit timer/counter
- Readable and writable
- 8-bit software programmable prescaler
- · Internal or external clock select
- Interrupt on overflow from FFh to 00h
- Edge select for external clock

Figure 7-1 is a simplified block diagram of the Timer0 module.

Timer mode is selected by clearing bit TOCS (OPTION<5>). In timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If the TMR0 register is written, the increment is inhibited for the following two instruction cycles (Figure 7-2 and Figure 7-3). The user can work around this by writing an adjusted value to the TMR0 register.

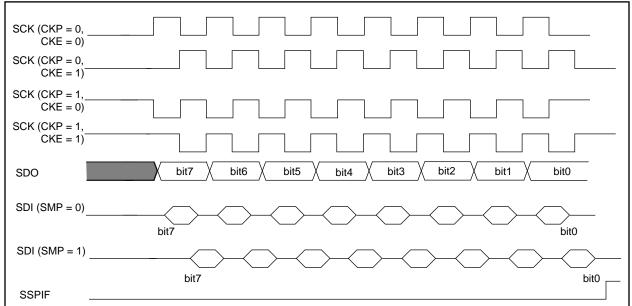

Counter mode is selected by setting bit T0CS (OPTION<5>). In counter mode Timer0 will increment either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the Timer0 Source Edge Select bit T0SE (OPTION<4>). Clearing

bit TOSE selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 7.2.

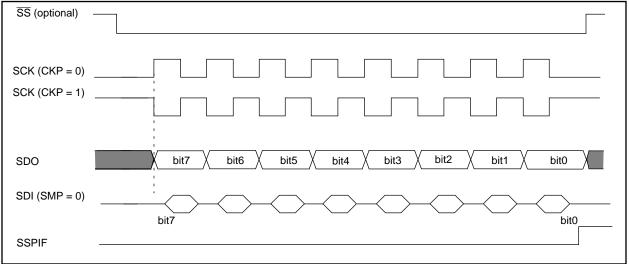

The prescaler is mutually exclusively shared between the Timer0 module and the Watchdog Timer. The prescaler assignment is controlled in software by control bit PSA (OPTION<3>). Clearing bit PSA will assign the prescaler to the Timer0 module. The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4, ..., 1:256 are selectable. Section 7.3 details the operation of the prescaler.

7.1 <u>Timer0 Interrupt</u>

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h. This overflow sets bit T0IF (INTCON<2>). The interrupt can be masked by clearing bit T0IE (INTCON<5>). Bit T0IF must be cleared in software by the Timer0 module interrupt service routine before re-enabling this interrupt. The TMR0 interrupt cannot awaken the processor from SLEEP since the timer is shut off during SLEEP. Figure 7-4 displays the Timer0 interrupt timing.

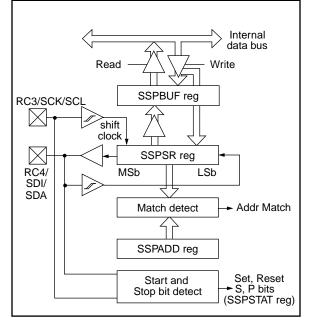


The \overline{SS} pin allows a synchronous slave mode. The SPI must be in slave mode (SSPCON<3:0> = 04h) and the TRISA<5> bit must be set for the synchronous slave mode to be enabled. When the \overline{SS} pin is low, transmission and reception are enabled and the SDO pin is driven. When the \overline{SS} pin goes high, the SDO pin is no longer driven, even if in the middle of a transmitted byte, and becomes a floating output. External pull-up/ pull-down resistors may be desirable, depending on the application.


- Note: When the SPI is in Slave Mode with \overline{SS} pin control enabled, (SSPCON<3:0> = 0100) the SPI module will reset if the \overline{SS} pin is set to VDD.
- **Note:** If the SPI is used in Slave Mode with CKE = '1', then the \overline{SS} pin control must be enabled.

To emulate two-wire communication, the SDO pin can be connected to the SDI pin. When the SPI needs to operate as a receiver the SDO pin can be configured as an input. This disables transmissions from the SDO. The SDI can always be left as an input (SDI function) since it cannot create a bus conflict.

FIGURE 11-5: SPI MODE TIMING, MASTER MODE


FIGURE 11-6: SPI MODE TIMING (SLAVE MODE WITH CKE = 0)

11.3 <u>SSP I²C Operation</u>

The SSP module in I²C mode fully implements all slave functions, except general call support, and provides interrupts on start and stop bits in hardware to facilitate firmware implementations of the master functions. The SSP module implements the standard mode specifications as well as 7-bit and 10-bit addressing. Two pins are used for data transfer. These are the RC3/SCK/SCL pin, which is the clock (SCL), and the RC4/SDI/SDA pin, which is the data (SDA). The user must configure these pins as inputs or outputs through the TRISC<4:3> bits. The SSP module functions are enabled by setting SSP Enable bit SSPEN (SSP-CON<5>).

FIGURE 11-18: SSP BLOCK DIAGRAM (I²C MODE)

The SSP module has five registers for $\mathsf{I}^2\mathsf{C}$ operation. These are the:

- SSP Control Register (SSPCON)
- SSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer (SSPBUF)
- SSP Shift Register (SSPSR) Not directly accessible
- SSP Address Register (SSPADD)

The SSPCON register allows control of the I^2C operation. Four mode selection bits (SSPCON<3:0>) allow one of the following I^2C modes to be selected:

- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- I²C Slave mode (7-bit address), with start and stop bit interrupts enabled
- I²C Slave mode (10-bit address), with start and stop bit interrupts enabled
- I²C Firmware controlled Master Mode, slave is idle

Selection of any I²C mode, with the SSPEN bit set, forces the SCL and SDA pins to be open drain, provided these pins are programmed to inputs by setting the appropriate TRISC bits.

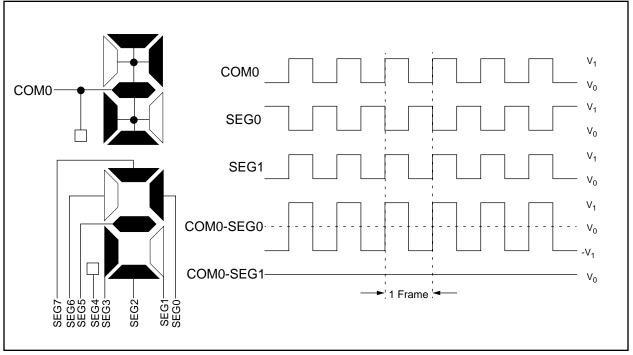
The SSPSTAT register gives the status of the data transfer. This information includes detection of a START or STOP bit, specifies if the received byte was data or address if the next byte is the completion of 10-bit address, and if this will be a read or write data transfer. The SSPSTAT register is read only.

The SSPBUF is the register to which transfer data is written to or read from. The SSPSR register shifts the data in or out of the device. In receive operations, the SSPBUF and SSPSR create a doubled buffered receiver. This allows reception of the next byte to begin before reading the last byte of received data. When the complete byte is received, it is transferred to the SSPBUF register and flag bit SSPIF is set. If another complete byte is received before the SSPBUF register is read, a receiver overflow has occurred and bit SSPOV (SSPCON<6>) is set and the byte in the SSPSR is lost.

The SSPADD register holds the slave address. In 10-bit mode, the user needs to write the high byte of the address (1111 0 A9 A8 0). Following the high byte address match, the low byte of the address needs to be loaded (A7:A0).

٦

11.3.1.2 RECEPTION


When the R/\overline{W} bit of the address byte is clear and an address match occurs, the R/\overline{W} bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register.

When the address byte overflow condition exists, then no acknowledge (\overline{ACK}) pulse is given. An overflow condition is defined as either bit BF (SSPSTAT<0>) is set or bit SSPOV (SSPCON<6>) is set. An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF (PIR1<3>) must be cleared in software. The SSPSTAT register is used to determine the status of the byte.

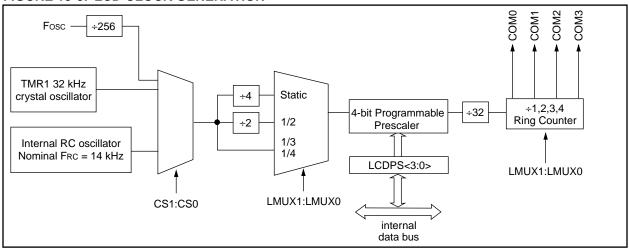
FIGURE 11-19: I²C WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)

Receiving Address R/W=0 Receiving Data ACK Receiving Data SDA AT_XA6_XA5_XA4_XA3_XA2_XA1 ACK_D7_XD6_XD5_XD4_XD3_XD2_XD1_XD0	
SSPIF (PIR1<3>) Cleared in software BF (SSPSTAT<0>) SSPBUF register is read	Bus Master terminates transfer
SSP <u>OV (SSPCON<6>)</u> Bit SSPOV is set because the SSPBUF register is still full. ACK is not sent	

13.1 LCD Timing

The LCD module has 3 possible clock source inputs and supports static, 1/2, 1/3, and 1/4 multiplexing.

13.1.1 TIMING CLOCK SOURCE SELECTION


The clock sources for the LCD timing generation are:

- Internal RC oscillator
- Timer1 oscillator
- System clock divided by 256

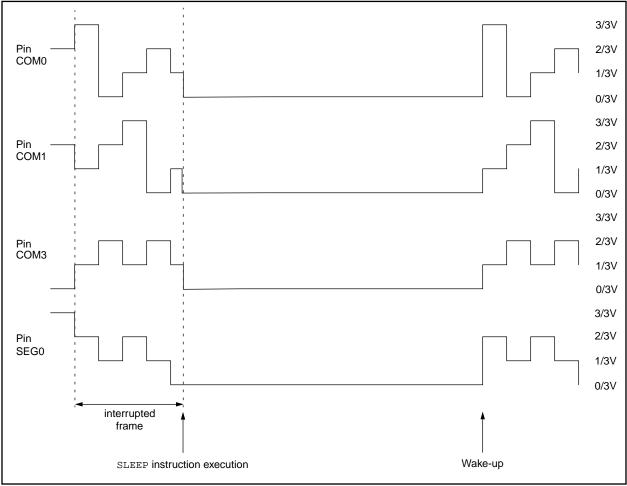
The first timing source is an internal RC oscillator which runs at a nominal frequency of 14 kHz. This oscillator provides a lower speed clock which may be used to continue running the LCD while the processor is in sleep. The RC oscillator will power-down when it is not selected or when the LCD module is disabled. The second source is the Timer1 external oscillator. This oscillator provides a lower speed clock which may be used to continue running the LCD while the processor is in sleep. It is assumed that the frequency provided on this oscillator will be 32 kHz. To use the Timer1 oscillator as a LCD module clock source, it is only necessary to set the T1OSCEN (T1CON<3>) bit.

The third source is the system clock divided by 256. This divider ratio is chosen to provide about 32 kHz output when the external oscillator is 8 MHz. The divider is not programmable. Instead the LCDPS register is used to set the LCD frame clock rate.

All of the clock sources are selected with bits CS1:CS0 (LCDCON<3:2>). Refer to Figure 13-1 for details of the register programming.

FIGURE 13-8: LCD CLOCK GENERATION

13.4 Operation During Sleep


The LCD module can operate during sleep. The selection is controlled by bit SLPEN (LCDCON<6>). Setting the SLPEN bit allows the LCD module to go to sleep. Clearing the SLPEN bit allows the module to continue to operate during sleep.

If a SLEEP instruction is executed and SLPEN = '1', the LCD module will cease all functions and go into a very low current consumption mode. The module will stop operation immediately and drive the minimum LCD voltage on both segment and common lines. Figure 13-11 shows this operation. To ensure that the LCD completes the frame, the SLEEP instruction should be executed immediately after a LCD frame boundary.

The LCD interrupt can be used to determine the frame boundary. See Section 13.2 for the formulas to calculate the delay.

If a SLEEP instruction is executed and SLPEN = '0', the module will continue to display the current contents of the LCDD registers. To allow the module to continue operation while in sleep, the clock source must be either the internal RC oscillator or Timer1 external oscillator. While in sleep, the LCD data cannot be changed. The LCD module current consumption will not decrease in this mode, however the overall consumption of the device will be lower due to shutdown of the core and other peripheral functions.

Note: The internal RC oscillator or external Timer1 oscillator must be used to operate the LCD module during sleep.

FIGURE 13-11:SLEEP ENTRY/EXIT WHEN SLPEN = 1 OR CS1:CS0 = 00

CLRF	Clear f						
Syntax:	[<i>label</i>] C	LRF f					
Operands:	$0 \le f \le 12$	27					
Operation:	$00h \rightarrow (f)$ 1 $\rightarrow Z$	1					
Status Affected:	Z						
Encoding:	00	0001	lfff	ffff			
Description:		The contents of register 'f' are cleared and the Z bit is set.					
Words:	1						
Cycles:	1						
Q Cycle Activity:	Q1	Q2	Q3	Q4			
	Decode	Read register 'f'	Process data	Write register 'f'			
Example	CLRF	FLAG	S_REG				
After Instruction				0x5A 0x00			
		Z	=	1			

CLRW	Clear W			
Syntax:	[label]	CLRW		
Operands:	None			
Operation:	$00h \rightarrow (V 1 \rightarrow Z$	V)		
Status Affected:	Z			
Encoding:	00	0001	0xxx	xxxx
Description:	W register set.	is cleared	. Zero bit (Z) is
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	No- Operation	Process data	Write to W
Example	CLRW			
Before Instruction				
			0x5A	
	After Inst		0200	
		VV =	0x00	

PIC16C9XX

INCF	Increment f	INCFSZ	Increment f, Skip if 0
Syntax:	[<i>label</i>] INCF f,d	Syntax:	[<i>label</i>] INCFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$
Operation: Status Affected:	(f) + 1 \rightarrow (destination) Z	Operation:	(f) + 1 \rightarrow (destination), skip if result = 0
Encoding: Description: Words: Cycles: Q Cycle Activity:	001010dfffffffThe contents of register 'f' are incremented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.1112Q1Q2Q3Q4	Status Affected: Encoding: Description: Words:	Oo 1111 dfff ffff The contents of register 'f' are incremented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. If the result is 1, the next instruction is executed. If the result is 0, a NOP is executed instead making it a 2TcY instruction.
Example	Decode Read register 'f' Process data Write to destination INCF CNT , 1	Cycles: Q Cycle Activity:	1(2) Q1 Q2 Q3 Q4 Decode Read Process Write to
Livanipie	Before Instruction CNT = 0xFF $Z = 0$ After Instruction CNT = 0x00 $Z = 1$	lf Skip:	register 'f'datadestination(2nd Cycle)Q1Q2Q3Q4No- OperationNo- OperationNo- OperationNo- Operation
		Example	HERE INCFSZ CNT, 1 GOTO LOOP CONTINUE • • • Before Instruction PC = address HERE After Instruction

CNT = CNT + 1 if CNT= 0, PC = address CONTINUE

if $CNT \neq 0$, PC = address HERE +1

NOP	No Operation					
Syntax:	[label]	NOP				
Operands:	None					
Operation:	No opera	ation				
Status Affected:	None					
Encoding:	00	0000	0xx0	0000		
Description:	No operat	ion.				
Words:	1					
Cycles:	1					
Q Cycle Activity:	Q1	Q2	Q3	Q4		
	Decode	No- Operation	No- Operation	No- Operation		
Example	NOP					

Return from Interrupt						
[label]	RETFIE					
None						
$\begin{array}{l} TOS \rightarrow F \\ 1 \rightarrow GIE \end{array}$	$\begin{array}{l} TOS \to PC, \\ 1 \to GIE \end{array}$					
None						
00	0000	0000	1001			
Return from Interrupt. Stack is POPed and Top of Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a two cycle instruction.						
1						
2						
Q1	Q2	Q3	Q4			
Decode	No- Operation	Set the GIE bit	Pop from the Stack			
No- Operation	No- Operation	No- Operation	No- Operation			
	$\begin{bmatrix} label \\ None \\ TOS \rightarrow F \\ 1 \rightarrow GIE \\ None \\ \hline 00 \\ \hline 00 \\ Return fro and Top of PC. Interru Global Interru Global Interru Global Interru Global Interru Global Interruction 1 \\ 2 \\ Q1 \\ \hline Decode \\ \hline No- \\ \end{bmatrix}$	$[label] RETFIE$ None $TOS \rightarrow PC,$ $1 \rightarrow GIE$ None $00 0000$ Return from Interrup and Top of Stack (TC PC. Interrupts are er Global Interrupt Ena (INTCON<7>). This is instruction. 1 2 Q1 Q2 $Decode No-Operation$ No- No-	$\begin{bmatrix} label \end{bmatrix} \text{ RETFIE} \\ \text{None} \\ \hline \text{TOS} \rightarrow \text{PC}, \\ 1 \rightarrow \text{GIE} \\ \hline \text{None} \\ \hline 00 & 0000 & 0000 \\ \hline 0000 & 0000 \\ \hline \text{Return from Interrupt. Stack is and Top of Stack (TOS) is loade PC. Interrupts are enabled by s Global Interrupt Enable bit, GIE (INTCON<7>). This is a two cyrinstruction. \\ 1 \\ 2 \\ \hline Q1 & Q2 & Q3 \\ \hline \hline \text{Decode} & \frac{\text{No-}}{\text{Operation}} & \frac{\text{Set the}}{\text{GIE bit}} \\ \hline \text{No-} & \text{No-} & \text{No-} \\ \hline \end{array}$			

Example

RETFIE

After Interrupt

PC	=	TOS
GIE	=	1

OPTION	Load Op	tion Reg	gister	
Syntax:	[label] OPTION			
Operands:	None			
Operation:	$(W) \to OPTION$			
Status Affected:	None			
Encoding:	00	0000	0110	0010
Description:	The contents of the W register are loaded in the OPTION register. This instruction is supported for code com- patibility with PIC16C5X products. Since OPTION is a readable/writable register, the user can directly address it.			
Words:	1			
Cycles:	1			
Example				
	To maintain upward compatibility with future PIC16CXX products, do not use this instruction.			

16.0 DEVELOPMENT SUPPORT

16.1 Development Tools

The PICmicro[™] microcontrollers are supported with a full range of hardware and software development tools:

- PICMASTER/PICMASTER CE Real-Time In-Circuit Emulator
- ICEPIC Low-Cost PIC16C5X and PIC16CXXX In-Circuit Emulator
- PRO MATE[®] II Universal Programmer
- PICSTART[®] Plus Entry-Level Prototype Programmer
- PICDEM-1 Low-Cost Demonstration Board
- PICDEM-2 Low-Cost Demonstration Board
- PICDEM-3 Low-Cost Demonstration Board
- MPASM Assembler
- MPLAB[™] SIM Software Simulator
- MPLAB-C (C Compiler)
- Fuzzy Logic Development System (*fuzzy*TECH[®]–MP)

16.2 <u>PICMASTER: High Performance</u> <u>Universal In-Circuit Emulator with</u> <u>MPLAB IDE</u>

The PICMASTER Universal In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for all microcontrollers in the PIC12CXXX, PIC14C000, PIC16C5X, PIC16CXXX and PIC17CXX families. PICMASTER is supplied with the MPLAB[™] Integrated Development Environment (IDE), which allows editing, "make" and download, and source debugging from a single environment.

Interchangeable target probes allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the PICMASTER allows expansion to support all new Microchip microcontrollers.

The PICMASTER Emulator System has been designed as a real-time emulation system with advanced features that are generally found on more expensive development tools. The PC compatible 386 (and higher) machine platform and Microsoft Windows[®] 3.x environment were chosen to best make these features available to you, the end user.

A CE compliant version of PICMASTER is available for European Union (EU) countries.

16.3 ICEPIC: Low-Cost PIC16CXXX In-Circuit Emulator

ICEPIC is a low-cost in-circuit emulator solution for the Microchip PIC16C5X and PIC16CXXX families of 8-bit OTP microcontrollers.

ICEPIC is designed to operate on PC-compatible machines ranging from 286-AT[®] through Pentium[™] based machines under Windows 3.x environment. ICEPIC features real time, non-intrusive emulation.

16.4 PRO MATE II: Universal Programmer

The PRO MATE II Universal Programmer is a full-featured programmer capable of operating in stand-alone mode as well as PC-hosted mode.

The PRO MATE II has programmable VDD and VPP supplies which allows it to verify programmed memory at VDD min and VDD max for maximum reliability. It has an LCD display for displaying error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In standalone mode the PRO MATE II can read, verify or program PIC12CXXX, PIC14C000, PIC16C5X, PIC16CXXX and PIC17CXX devices. It can also set configuration and code-protect bits in this mode.

16.5 <u>PICSTART Plus Entry Level</u> <u>Development System</u>

The PICSTART programmer is an easy-to-use, lowcost prototype programmer. It connects to the PC via one of the COM (RS-232) ports. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. PICSTART Plus is not recommended for production programming.

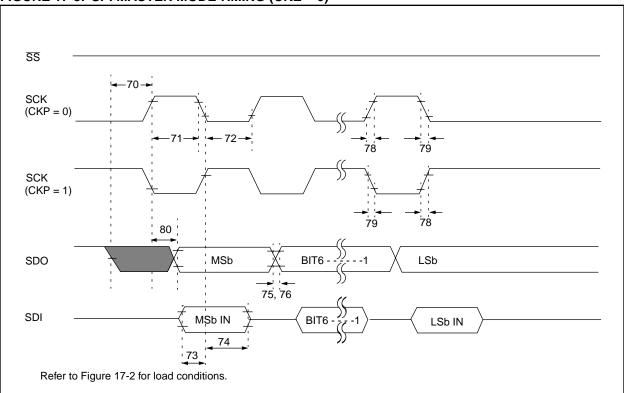
PICSTART Plus supports all PIC12CXXX, PIC14C000, PIC16C5X, PIC16CXXX and PIC17CXX devices with up to 40 pins. Larger pin count devices such as the PIC16C923 and PIC16C924 may be supported with an adapter socket.

17.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †				
Ambient temperature under bias	55°C to +125°C			
Storage temperature	65°C to +150°C			
Voltage on any pin with respect to Vss (except VDD, MCLR, and RA4)	0.3V to (VDD + 0.3V)			
Voltage on VDD with respect to Vss	0.3V to +7.5V			
Voltage on MCLR with respect to Vss	0V to +14V			
Voltage on RA4 with respect to Vss	0V to +14V			
Total power dissipation (Note 1)	1.0W			
Maximum current out of Vss pin	300 mA			
Maximum current into Vod pin	250 mA			
Input clamp current, Iк (Vi < 0 or Vi > VDD)	±20 mA			
Output clamp current, Ioк (Vo < 0 or Vo > VDD)	±20 mA			
Maximum output current sunk by any I/O pin	10 mA			
Maximum output current sourced by any I/O pin	10 mA			
Maximum current sunk by all Ports combined	200 mA			
Maximum current sourced by all Ports combined	200 mA			
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD - \sum IOH} + \sum {(VDD - VOH) x IOH} + \sum (VOI x IOL)				

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 17-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)


osc	PIC16C923-04 PIC16C924-04	PIC16C923-08 PIC16C924-08	PIC16LC923-04 PIC16LC924-04	CL Devices
RC	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 μA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 2.5V to 6.0V IDD: 3.8 mA max. at 3.0V IPD: 5 μA max. at 3V Freq: 4 MHz max.	VDD: 2.5V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 μA max. at 4V Freq: 4 MHz max.
хт	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 μA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 2.5V to 6.0V IDD: 3.8 mA max. at 3.0V IPD: 5 μA max. at 3V Freq: 4 MHz max.	VDD: 2.5V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 μA max. at 4V Freq: 4 MHz max.
HS	VDD: 4.5V to 5.5V IDD: 3.5 mA typ. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 7 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 8 MHz max.	Do not use in HS mode	VDD: 4.5V to 5.5V IDD: 7 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 8 MHz max.
LP	VDD: 4.0V to 6.0V IDD: 22.5 μA typ. at 32 kHz, 4.0V IPD: 1.5 μA typ. at 4.0V Freq: 200 kHz max.	Do not use in LP mode	VDD: 2.5V to 6.0V IDD: 30 μA max. at 32 kHz, 3.0V IPD: 5 μA max. at 3.0V Freq: 200 kHz max.	VDD: 2.5V to 6.0V IDD: 30 μA max. at 32 kHz, 3.0V IPD: 5 μA max. at 3.0V Freq: 200 kHz max.

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

17.4 <u>Timing Parameter Symbology</u>


The timing parameter symbols have been created following one of the following formats:

1. TppS2ppS		3. Tcc:st	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	Т	Time
Lowerca	se letters (pp) and their meanings:		
рр			
сс	CCP1	osc	OSC1
ck	CLKOUT	rd	RD
cs	CS	rw	RD or WR
di	SDI	SC	SCK
do	SDO	SS	SS
dt	Data in	tO	ТОСКІ
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
Upperca	se letters and their meanings:		
S			
F	Fall	P	Period
н	High	R	Rise
1	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
Tcc:st (I ² C specifications only)		
сс			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	STOP condition
STA	START condition		

FIGURE 17-8: SPI MASTER MODE TIMING (CKE = 0)

FIGURE 17-9: SPI MASTER MODE TIMING (CKE = 1)

TABLE 17-12:A/D CONVERTER CHARACTERISTICS: PIC16C924-04 (COMMERCIAL, INDUSTRIAL) PIC16LC924-04 (COMMERCIAL, INDUSTRIAL)

Param No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
A01	NR	Resolution		-	_	8-bits	bit	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A02	EABS	Total Absolute error		_	—	<±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A03	EIL	Integral linearity error		_	—	<±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A04	EDL	Differential linearity error		_	_	<±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A05	EFS	Full scale error		_	_	<±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A06	EOFF	Offset error		-	_	<±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A10	—	Monotonicity			guaranteed	—	—	$VSS \leq VAIN \leq VREF$
A20	Vref	Reference voltage		3.0V	—	Vdd + 0.3	V	
A25	VAIN	Analog input voltage		Vss - 0.3	—	Vref + 0.3	V	
A30	ZAIN	Recommended impedan analog voltage source	ce of	_	_	10.0	kΩ	
A40	IAD	D A/D conversion current (VDD)	PIC16 C 924	_	180	_	μΑ	Average current consump- tion when A/D is on. (Note 1)
			PIC16 LC 924	-	90	—	μΑ	
A50	i0 IREF VREF input current (Note 2)		10	_	1000	μA	During VAIN acquisition. Based on differential of VHOLD to VAIN to charge CHOLD, see Section 12.1.	
				_	—	10	μA	During A/D Conversion cycle

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (602) 786-7578.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

To:	D: Technical Publications Manager	Total Pages Sent				
RE:	E: Reader Response					
Fron	rom: Name					
	Company					
	Address					
	City / State / ZIP / Country					
۵nn	Telephone: () pplication (optional):	FAX: ()				
	/ould you like a reply?YN					
Devi	evice: PIC16C9XX Literature Number: DS30	444E				
Que	uestions:					
1.	What are the best features of this document?					
2.	How does this document meet your hardware and software	development needs?				
-						
3.	. Do you find the organization of this data sheet easy to follow? If not, why?					
4.	4. What additions to the data sheet do you think would enhance the structure and subject?					
5.	What deletions from the data sheet could be made without	affecting the overall usefulness?				
		C C				
-						
6.	Is there any incorrect or misleading information (what and w	vhere)?				
7.	How would you improve this document?					
-						
8.	How would you improve our software, systems, and silicon	products?				