

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I²C, SPI
Peripherals	LCD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	176 × 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc923t-04-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0 General Description	5				
2.0 PIC16C9XX Device Varieties	7				
3.0 Architectural Overview	9				
4.0 Memory Organization	17				
5.0 Ports	31				
6.0 Overview of Timer Modules	43				
7.0 Timer0 Module	45				
8.0 Timer1 Module	51				
9.0 Timer2 Module	55				
10.0 Capture/Compare/PWM (CCP) Module	57				
11.0 Synchronous Serial Port (SSP) Module	63				
12.0 Analog-to-Digital Converter (A/D) Module	79				
13.0 LCD Module	89				
14.0 Special Features of the CPU1	03				
15.0 Instruction Set Summary	19				
16.0 Development Support	37				
17.0 Electrical Characteristics	41				
18.0 DC and AC Characteristics Graphs and Tables	61				
19.0 Packaging Information	71				
Appendix A:	75				
Appendix B: Compatibility	75				
Appendix C: What's New1	76				
Appendix D: What's Changed1	76				
Index 1	77				
ist of Equations And Examples					
ist of Figures					
ist of Tables					
Reader Response					
PIC16C9XX Product Identification System					

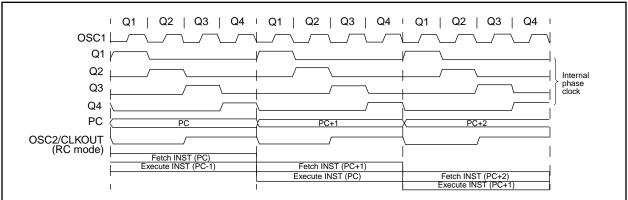
To Our Valued Customers

We constantly strive to improve the quality of all our products and documentation. We have spent an exceptional amount of time to ensure that these documents are correct. However, we realize that we may have missed a few things. If you find any information that is missing or appears in error, please use the reader response form in the back of this data sheet to inform us. We appreciate your assistance in making this a better document.

TABLE 3-1: PIC16C9XX PINOUT DESCRIPTION (Cont.'d)

Pin Name	DIP Pin#	PLCC Pin#	TQFP Pin#	Pin Type	Buffer Type	Description
VLCD3	19	20	11	Р	_	LCD Voltage.
Vdd	20, 60	22, 64	12, 52	Р	—	Digital power.
Vss	6, 21	7, 23	13, 62	Р	_	Ground reference.
NC	-	1	_	_	—	These pins are not internally connected. These pins should be left unconnected.
Legend: I = input — = Not us	d: I = input O = output P = power — = Not used TTL = TTL inpu			•		L = LCD Driver ST = Schmitt Trigger input

3.1 Clocking Scheme/Instruction Cycle


The clock input (from OSC1) is internally divided by four to generate four non-overlapping quadrature clocks namely Q1, Q2, Q3 and Q4. Internally, the program counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow is shown in Figure 3-3.

3.2 Instruction Flow/Pipelining

An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g. GOTO) then two cycles are required to complete the instruction (Example 3-1).

A fetch cycle begins with the program counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register" in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 3-3: CLOCK/INSTRUCTION CYCLE

EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW

	Tcy0	Tcy1	Tcy2	Tcy3	Tcy4	Tcy5	
1. MOVLW 55h	Fetch 1	Execute 1					
2. MOVWF PORTB		Fetch 2	Execute 2				
3. CALL SUB_1			Fetch 3	Execute 3			
4. BSF PORTA, BIT3 (F	orced NOP)			Fetch 4	Flush		
5. Instruction @ addres	s SUB_1				Fetch SUB_1	Execute SUB_1	
All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.							

FIGURE 4-2: REGISTER FILE MAP

	File Address		File Address		File Address	ŀ	File Address
Indirect addr.(1)	00h	Indirect addr.(1)	80h	Indirect addr.(1)	100h	Indirect addr.(1)	180h
TMR0	01h	OPTION	81h	TMR0	101h	OPTION	181h
PCL	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h		105h		185h
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186h
PORTC	07h	TRISC	87h	PORTF	107h	TRISF	187h
PORTD	08h	TRISD	88h	PORTG	108h	TRISG	188h
PORTE	09h	TRISE	89h		109h		189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh
PIR1	0Ch	PIE1	8Ch		10Ch		18Ch
	0Dh		8Dh	LCDSE	10Dh		18Dh
TMR1L	0Eh	PCON	8Eh	LCDPS	10Eh		18Eh
TMR1H	0Fh	1001	8Fh	LCDCON	10Fh		18Fh
T1CON	10h		90h	LCDD00	110h		190h
TMR2	11h		91h	LCDD00	111h		191h
T2CON	12h	PR2	92h	LCDD01	112h		192h
SSPBUF	13h	SSPADD	93h	LCDD02	113h		193h
SSPCON	14h	SSPADD	9311 94h	LCDD03	114h		193h
CCPR1L	15h	33F3TAI	9411 95h		115h		195h
CCPR1H	16h		96h	LCDD05	116h		196h
CCP1CON	17h		901 97h	LCDD06	117h		1901
CUPTOON	1711 18h			LCDD07	118h		1971 198h
	19h		98h	LCDD08	119h		199h
	1Ah		99h	LCDD09	11Ah		1990 19Ah
	1Bh		9Ah	LCDD10	11Bh		19An 19Bh
	1Ch		9Bh	LCDD11	11Ch		
	1Dh		9Ch	LCDD12	11Dh		19Ch
ADRES ⁽²⁾	1Eh		9Dh	LCDD13	11Eh		19Dh
ADRES(=) ADCON0 ⁽²⁾	1En 1Fh	ADCON1 ⁽²⁾	9Eh	LCDD14	11Fh		19Eh
ADCONU /		ADCON1-	9Fh	LCDD15	120h		19Fh
	20h		A0h		12011		1A0h
General Purpose		General Purpose Register					
Register			EFh		16F		1EFh
-		Mapped in Bank 0 70h-7Fh	F0h	Mapped in Bank 0 70h-7Fh	170	Mapped in Bank 0 70h-7Fh	1F0h
	7Fh		FFh		17F		1FFh
Bank 0		Bank 1		Bank 2		Bank 3	
		Note 1: Not a p	hysical reg	a memory locations ister. e not implemented			

TABLE 4-1: SPECIAL FUNCTION REGISTER SUMMARY (Cont.'d)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets
Bank 1	·	•					·			•	
80h	INDF	Addressing	this location	uses conten	ts of FSR to	address data	memory (no	t a physical r	egister)	0000 0000	0000 0000
81h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h	PCL	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	0000 0000
83h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
84h	FSR	Indirect data	a memory ad	dress pointe	r					XXXX XXXX	uuuu uuuu
85h	TRISA	—	_	PORTA Dat	a Direction R	egister				11 1111	11 1111
86h	TRISB	PORTB Dat	a Direction R	legister						1111 1111	1111 1111
87h	TRISC	—	_	PORTC Da	ta Direction F	Register				11 1111	11 1111
88h	TRISD	PORTD Dat	a Direction F	Register						1111 1111	1111 1111
89h	TRISE	PORTE Dat	a Direction R	legister						1111 1111	1111 1111
8Ah	PCLATH	—	_	—	Write Buffer	for the uppe	er 5 bits of the	e PC		0 0000	0 0000
8Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
8Ch	PIE1	LCDIE	ADIE ⁽²⁾	—	_	SSPIE	CCP1IE	TMR2IE	TMR1IE	00 0000	00 0000
8Dh	_	Unimpleme	nted							_	_
8Eh	PCON	—	_	—	_	_	_	POR	—	0-	u-
8Fh	_	Unimpleme	nted							_	_
90h	—	Unimpleme	Inimplemented							—	—
91h	_	Unimpleme	nted							_	_
92h	PR2	Timer2 Peri	od Register							1111 1111	1111 1111
93h	SSPADD	Synchronou	is Serial Port	(I ² C mode)	Address Reg	ister				0000 0000	0000 0000
94h	SSPSTAT	SMP	CKE	D/Ā	Р	S	R/W	UA	BF	0000 0000	0000 0000
95h	—	Unimpleme	nted							_	—
96h	—	Unimpleme	Inimplemented —						—		
97h	—	Unimpleme	Inimplemented							_	—
98h	—	Unimpleme	nted							_	—
99h	—	Unimpleme	nted							_	—
9Ah	_	Unimpleme	nted							_	_
9Bh	—	Unimpleme	nted							-	—
9Ch	—	Unimpleme	Inimplemented						_	—	
9Dh	_	Unimpleme	Unimplemented							—	—
9Eh	_	Unimpleme	nted							_	_
9Fh ⁽¹⁾	ADCON1		—	_		_	PCFG2	PCFG1	PCFG0	000	000

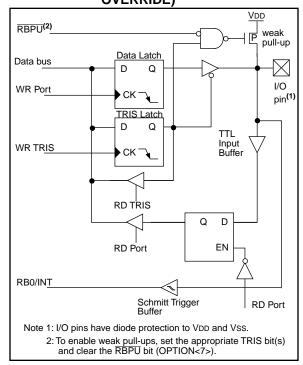
Legend: ${\rm x}$ = unknown, ${\rm u}$ = unchanged, ${\rm q}$ = value depends on condition, - = unimplemented read as '0',

Note

shaded locations are unimplemented, read as '0'. 1: Registers ADRES, ADCON0, and ADCON1 are not implemented in the PIC16C923, read as '0'.

These bits are reserved on the PIC16C923, always maintain these bits clear.
 These pixels do not display, but can be used as general purpose RAM.
 PIC16C923 reset values for PORTA: --xx xxxx for a POR, and --uu uuuu for all other resets, PIC16C924 reset values for PORTA: --0x 0000 when read.
 Bit1 of ADCON0 is reserved on the PIC16C924, always maintain this bit clear.

5.3 PORTC and TRISC Register


PORTC is an 6-bit bi-directional port. Each pin is individually configurable as an input or output through the TRISC register. PORTC is multiplexed with several peripheral functions (Table 5-5). PORTC pins have Schmitt Trigger input buffers.

When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTC pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. Since the TRIS bit override is in effect while the peripheral is enabled, read-modify-write instructions (BSF, BCF, XORWF) with TRISC as destination should be avoided. The user should refer to the corresponding peripheral section for the correct TRIS bit settings.

EXAMPLE 5-3: INITIALIZING PORTC

BCF BCF	STATUS, RPO STATUS, RP1	;	Select Bank0
CLRF	PORTC	;	Initialize PORTC
BSF	STATUS, RPO	;	
MOVLW	0xCF	;	Value used to
		;	initialize data
		;	direction
MOVWF	TRISC	;	Set RC<3:0> as inputs
		;	RC<5:4> as outputs
		;	RC<7:6> always read 0

FIGURE 5-5: PORTC BLOCK DIAGRAM (PERIPHERAL OUTPUT OVERRIDE)

Name	Bit#	Buffer Type	Function
RC0/T1OSO/T1CKI	bit0	ST	Input/output port pin or Timer1 oscillator output or Timer1 clock input
RC1/T1OSI	bit1	ST	Input/output port pin or Timer1 oscillator input
RC2/CCP1	bit2	ST	Input/output port pin or Capture input/Compare output/PWM output
RC3/SCK/SCL	bit3	ST	Input/output port pin or the synchronous serial clock for both SPI and $\rm I^2C$ modes.
RC4/SDI/SDA	bit4	ST	Input/output port pin or the SPI Data In (SPI mode) or data I/O (I ² C mode).
RC5/SDO	bit5	ST	Input/output port pin or Synchronous Serial Port data out

TABLE 5-5: PORTC FUNCTIONS

Legend: ST = Schmitt Trigger input

TABLE 5-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets
07h	PORTC	—		RC5	RC4	RC3	RC2	RC1	RC0	xx xxxx	uu uuuu
87h	TRISC	—	—	PORTC Data Direction Control Register				11 1111	11 1111		

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PORTC.

PIC16C9XX

NOTES:

8.3 <u>Timer1 Operation in Asynchronous</u> <u>Counter Mode</u>

If control bit $\overline{T1SYNC}$ (T1CON<2>) is set, the external clock input is not synchronized. The timer continues to increment asynchronous to the internal phase clocks. The timer will continue to run during SLEEP and can generate an interrupt on overflow which will wake-up the processor. However, special precautions in software are needed to read-from or write-to the Timer1 register pair (TMR1H:TMR1L) (Section 8.3.2).

In asynchronous counter mode, Timer1 cannot be used as a time-base for capture or compare operations.

8.3.1 EXTERNAL CLOCK INPUT TIMING WITH UNSYNCHRONIZED CLOCK

If control bit $\overline{T1SYNC}$ is set, the timer will increment completely asynchronously. The input clock must meet certain minimum high time and low time requirements, as specified in timing parameters 45, 46, and 47.

8.3.2 READING AND WRITING TMR1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L while the timer is running, from an external asynchronous clock, will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself poses certain problems since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers while the register is incrementing. This may produce an unpredictable value in the timer register.

Reading the 16-bit value requires some care. Example 8-1 is an example routine to read the 16-bit timer value. This is useful if the timer cannot be stopped.

EXAMPLE 8-1: READING A 16-BIT FREE-RUNNING TIMER

```
; All interrupts are disabled
  MOVE
         TMR1H, W ;Read high byte
  MOVWF TMPH
                   ;
  MOVF
         TMR1L, W ;Read low byte
  MOVWE TMPL
                   ;
  MOVF
         TMR1H, W ;Read high byte
         TMPH, W ;Sub 1st read
  SUBWF
                   ; with 2nd read
  BTFSC STATUS,Z ;Is result = 0
        CONTINUE ;Good 16-bit read
  GOTO
; TMR1L may have rolled over between the read
 of the high and low bytes. Reading the high
;
 and low bytes now will read a good value.
;
  MOVF
         TMR1H, W ;Read high byte
  MOVWF
         TMPH
         TMR1L, W ;Read low byte
  MOVE
  MOVWF TMPL
                   ;
; Re-enable the Interrupt (if required)
                   ;Continue with your code
CONTINUE
```

8.4 <u>Timer1 Oscillator</u>

A crystal oscillator circuit is built in between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit T1OSCEN (T1CON<3>). The oscillator is a low power oscillator rated up to 200 kHz. It will continue to run during SLEEP. It is primarily intended for a 32 kHz crystal. Table 8-1 shows the capacitor selection for the Timer1 oscillator.

The Timer1 oscillator is identical to the LP oscillator. The user must provide a software time delay to ensure proper oscillator start-up.

TABLE 8-1: CAPACITOR SELECTION FOR THE TIMER1 OSCILLATOR

Osc Type	Freq	C1	C2		
LP	32 kHz	33 pF	33 pF		
	100 kHz	15 pF	15 pF		
	200 kHz	15 pF	15 pF		
These va	alues are for o	design guidan	ce only.		
Crystals Tes	ted:				
32.768 kHz	Epson C-00 ⁻	1R32.768K-A	± 20 PPM		
100 kHz	Epson C-2 100.00 KC-P ± 20 PF				
200 kHz	STD XTL 200.000 kHz ± 20 PPM				
of o time 2: Sind cha reso	of oscillator but also increases the start-up time.				

Note: The Timer2 postscaler (Section 9.0) is not used in the determination of the PWM frequency. The postscaler could be used to have a servo update rate at a different frequency than the PWM output.

10.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available: the CCPR1L contains the eight MSbs and CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The following equation is used to calculate the PWM duty cycle in time:

PWM duty cycle = (CCPR1L:CCP1CON<5:4>) • Tosc • (TMR2 prescale value)

CCPR1L and CCP1CON<5:4> can be written to at any time, but the duty cycle value is not latched into CCPR1H until after a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read-only register.

The CCPR1H register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

When the CCPR1H and 2-bit latch match TMR2 concatenated with an internal 2-bit Q clock or 2 bits of the TMR2 prescaler, the CCP1 pin is cleared.

Maximum PWM resolution (bits) for a given PWM frequency:

$$= \frac{\log\left(\frac{FOSC}{FPWM}\right)}{\log(2)} \quad \text{bits}$$

Note: If the PWM duty cycle value is longer than the PWM period the CCP1 pin will not be cleared.

EXAMPLE 10-2: PWM PERIOD AND DUTY CYCLE CALCULATION

Desired PWM frequency is 31.25 kHz, Fosc = 8 MHz TMR2 prescale = 1

1/31.25 kHz	= [(PR2) + 1] • 4 • 1/8 MHz • 1
32 µs	= [(PR2) + 1] • 4 • 125 ns • 1
PR2	= 63

Find the maximum resolution of the duty cycle that can be used with a 31.25 kHz frequency and 8 MHz oscillator:

1/31.25 kHz	$= 2^{\text{PWM RESOLUTION}} \bullet 1/8 \text{ MHz} \bullet 1$
32 µs	$=2^{\text{PWM RESOLUTION}} \bullet 125 \text{ ns} \bullet 1$
256	$= 2^{\text{PWM RESOLUTION}}$
log(256)	= (PWM Resolution) • $log(2)$
8.0	= PWM Resolution

At most, an 8-bit resolution duty cycle can be obtained from a 31.25 kHz frequency and a 8 MHz oscillator, i.e., $0 \le CCPR1L:CCP1CON<5:4> \le 255$. Any value greater than 255 will result in a 100% duty cycle.

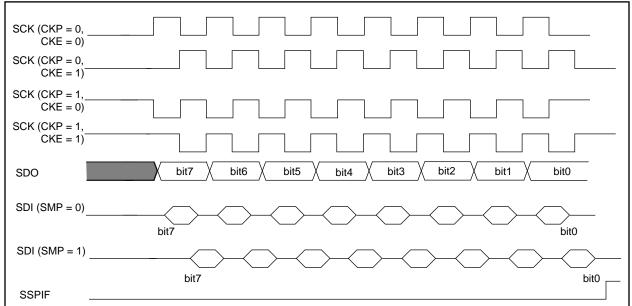
In order to achieve higher resolution, the PWM frequency must be decreased. In order to achieve higher PWM frequency, the resolution must be decreased.

Table 10-2 lists example PWM frequencies and resolutions for Fosc = 8 MHz. TMR2 prescaler and PR2 values are also shown.

10.3.3 SET-UP FOR PWM OPERATION

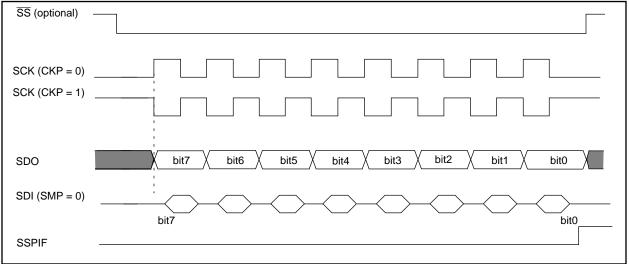
The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- 2. Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.
- Make the CCP1 pin an output by clearing the TRISC<2> bit.
- 4. Set the TMR2 prescale value and enable Timer2 by writing to T2CON.
- 5. Configure the CCP module for PWM operation.


TABLE 10-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 8 MHz

PWM Frequency	488 Hz	1.95 kHz	7.81 kHz	31.25 kHz	62.5 kHz	250 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x07
Maximum Resolution (bits)	10	10	10	8	7	5

The \overline{SS} pin allows a synchronous slave mode. The SPI must be in slave mode (SSPCON<3:0> = 04h) and the TRISA<5> bit must be set for the synchronous slave mode to be enabled. When the \overline{SS} pin is low, transmission and reception are enabled and the SDO pin is driven. When the \overline{SS} pin goes high, the SDO pin is no longer driven, even if in the middle of a transmitted byte, and becomes a floating output. External pull-up/ pull-down resistors may be desirable, depending on the application.


- Note: When the SPI is in Slave Mode with \overline{SS} pin control enabled, (SSPCON<3:0> = 0100) the SPI module will reset if the \overline{SS} pin is set to VDD.
- **Note:** If the SPI is used in Slave Mode with CKE = '1', then the \overline{SS} pin control must be enabled.

To emulate two-wire communication, the SDO pin can be connected to the SDI pin. When the SPI needs to operate as a receiver the SDO pin can be configured as an input. This disables transmissions from the SDO. The SDI can always be left as an input (SDI function) since it cannot create a bus conflict.

FIGURE 11-5: SPI MODE TIMING, MASTER MODE

FIGURE 11-6: SPI MODE TIMING (SLAVE MODE WITH CKE = 0)

11.2 $\underline{I^2}C^{\mathbb{T}}$ Overview

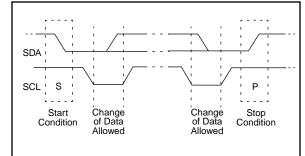
This section provides an overview of the Inter-Integrated Circuit (I^2C) bus, with Section 11.3 discussing the operation of the SSP module in I^2C mode.

The l^2C bus is a two-wire serial interface developed by the Philips Corporation. The original specification, or standard mode, was for data transfers of up to 100 Kbps. An enhanced specification, or fast mode is not supported. This device will communicate with fast mode devices if attached to the same bus.

The l^2C interface employs a comprehensive protocol to ensure reliable transmission and reception of data. When transmitting data, one device is the "master" which initiates transfer on the bus and generates the clock signals to permit that transfer, while the other device(s) acts as the "slave." All portions of the slave protocol are implemented in the SSP module's hardware, except general call support, while portions of the master protocol need to be addressed in the PIC16CXXX software. Table 11-2 defines some of the l^2C bus terminology. For additional information on the l^2C interface specification, refer to the Philips document "*The* l^2C bus and how to use it."#939839340011, which can be obtained from the Philips Corporation.

In the I²C interface protocol each device has an address. When a master wishes to initiate a data transfer, it first transmits the address of the device that it wishes to "talk" to. All devices "listen" to see if this is their address. Within this address, a bit specifies if the master wishes to read-from/write-to the slave device. The master and slave are always in opposite modes (transmitter/receiver) of operation during a data transfer. That is they can be thought of as operating in either of these two relations:

- Master-transmitter and Slave-receiver
- · Slave-transmitter and Master-receiver


In both cases the master generates the clock signal.

The output stages of the clock (SCL) and data (SDA) lines must have an open-drain or open-collector in order to perform the wired-AND function of the bus. External pull-up resistors are used to ensure a high level when no device is pulling the line down. The number of devices that may be attached to the I^2C bus is limited only by the maximum bus loading specification of 400 pF.

11.2.1 INITIATING AND TERMINATING DATA TRANSFER

During times of no data transfer (idle time), both the clock line (SCL) and the data line (SDA) are pulled high through the external pull-up resistors. The START and STOP conditions determine the start and stop of data transmission. The START condition is defined as a high to low transition of the SDA when the SCL is high. The STOP condition is defined as a low to high transition of the SDA when the SCL is high. The START and STOP conditions. The master generates these conditions for starting and terminating data transfer. Due to the definition of the START and STOP conditions, when data is being transmitted, the SDA line can only change state when the SCL line is low.

FIGURE 11-8: START AND STOP CONDITIONS

Term	Description
Transmitter	The device that sends the data to the bus.
Receiver	The device that receives the data from the bus.
Master	The device which initiates the transfer, generates the clock and terminates the transfer.
Slave	The device addressed by a master.
Multi-master	More than one master device in a system. These masters can attempt to control the bus at the same time without corrupting the message.
Arbitration	Procedure that ensures that only one of the master devices will control the bus. This ensure that the transfer data does not get corrupted.
Synchronization	Procedure where the clock signals of two or more devices are synchronized.

TABLE 11-2: I²C BUS TERMINOLOGY

12.2 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 9.5 TAD per 8-bit conversion. The source of the A/D conversion clock is software selected. The four possible options for TAD are:

- 2Tosc
- 8Tosc
- 32Tosc
- Internal RC oscillator

For correct A/D conversions, the A/D conversion clock (TAD) must be selected to ensure a minimum TAD time of 1.6 $\mu s.$

Table 12-1 shows the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

12.3 Configuring Analog Port Pins

The ADCON1 and TRISA registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS2:CHS0 bits and the TRIS bits.

- Note 1: When reading the port register, all pins configured as analog inputs will read as cleared (a low level). Pins configured as digital inputs, will convert an analog input. Analog levels on a digitally configured input will not affect the conversion accuracy.
- **Note 2:** Analog levels on any pin that is defined as a digital input (including the AN4:AN0 pins), may cause the input buffer to consume current that is out of the devices specification.

TABLE 12-1: TAD vs. DEVICE OPERATING FREQUENCIES

A/D Clock	Source (TAD)	Device Frequency						
Operation ADCS1:ADCS0		8 MHz	5 MHz	1.25 MHz	333.33 kHz			
2Tosc	00	250 ns ⁽²⁾	400 ns ⁽²⁾	1.6 μs	6 µs			
8Tosc	01	1 μs	1.6 μs	6.4 μs	24 μs ⁽³⁾			
32Tosc	10	4 μs	6.4 μs	25.6 μs ⁽³⁾	96 μs ⁽³⁾			
RC	11	2 - 6 μs ^(1,4)	2 - 6 μs ^(1,4)	2 - 6 μs ^(1,4)	2 - 6 μs ⁽¹⁾			

Legend: Shaded cells are outside of recommended range.

Note 1: The RC source has a typical TAD time of 4 μ s.

2: These values violate the minimum required TAD time.

3: For faster conversion times, the selection of another clock source is recommended.

4: When derived frequency is greater than 1 MHz, the RC A/D conversion clock source is recommended for sleep mode only

5: For extended voltage devices (LC), please refer to the electrical specifications section.

13.3 Pixel Control

13.3.1 LCDD (PIXEL DATA) REGISTERS

The pixel registers contain bits which define the state of each pixel. Each bit defines one unique pixel.

Table 13-4 shows the correlation of each bit in the LCDD registers to the respective common and segment signals.

Any LCD pixel location not being used for display can be used as general purpose RAM.

FIGURE 13-10:GENERIC LCDD REGISTER LAYOUT

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
SEGs COMc	SEGs COMc	SEGs COMc	SEGs COMc	SEGs COMc	SEGs COMc	SEGs COMc	SEGs COMc	R =Readable bit W =Writable bit
bit7							bit0	U =Unimplemented bit, Read as '0' -n =Value at POR reset
	SEGsCON 1 = Pixel o 0 = Pixel o	n (dark)	ata Bit for	segment s	s and com	mon c		

14.4 <u>Power-on Reset (POR), Power-up</u> <u>Timer (PWRT) and Oscillator Start-up</u> <u>Timer (OST)</u>

14.4.1 POWER-ON RESET (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.5V - 2.1V). To take advantage of the POR, just tie the \overline{MCLR} pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset. A maximum rise time for VDD is specified. See Electrical Specifications for details.

When the device starts normal operation (exits the reset condition), device operating parameters (voltage, frequency, temperature, ...) must be met to ensure operation. If these conditions are not met, the device must be held in reset until the operating conditions are met.

For additional information, refer to Application Note AN607, "*Power-up Trouble Shooting*."

14.4.2 POWER-UP TIMER (PWRT)

The Power-up Timer provides a fixed 72 ms nominal time-out on power-up only, from the POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in reset as long as the PWRT is active. The PWRT's time delay allows VDD to rise to an accept-able level. A configuration bit is provided to enable/disable the PWRT.

The power-up time delay will vary from chip to chip due to VDD, temperature, and process variation. See DC parameters for details.

14.4.3 OSCILLATOR START-UP TIMER (OST)

The Oscillator Start-up Timer (OST) provides 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over. This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

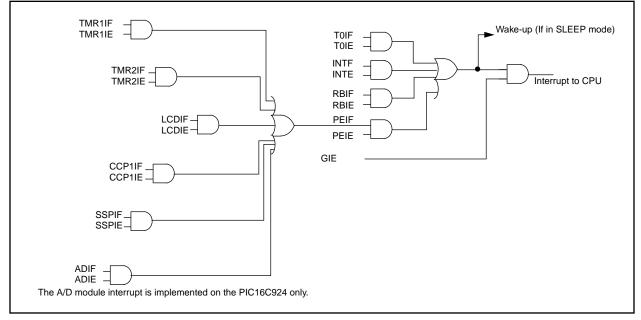
14.4.4 TIME-OUT SEQUENCE

On power-up the time-out sequence is as follows: First PWRT time-out is invoked after the POR time delay has expired. Then OST is activated. The total time-out will vary based on oscillator configuration and the status of the PWRT. For example, in RC mode with the PWRT disabled, there will be no time-out at all. Figure 14-8, Figure 14-9, and Figure 14-10 depict time-out sequences on power-up.

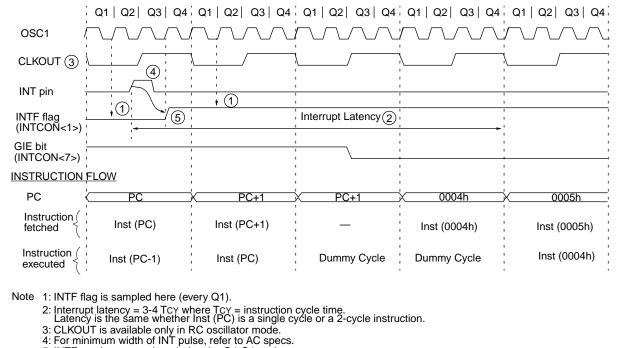
Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time-outs will expire. Then bringing $\overline{\text{MCLR}}$ high will begin execution immediately (Figure 14-9). This is useful for testing purposes or to synchronize more than one PIC16CXXX device operating in parallel.

Table 14-5 shows the reset conditions for some special function registers, while Table 14-6 shows the reset conditions for all the registers.

14.4.5 POWER CONTROL/STATUS REGISTER (PCON)


Bit1 is Power-on Reset Status bit POR. It is cleared on a Power-on Reset and unaffected otherwise. The user must set this bit following a Power-on Reset.

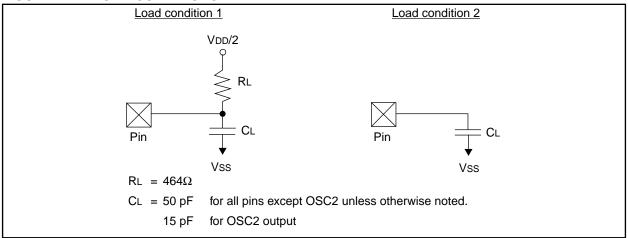
Oscillator Configuration	Powe	r-up	Wake-up from SLEEP
	PWRTE = 1	PWRTE = 0	
XT, HS, LP	1024Tosc	72 ms + 1024Tosc	1024 Tosc
RC		72 ms	

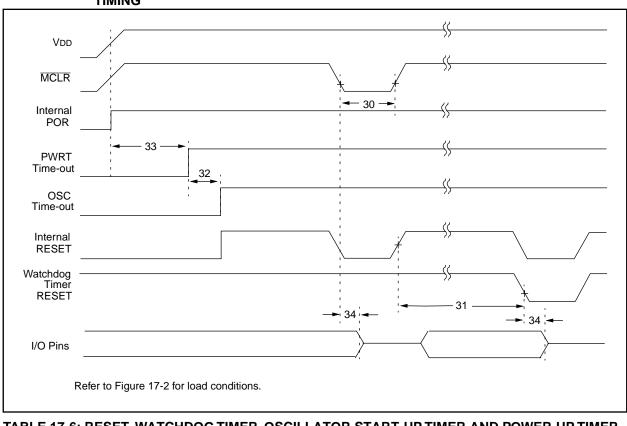

TABLE 14-3: TIME-OUT IN VARIOUS SITUATIONS

PIC16C9XX

FIGURE 14-14:INTERRUPT LOGIC

FIGURE 14-15:INT PIN INTERRUPT TIMING




- 5: INTF can be set anytime during the Q4-Q1 cycles.

SUBWF	Subilaci	W from f		
Syntax:	[label]	SUBWF	f,d	
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$	7		
Operation:	(f) - (W) –	→ (destina	ation)	
Status Affected:	C, DC, Z			
Encoding:	00	0010	dfff	ffff
Description:	Subtract (2 ister from r stored in th result is sto	egister 'f'. I e W regist	f 'd' is 0 the er. If 'd' is 1	e result is the
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read register 'f'	Process data	Write to destinatior
Example 1:	SUBWF	REG1,1	1	
	Before Ins	struction		
	REG1 W C Z	= = =	3 2 ? ?	
	After Instr	uction		
	REG1 W C Z	= = =	1 2 1; result is 0	positive
Example 2:	Before Ins	struction		
	REG1 W C Z	= = =	2 2 ? ?	
	After Instr	uction		
	REG1 W C Z	= = =	0 2 1; result is 1	zero
Example 3:	Before Ins	struction		
	REG1 W C Z	= = =	1 2 ? ?	
	After Instr	uction		
	REG1 W C Z	= = =	0xFF 2 0; result is 0	negative

SWAPF	Swap Nibbles in f						
Syntax:	[label] SWAPF f,d						
Operands:	$0 \le f \le 127$ $d \in [0,1]$						
Operation:	$(f<3:0>) \rightarrow (destination<7:4>), (f<7:4>) \rightarrow (destination<3:0>)$						
Status Affected:	None						
Encoding:	00 1110 dfff ffff						
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0 the result is placed in W register. If 'd' is 1 the result is placed in register 'f'.						
Words:	1						
Cycles:	1						
Q Cycle Activity:	Q1 Q2 Q3 Q4						
	Decode Read register 'f' Process Write to destination						
Example	SWAPF REG, 0 Before Instruction						
	REG1 = 0xA5						
After Instruction							
	After Instruction						
	After Instruction REG1 = 0xA5 W = 0x5A						
TRIS	REG1 = 0xA5						
TRIS Syntax:	REG1 = 0xA5 W = 0x5A						
-	REG1 = 0xA5 W = 0x5A Load TRIS Register						
Syntax:	REG1 = 0xA5 W = 0x5A Load TRIS Register [/abel] TRIS f						
Syntax: Operands:	$\begin{array}{rcl} REG1 &=& 0xA5\\ W &=& 0x5A \end{array}$						
Syntax: Operands: Operation:	$\begin{array}{rcl} REG1 &=& 0xA5\\ W &=& 0x5A \end{array}$						
Syntax: Operands: Operation: Status Affected:	$\begin{array}{rcl} REG1 &=& 0xA5\\ W &=& 0x5A \end{array}$ $\begin{array}{rcl} \textbf{Load TRIS Register} \\ \hline \\ \textbf{[label]} & TRIS & f\\ 5 \leq f \leq 7\\ \hline \\ (W) \rightarrow TRIS register f;\\ \hline \\ \textbf{None} \end{array}$						
Syntax: Operands: Operation: Status Affected: Encoding:	$\begin{array}{rcl} REG1 &=& 0xA5\\ W &=& 0x5A \end{array}$ $\begin{array}{rcl} \textbf{Load TRIS Register} \\ \hline \\ $						
Syntax: Operands: Operation: Status Affected: Encoding: Description:	$\begin{array}{rcl} REG1 &=& 0xA5\\ W &=& 0x5A \end{array}$ $\begin{array}{rcl} \hline \\ \hline $						
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words:	$\begin{array}{rcl} REG1 &=& 0xA5\\ W &=& 0x5A \end{array}$ $\begin{array}{rcl} \textbf{Load TRIS Register} \\ \hline \\ \textbf{[label]} & TRIS & f\\ 5 \leq f \leq 7\\ (W) \rightarrow TRIS register f;\\ \hline \\ \textbf{None} \\ \hline \hline \\ 00 & 0000 & 0110 & 0fff\\ \hline \\ \hline \\ \textbf{The instruction is supported for code compatibility with the PIC16C5X products. Since TRIS registers are readable and writable, the user can directly address them. \\ \hline 1 \end{array}$						

FIGURE 17-2: LOAD CONDITIONS

FIGURE 17-5: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

TABLE 17-6: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2	—	—	μs	
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +85°C
32	Tost	Oscillation Start-up Timer Period	_	1024Tosc	—	—	Tosc = OSC1 period
33*	Tpwrt	Power-up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +85°C
34	Tioz	I/O Hi-impedance from MCLR Low or Watchdog Timer Reset	_	_	2.1	μs	

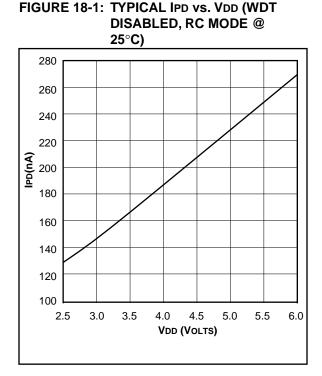
* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

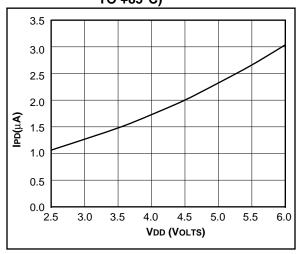
Param No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
70*	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input		Тсү	—	_	ns	
71*	TscH	SCK input high time (slave mode)	Continuous	1.25Tcy + 30	—	—	ns	
71A*			Single Byte	40	_	_	ns	
72*	TscL	SCK input low time (slave mode)	Continuous	1.25Tcy + 30	—	—	ns	
72A*			Single Byte	40				
73*	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK edge		50	—	_	ns	
74*	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge		50	—	—	ns	
75*	TdoR	SDO data output rise time		—	10	25	ns	
76*	TdoF	SDO data output fall time		—	10	25	ns	
77*	TssH2doZ	SS↑ to SDO output hi-imped	ance	10	—	50	ns	
78*	TscR	SCK output rise time (master	· mode)	—	10	25	ns	
79*	TscF	SCK output fall time (master	mode)	—	10	25	ns	
80*	TscH2doV, TscL2doV	SDO data output valid after S	SCK edge	—	—	50	ns	
81*	TdoV2scH, TdoV2scL	SDO data output setup to SC	SDO data output setup to SCK edge		—	—	ns	
82*	TssL2doV	SDO data output valid after S	SS↓ edge	_	_	50	ns	
83*	TscH2ssH, TscL2ssH	SS ↑ after SCK edge		1.5Tcy + 40	_	_	ns	
84*	Tb2b	Delay between consecutive b	oytes	1.5TCY + 40	_	_	ns	

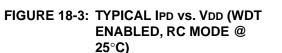
TABLE 17-9: SPI MODE REQUIREMENTS

* Characterized but not tested.


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

18.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES


The graphs and tables provided in this section are for design guidance and are not tested or guaranteed.


In some graphs or tables the data presented are outside specified operating range (i.e., outside specified VDD range). This is for information only and devices are guaranteed to operate properly only within the specified range.

Note: The data presented in this section is a statistical summary of data collected on units from different lots over a period of time and process characterization samples. 'Typical' represents the mean of the distribution at, 25° C, while 'max' or 'min' represents (mean +3 σ) and (mean -3 σ) respectively where σ is standard deviation.

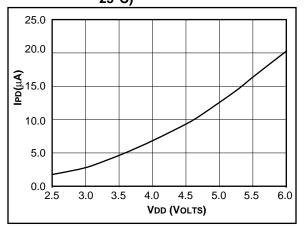
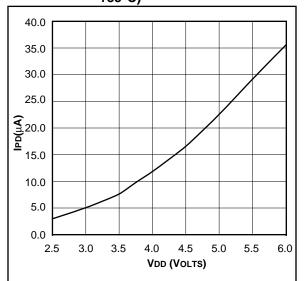



FIGURE 18-4: MAXIMUM IPD vs. VDD (WDT ENABLED, RC MODE -40°C TO +85°C)

