



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                    |
|----------------------------|---------------------------------------------------------------------------|
| Core Processor             | PIC                                                                       |
| Core Size                  | 8-Bit                                                                     |
| Speed                      | 4MHz                                                                      |
| Connectivity               | I <sup>2</sup> C, SPI                                                     |
| Peripherals                | LCD, POR, PWM, WDT                                                        |
| Number of I/O              | 25                                                                        |
| Program Memory Size        | 7KB (4K x 14)                                                             |
| Program Memory Type        | OTP                                                                       |
| EEPROM Size                | -                                                                         |
| RAM Size                   | 176 x 8                                                                   |
| Voltage - Supply (Vcc/Vdd) | 2.5V ~ 6V                                                                 |
| Data Converters            | A/D 5x8b                                                                  |
| Oscillator Type            | External                                                                  |
| Operating Temperature      | 0°C ~ 70°C (TA)                                                           |
| Mounting Type              | Surface Mount                                                             |
| Package / Case             | 68-LCC (J-Lead)                                                           |
| Supplier Device Package    | 68-PLCC (24.23x24.23)                                                     |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16lc924-04-l |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# FIGURE 3-1: PIC16C923 BLOCK DIAGRAM



PIC16C9XX

Example 4-1 shows the calling of a subroutine in page 1 of the program memory. This example assumes that PCLATH is saved and restored by the interrupt service routine (if interrupts are used).

# EXAMPLE 4-1: CALL OF A SUBROUTINE IN PAGE 1 FROM PAGE 0

| ORG UX: | 500      |                            |
|---------|----------|----------------------------|
| BSF     | pclath,3 | ;Select page 1 (800h-FFFh) |
| CALL    | SUB1_P1  | ;Call subroutine in        |
|         | :        | ;page 1 (800h-FFFh)        |
|         | :        |                            |
|         | :        |                            |
| ORG 0x9 | 900      |                            |
| SUB1_P1 | L:       | ;called subroutine         |
|         | :        | ;page 1 (800h-FFFh)        |
|         | :        |                            |
| RETURN  |          | ;return to Call subroutine |
|         |          | ;in page 0 (000h-7FFh)     |

# 4.5 Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.

Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses the register pointed to by the File Select Register (FSR). Reading the INDF register itself indirectly (FSR = '0') will produce 00h. Writing to the INDF register indirectly results in a no-operation (although status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 4-10.

A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 4-2.

# EXAMPLE 4-2: INDIRECT ADDRESSING

|          | movlw | 0x20  | ;initialize pointer  |
|----------|-------|-------|----------------------|
|          | movwf | FSR   | ;to RAM              |
| NEXT     | clrf  | INDF  | ;clear INDF register |
|          | incf  | FSR,F | ;inc pointer         |
|          | btfss | FSR,4 | ;all done?           |
|          | goto  | NEXT  | ;no clear next       |
| CONTINUE |       |       |                      |
|          | :     |       | ;yes continue        |

# FIGURE 4-10: DIRECT/INDIRECT ADDRESSING



# 7.2 Using Timer0 with an External Clock

When an external clock input is used for Timer0, it must meet certain requirements. The requirements ensure the external clock can be synchronized with the internal phase clock (Tosc). Also, there is a delay in the actual incrementing of Timer0 after synchronization.

#### 7.2.1 EXTERNAL CLOCK SYNCHRONIZATION

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 7-5). Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device.

When a prescaler is used, the external clock input is divided by the asynchronous ripple-counter type pres-

caler so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple-counter must be taken into account. Therefore, it is necessary for TOCKI to have a period of at least 4Tosc (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on TOCKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

#### 7.2.2 TMR0 INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the Timer0 module is actually incremented. Figure 7-5 shows the delay from the external clock edge to the timer incrementing.



#### FIGURE 7-5: TIMER0 TIMING WITH EXTERNAL CLOCK

# 7.3 <u>Prescaler</u>

An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer (Figure 7-6). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet. Note that the prescaler may be used by either the Timer0 module or the WDT but not both. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the Watchdog Timer, and vice-versa.

The PSA and PS2:PS0 bits (OPTION<3:0>) determine the prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g. CLRF 1, MOVWF 1, BSF 1, x....etc.) will clear the prescaler count. When assigned to WDT, a CLRWDT instruction will clear the prescaler count along with the Watchdog Timer. The prescaler is not readable or writable.

**Note:** Writing to TMR0 when the prescaler is assigned to Timer0 will clear the prescaler count, but will not change the prescaler assignment.



# FIGURE 7-6: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER

#### 7.3.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control, i.e., it can be changed "on the fly" during program execution.

| Note: | To avoid an unintended device RESET, the |
|-------|------------------------------------------|
|       | following instruction sequence (shown in |
|       | Example 7-1) must be executed when       |
|       | changing the prescaler assignment from   |
|       | Timer0 to the WDT. This precaution must  |
|       | be followed even if the WDT is disabled. |

#### EXAMPLE 7-1: CHANGING PRESCALER (TIMER0 → WDT)

|                                     | 1)  | BSF    | STATUS, RPO | ;Select Bankl                              |
|-------------------------------------|-----|--------|-------------|--------------------------------------------|
| Lines 2 and 3 do NOT have to        | 2)  | MOVLW  | b'xx0x0xxx' | ;Select clock source and prescale value of |
| be included if the final desired    | 3)  | MOVWF  | OPTION_REG  | ;other than 1:1                            |
| prescale value is other than 1:1.   | 4)  | BCF    | STATUS, RPO | ;Select Bank0                              |
| a temporary prescale value is       | 5)  | CLRF   | TMR0        | ;Clear TMR0 and prescaler                  |
| set in lines 2 and 3 and the final  | б)  | BSF    | STATUS, RP1 | ;Select Bank1                              |
| prescale value will be set in lines | 7)  | MOVLW  | b'xxxx1xxx' | ;Select WDT, do not change prescale value  |
| 10 and 11.                          | 8)  | MOVWF  | OPTION_REG  | ;                                          |
|                                     | 9)  | CLRWDT |             | ;Clears WDT and prescaler                  |
|                                     | 10) | MOVLW  | b'xxxx1xxx' | ;Select new prescale value and WDT         |
|                                     | 11) | MOVWF  | OPTION_REG  | ;                                          |
|                                     | 12) | BCF    | STATUS, RPO | ;Select Bank0                              |
|                                     |     |        |             |                                            |

To change prescaler from the WDT to the Timer0 module use the precaution shown in Example 7-2.

#### **EXAMPLE 7-2: CHANGING PRESCALER (WDT** $\rightarrow$ **TIMER0)**

| CLRWDT |             | ;Clear WDT and prescaler             |
|--------|-------------|--------------------------------------|
| BSF    | STATUS, RPO | ;Select Bank1                        |
| MOVLW  | b'xxxx0xxx' | ;Select TMR0, new prescale value and |
| MOVWF  | OPTION_REG  | ;clock source                        |
| BCF    | STATUS, RPO | ;Select Bank0                        |

# TABLE 7-1: REGISTERS ASSOCIATED WITH TIMER0

| Address                 | Name   | Bit 7  | Bit 6      | Bit 5    | Bit 4       | Bit 3      | Bit 2    | Bit 1 | Bit 0 | Value on<br>Power-on<br>Reset | Value on all other resets |
|-------------------------|--------|--------|------------|----------|-------------|------------|----------|-------|-------|-------------------------------|---------------------------|
| 01h, 101h               | TMR0   | Timer0 | module's r | register |             |            |          |       |       | XXXX XXXX                     | uuuu uuuu                 |
| 0Bh, 8Bh,<br>10Bh, 18Bh | INTCON | GIE    | PEIE       | TOIE     | INTE        | RBIE       | TOIF     | INTF  | RBIF  | 0000 000x                     | 0000 000u                 |
| 81h, 181h               | OPTION | RBPU   | INTEDG     | TOCS     | T0SE        | PSA        | PS2      | PS1   | PS0   | 1111 1111                     | 1111 1111                 |
| 85h                     | TRISA  | —      | —          | PORTA Da | ta Directio | on Control | Register |       |       | 11 1111                       | 11 1111                   |

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.

#### 8.5 <u>Resetting Timer1 using the CCP</u> <u>Trigger Output</u>

If the CCP1 module is configured in compare mode to generate a "special event trigger" (CCP1M3:CCP1M0 = 1011), this signal will reset Timer1.

| Note: | The special | event | trigg | ger from th | ne CC | CP1 |
|-------|-------------|-------|-------|-------------|-------|-----|
|       | module will | not   | set   | interrupt   | flag  | bit |
|       | TMR1IF (PI  | <1<0> | ).    |             |       |     |

Timer1 must be configured for either timer or synchronized counter mode to take advantage of this feature. If Timer1 is running in asynchronous counter mode, this reset operation may not work.

In the event that a write to Timer1 coincides with a special event trigger from CCP1, the write will take precedence.

In this mode of operation, the CCPR1H:CCPR1L registers pair effectively becomes the period register for Timer1.

# 8.6 <u>Resetting of Timer1 Register Pair</u> (TMR1H:TMR1L)

TMR1H and TMR1L registers are not reset on a POR or any other reset except by the CCP1 special event trigger.

T1CON register is reset to 00h on a Power-on Reset. In any other reset, the register is unaffected.

# 8.7 <u>Timer1 Prescaler</u>

The prescaler counter is cleared on writes to the TMR1H or TMR1L registers.

| Address                 | Name   | Bit 7   | Bit 6                                                                       | Bit 5   | Bit 4   | Bit 3   | Bit 2  | Bit 1  | Bit 0     | Value on<br>Power-on<br>Reset | Value on<br>all other<br>resets |
|-------------------------|--------|---------|-----------------------------------------------------------------------------|---------|---------|---------|--------|--------|-----------|-------------------------------|---------------------------------|
| 0Bh, 8Bh,<br>10Bh, 18Bh | INTCON | GIE     | PEIE                                                                        | TOIE    | INTE    | RBIE    | TOIF   | INTF   | RBIF      | 0000 000x                     | 0000 000u                       |
| 0Ch                     | PIR1   | LCDIF   | ADIF <sup>(1)</sup>                                                         | —       |         | SSPIF   | CCP1IF | TMR2IF | TMR1IF    | 00 0000                       | 00 0000                         |
| 8Ch                     | PIE1   | LCDIE   | ADIE <sup>(1)</sup>                                                         | _       | _       | SSPIE   | CCP1IE | TMR2IE | TMR1IE    | 00 0000                       | 00 0000                         |
| 0Eh                     | TMR1L  | Holding | Holding register for the Least Significant Byte of the 16-bit TMR1 register |         |         |         |        |        | uuuu uuuu |                               |                                 |
| 0Fh                     | TMR1H  | Holding | Holding register for the Most Significant Byte of the 16-bit TMR1 register  |         |         |         |        |        |           |                               |                                 |
| 10h                     | T1CON  | _       | _                                                                           | T1CKPS1 | T1CKPS0 | T1OSCEN | T1SYNC | TMR1CS | TMR10N    | 00 0000                       | uu uuuu                         |

# TABLE 8-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by theTimer1 module. Note 1: Bits ADIE and ADIF are reserved on the PIC16C923, always maintain these bits clear.

The T. Bis ADIE and ADIF are reserved on the FIC 100925, always maintain these bits cle

Figure 11-13 and Figure 11-14 show Master-transmitter and Master-receiver data transfer sequences.

When a master does not wish to relinquish the bus (by generating a STOP condition), a repeated START condition (Sr) must be generated. This condition is identical to the start condition (SDA goes high-to-low while SCL

is high), but occurs after a data transfer acknowledge pulse (not the bus-free state). This allows a master to send "commands" to the slave and then receive the requested information or to address a different slave device. This sequence is shown in Figure 11-15.

# FIGURE 11-13: MASTER-TRANSMITTER SEQUENCE



# FIGURE 11-14: MASTER-RECEIVER SEQUENCE

| For 7-bit address:         |                                                                                                                                                                                                                                                          | For 10-bit address:                                     |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| S Slave Address R/W A Da   | ata A Data A P                                                                                                                                                                                                                                           | S Slave Address R/W A1 Slave Address A2                 |
| '1' (read) —c<br>(n by     | lata transferred_<br>tes - acknowledge)                                                                                                                                                                                                                  | (write)                                                 |
| A master reads a slave imm | ediately after the first byte.                                                                                                                                                                                                                           |                                                         |
| From master to slave       | $\begin{array}{l} \underline{A} = \operatorname{acknowledge} (SDA \ low) \\ \overline{A} = \operatorname{not} \ \operatorname{acknowledge} (SDA \ hightarrow \\ S = \operatorname{Start} \ Condition \\ P = \operatorname{Stop} \ Condition \end{array}$ | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ |

# FIGURE 11-15: COMBINED FORMAT

|                                         | (read or write)<br>(n bytes + acknowledge)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| S Slave Address R/W A                   | Data A/A Sr Slave Address R/W A Data A/A P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (read)                                  | Sr = repeated (write) Direction of transfer<br>Start Condition may change at this point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Transfer direction of data a            | nd acknowledgment bits depends on $R/\overline{W}$ bits.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Combined format:                        | "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SrSlave Address R/W A S<br>First 7 bits | Slave Address A Data A<br>Second byte Data A<br>Second B<br>Second B<br>Se |
| (write)                                 | (read) — (read)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Combined format - A maste<br>data to    | er addresses a slave with a 10-bit address, then transmits this slave and reads data from this slave.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| From master to slave                    | A = acknowledge (SDA low)<br>Ā = not acknowledge (SDA high)<br>S = Start Condition<br>P = Stop Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

# FIGURE 11-21: OPERATION OF THE I<sup>2</sup>C MODULE IN IDLE\_MODE, RCV\_MODE OR XMIT\_MODE

| IDLE_MODE (7-bit):<br>if (Addr_match)      | { Set interrupt;<br>if $(R/\overline{W} = 1)$ { Send $\overline{ACK} = 0$ ; |
|--------------------------------------------|-----------------------------------------------------------------------------|
|                                            | set XMIT_MODE;                                                              |
|                                            | else if (R/W = 0) set RCV_MODE; }                                           |
| RCV_MODE:                                  |                                                                             |
| if ((SSPBUF=Full) OR (SSPOV = 1            |                                                                             |
| Do not acknowle                            | edge;                                                                       |
| }                                          |                                                                             |
| else { transfer SSPSF<br>send ACK = 0;     | $R \rightarrow SSPBUF;$                                                     |
| }<br>Receive 8-bits in SSPSR:              |                                                                             |
| Set interrupt;                             |                                                                             |
| XMIT_MODE:                                 |                                                                             |
| While ((SSPBUF = Empty) AND (C             | :KP=0)) Hold SCL Low;                                                       |
| Send byte;                                 |                                                                             |
| if $(\overline{ACK} \text{ Received} = 1)$ | End of transmission                                                         |
|                                            | Go back to IDLE_MODE;                                                       |
|                                            | }                                                                           |
| else if ( ACK Received = 0) Go ba          | ack to XMIT_MODE;                                                           |
| IDLE_MODE (10-Bit):                        | $\overline{M}$ = 0))                                                        |
| II (High_byte_addr_match AND (R/           | MATCH = FALSE                                                               |
| Set interrupt;                             |                                                                             |
| if ((SSPBUF = F                            | Full) OR ((SSPOV = 1))                                                      |
| {                                          | Set SSPOV;                                                                  |
| ,                                          | Do not acknowledge;                                                         |
| {<br>}<br>                                 | Set IIA – 1                                                                 |
|                                            | Set $\overline{ACK} = 0$ :                                                  |
|                                            | While (SSPADD not updated) Hold SCL low;                                    |
|                                            | Clear UA = 0;                                                               |
|                                            | Receive Low_addr_byte;                                                      |
|                                            |                                                                             |
|                                            | If (Low byte addr match)                                                    |
|                                            | { PRIOR_ADDR_MATCH = TRUE;                                                  |
|                                            | Send $\overline{ACK} = 0;$                                                  |
|                                            | while (SSPADD not updated) Hold SCL low;                                    |
|                                            | Clear DA = 0,                                                               |
|                                            |                                                                             |
| ١                                          | }                                                                           |
| I I                                        |                                                                             |
| ر<br>else if (High byte addr match ۵۸۱     | $D(R\overline{W}=1)$                                                        |
|                                            | R MATCH)                                                                    |
|                                            | send ACK = 0:                                                               |
| ι                                          | set XMIT_MODE <sup>.</sup>                                                  |
| }                                          |                                                                             |
|                                            | TCH = FALSE                                                                 |
| }                                          |                                                                             |
| ,                                          |                                                                             |

# 12.8 Use of the CCP Trigger

An A/D conversion can be started by the "special event trigger" of the CCP1 module. This requires that the CCP1M3:CCP1M0 bits (CCP1CON<3:0>) be programmed as 1011 and that the A/D module is enabled (ADON bit is set). When the trigger occurs, the GO/DONE bit will be set, starting the A/D conversion, and the Timer1 counter will be reset to zero. Timer1 is reset to automatically repeat the A/D acquisition period with minimal software overhead (moving the ADRES to the desired location). The appropriate analog input channel must be selected and the minimum acquisition done before the "special event trigger" sets the GO/DONE bit (starts a conversion).

If the A/D module is not enabled (ADON is cleared), then the "special event trigger" will be ignored by the A/D module, but will still reset the Timer1 counter.

#### 12.9 Connection Considerations

If the input voltage exceeds the rail values (VSS or VDD) by greater than 0.2V, then the accuracy of the conversion is out of specification.

An external RC filter is sometimes added for anti-aliasing of the input signal. The R component should be selected to ensure that the total source impedance is kept under the 10 k $\Omega$  recommended specification. Any external components connected (via hi-impedance) to an analog input pin (capacitor, zener diode, etc.) should have very little leakage current at the pin.

#### 12.10 Transfer Function

The ideal transfer function of the A/D converter is as follows: the first transition occurs when the analog input voltage (VAIN) is Analog VREF / 256 (Figure 12-5).





# FIGURE 13-2: LCD MODULE BLOCK DIAGRAM



# FIGURE 13-3: LCDPS REGISTER (ADDRESS 10Eh)







#### 13.1.2 MULTIPLEX TIMING GENERATION

The timing generation circuitry will generate 1 to 4 common clocks based on the display mode selected. The mode is specified by bits LMUX1:LMUX0 (LCDCON<1:0>). Table 13-1 shows the formulas for calculating the frame frequency.

#### TABLE 13-1: FRAME FREQUENCY FORMULAS

| Multiplex | Frame Frequency =                    |
|-----------|--------------------------------------|
| Static    | Clock source / (128 * (LP3:LP0 + 1)) |
| 1/2       | Clock source / (128 * (LP3:LP0 + 1)) |
| 1/3       | Clock source / (96 * (LP3:LP0 + 1))  |
| 1/4       | Clock source / (128 * (LP3:LP0 + 1)) |

#### TABLE 13-2: APPROX. FRAME FREQ IN Hz USING TIMER1 @ 32.768 kHz OR Fosc @ 8 MHz

| LP3:LP0 | Static | 1/2 | 1/3 | 1/4 |
|---------|--------|-----|-----|-----|
| 2       | 85     | 85  | 114 | 85  |
| 3       | 64     | 64  | 85  | 64  |
| 4       | 51     | 51  | 68  | 51  |
| 5       | 43     | 43  | 57  | 43  |
| 6       | 37     | 37  | 49  | 37  |
| 7       | 32     | 32  | 43  | 32  |

#### TABLE 13-3: APPROX. FRAME FREQ IN Hz USING INTERNAL RC OSC @ 14 kHz

| LP3:LP0 | Static | 1/2 | 1/3 | 1/4 |
|---------|--------|-----|-----|-----|
| 0       | 109    | 109 | 146 | 109 |
| 1       | 55     | 55  | 73  | 55  |
| 2       | 36     | 36  | 49  | 36  |
| 3       | 27     | 27  | 36  | 27  |





#### FIGURE 14-9: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2



#### FIGURE 14-10:TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)



| CLRF              | Clear f                                                               |                                                                |                 |                       |  |  |  |  |
|-------------------|-----------------------------------------------------------------------|----------------------------------------------------------------|-----------------|-----------------------|--|--|--|--|
| Syntax:           | [ <i>label</i> ] CLRF f                                               |                                                                |                 |                       |  |  |  |  |
| Operands:         | $0 \le f \le 127$                                                     |                                                                |                 |                       |  |  |  |  |
| Operation:        | $\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$ |                                                                |                 |                       |  |  |  |  |
| Status Affected:  | Z                                                                     |                                                                |                 |                       |  |  |  |  |
| Encoding:         | 00                                                                    | 0001                                                           | lfff            | ffff                  |  |  |  |  |
| Description:      | The contents of register 'f' are cleared and the Z bit is set.        |                                                                |                 |                       |  |  |  |  |
| Words:            | 1                                                                     |                                                                |                 |                       |  |  |  |  |
| Cycles:           | 1                                                                     |                                                                |                 |                       |  |  |  |  |
| Q Cycle Activity: | Q1                                                                    | Q2                                                             | Q3              | Q4                    |  |  |  |  |
|                   | Decode                                                                | Read<br>register<br>'f'                                        | Process<br>data | Write<br>register 'f' |  |  |  |  |
| Example           | CLRF                                                                  | FLAG                                                           | G_REG           |                       |  |  |  |  |
|                   | Before In<br>After Inst                                               | Instruction<br>FLAG_REG = 0x5A<br>nstruction                   |                 |                       |  |  |  |  |
|                   |                                                                       | $\begin{array}{rcl} FLAG\_REG &=& 0x00\\ Z & =& 1 \end{array}$ |                 |                       |  |  |  |  |

| CLRW              | Clear W                                                               |                  |                 |               |  |  |  |
|-------------------|-----------------------------------------------------------------------|------------------|-----------------|---------------|--|--|--|
| Syntax:           | [ label ]                                                             | CLRW             |                 |               |  |  |  |
| Operands:         | None                                                                  | None             |                 |               |  |  |  |
| Operation:        | $\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$ |                  |                 |               |  |  |  |
| Status Affected:  | Z                                                                     |                  |                 |               |  |  |  |
| Encoding:         | 00                                                                    | 0001             | 0xxx            | xxxx          |  |  |  |
| Description:      | W register<br>set.                                                    | r is cleared     | I. Zero bit (   | (Z) is        |  |  |  |
| Words:            | 1                                                                     |                  |                 |               |  |  |  |
| Cycles:           | 1                                                                     |                  |                 |               |  |  |  |
| Q Cycle Activity: | Q1                                                                    | Q2               | Q3              | Q4            |  |  |  |
|                   | Decode                                                                | No-<br>Operation | Process<br>data | Write to<br>W |  |  |  |
| Example           | CLRW                                                                  |                  |                 |               |  |  |  |
|                   | Before In                                                             | struction<br>W = | 0x5A            |               |  |  |  |
|                   |                                                                       | W =<br>Z =       | 0x00<br>1       |               |  |  |  |

| SUBWF             | Subtract                                                          | Subtract W from f                                                                                                                                                                    |                                |                      |  |  |  |  |  |
|-------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------|--|--|--|--|--|
| Syntax:           | [ label ]                                                         | SUBWF                                                                                                                                                                                | f,d                            |                      |  |  |  |  |  |
| Operands:         | $\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$ |                                                                                                                                                                                      |                                |                      |  |  |  |  |  |
| Operation:        | (f) - (W) -                                                       | (f) - (W) $\rightarrow$ (destination)                                                                                                                                                |                                |                      |  |  |  |  |  |
| Status Affected:  | C, DC, Z                                                          | C, DC, Z                                                                                                                                                                             |                                |                      |  |  |  |  |  |
| Encoding:         | 00                                                                | 00 0010 dfff ffff                                                                                                                                                                    |                                |                      |  |  |  |  |  |
| Description:      | Subtract (2<br>ister from r<br>stored in th<br>result is sto      | Subtract (2's complement method) W reg-<br>ister from register 'f'. If 'd' is 0 the result is<br>stored in the W register. If 'd' is 1 the<br>result is stored back in register 'f'. |                                |                      |  |  |  |  |  |
| Words:            | 1                                                                 |                                                                                                                                                                                      |                                |                      |  |  |  |  |  |
| Cycles:           | 1                                                                 |                                                                                                                                                                                      |                                |                      |  |  |  |  |  |
| Q Cycle Activity: | Q1                                                                | Q2                                                                                                                                                                                   | Q3                             | Q4                   |  |  |  |  |  |
|                   | Decode                                                            | Read<br>register 'f'                                                                                                                                                                 | Process<br>data                | Write to destination |  |  |  |  |  |
| Example 1:        | SUBWF                                                             | REG1,1                                                                                                                                                                               |                                |                      |  |  |  |  |  |
|                   | Before Ins                                                        | struction                                                                                                                                                                            |                                |                      |  |  |  |  |  |
|                   | REG1 = 3<br>W = 2<br>C = ?<br>Z = ?                               |                                                                                                                                                                                      |                                |                      |  |  |  |  |  |
|                   | After Instr                                                       | uction                                                                                                                                                                               |                                |                      |  |  |  |  |  |
|                   | REG1<br>W<br>C<br>Z                                               | positive                                                                                                                                                                             |                                |                      |  |  |  |  |  |
| Example 2:        | Before Ins                                                        | struction                                                                                                                                                                            |                                |                      |  |  |  |  |  |
|                   | REG1<br>W<br>C<br>Z                                               | =<br>=<br>=                                                                                                                                                                          | 2<br>2<br>?<br>?               |                      |  |  |  |  |  |
|                   | After Instr                                                       | uction                                                                                                                                                                               |                                |                      |  |  |  |  |  |
|                   | REG1<br>W<br>C<br>Z                                               | =<br>=<br>=<br>=                                                                                                                                                                     | 0<br>2<br>1; result is<br>1    | zero                 |  |  |  |  |  |
| Example 3:        | Before Ins                                                        | struction                                                                                                                                                                            |                                |                      |  |  |  |  |  |
|                   | REG1<br>W<br>C<br>Z                                               | =<br>=<br>=                                                                                                                                                                          | 1<br>2<br>?<br>?               |                      |  |  |  |  |  |
|                   | After Instr                                                       | uction                                                                                                                                                                               |                                |                      |  |  |  |  |  |
|                   | REG1<br>W<br>C<br>Z                                               | =<br>=<br>=                                                                                                                                                                          | 0xFF<br>2<br>0; result is<br>0 | negative             |  |  |  |  |  |

| SWAPF             | Swap Nibbles in f                                                                                                                                                     |  |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Syntax:           | [label] SWAPF f,d                                                                                                                                                     |  |  |  |  |  |  |
| Operands:         | $\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$                                                                                            |  |  |  |  |  |  |
| Operation:        | $(f<3:0>) \rightarrow (destination<7:4>),$<br>$(f<7:4>) \rightarrow (destination<3:0>)$                                                                               |  |  |  |  |  |  |
| Status Affected:  | None                                                                                                                                                                  |  |  |  |  |  |  |
| Encoding:         | 00 1110 dfff ffff                                                                                                                                                     |  |  |  |  |  |  |
| Description:      | The upper and lower nibbles of register<br>'f' are exchanged. If 'd' is 0 the result is<br>placed in W register. If 'd' is 1 the result<br>is placed in register 'f'. |  |  |  |  |  |  |
| Words:            | 1                                                                                                                                                                     |  |  |  |  |  |  |
| Cycles:           | 1                                                                                                                                                                     |  |  |  |  |  |  |
| Q Cycle Activity: | Q1 Q2 Q3 Q4                                                                                                                                                           |  |  |  |  |  |  |
|                   | Decode Read register 'f' Process data Write to destination                                                                                                            |  |  |  |  |  |  |
| Example           | SWAPF REG, 0                                                                                                                                                          |  |  |  |  |  |  |
|                   | Before Instruction                                                                                                                                                    |  |  |  |  |  |  |
|                   | REG1 = 0xA5                                                                                                                                                           |  |  |  |  |  |  |
|                   | After Instruction                                                                                                                                                     |  |  |  |  |  |  |
|                   | $\begin{array}{rcl} REG1 &= & 0xA5 \\ W &= & 0x5A \end{array}$                                                                                                        |  |  |  |  |  |  |
|                   |                                                                                                                                                                       |  |  |  |  |  |  |
|                   |                                                                                                                                                                       |  |  |  |  |  |  |
| TRIS              | Load TRIS Register                                                                                                                                                    |  |  |  |  |  |  |
| Syntax:           | [label] TRIS f                                                                                                                                                        |  |  |  |  |  |  |
| Operands:         | 5 < f < 7                                                                                                                                                             |  |  |  |  |  |  |
| Operation:        | $(W) \rightarrow TRIS$ register f:                                                                                                                                    |  |  |  |  |  |  |
| Status Affected:  | None                                                                                                                                                                  |  |  |  |  |  |  |
| Encoding:         | 00 0000 0110 0fff                                                                                                                                                     |  |  |  |  |  |  |
| Description:      | The instruction is supported for code                                                                                                                                 |  |  |  |  |  |  |
|                   | compatibility with the PIC16C5X prod-<br>ucts. Since TRIS registers are read-<br>able and writable, the user can directly<br>address them.                            |  |  |  |  |  |  |
| Words:            | 1                                                                                                                                                                     |  |  |  |  |  |  |
| Cycles:           | 1                                                                                                                                                                     |  |  |  |  |  |  |
| Example           |                                                                                                                                                                       |  |  |  |  |  |  |
|                   | To maintain upward compatibility<br>with future PIC16CXX products, do<br>not use this instruction.                                                                    |  |  |  |  |  |  |

# FIGURE 17-2: LOAD CONDITIONS





# FIGURE 17-5: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

# TABLE 17-6: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER REQUIREMENTS

| Parameter<br>No. | Sym   | Characteristic                                         | Min | Тур†     | Мах | Units | Conditions               |
|------------------|-------|--------------------------------------------------------|-----|----------|-----|-------|--------------------------|
| 30               | TmcL  | MCLR Pulse Width (low)                                 | 2   | _        | _   | μs    |                          |
| 31*              | Twdt  | Watchdog Timer Time-out Period<br>(No Prescaler)       | 7   | 18       | 33  | ms    | VDD = 5V, -40°C to +85°C |
| 32               | Tost  | Oscillation Start-up Timer Period                      | —   | 1024Tosc | —   | _     | Tosc = OSC1 period       |
| 33*              | Tpwrt | Power-up Timer Period                                  | 28  | 72       | 132 | ms    | VDD = 5V, -40°C to +85°C |
| 34               | Tioz  | I/O Hi-impedance from MCLR Low or Watchdog Timer Reset | _   | _        | 2.1 | μs    |                          |

\* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

#### FIGURE 17-6: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS



| Param<br>No. | Sym       | Characteristic         |                                             |                         | Min                   | Тур† | Max                 | Units        | Conditions         |
|--------------|-----------|------------------------|---------------------------------------------|-------------------------|-----------------------|------|---------------------|--------------|--------------------|
| 40*          | Tt0H      | T0CKI High Pulse Width |                                             | No Prescaler            | 0.5Tcy + 20           | -    | —                   | ns           | Must also meet     |
|              |           |                        |                                             | With Prescaler          | 10                    | _    | — — ns parameter 42 | parameter 42 |                    |
| 41*          | Tt0L      | T0CKI Low Pulse W      | /idth                                       | No Prescaler            | 0.5TCY + 20           | —    | —                   | ns           | Must also meet     |
|              |           |                        |                                             | With Prescaler          | 10                    | —    | —                   | ns           | parameter 42       |
| 42*          | Tt0P      | T0CKI Period           |                                             | No Prescaler            | TCY + 40              | -    | —                   | ns           |                    |
|              |           |                        |                                             | With Prescaler          | Greater of:           | -    | —                   | ns           | N = prescale value |
|              |           |                        |                                             |                         | 20 or <u>Tcy + 40</u> |      |                     |              | (2, 4,, 256)       |
| 45*          | T+411     | T4 OKU Llink Time      | Curacharan avec                             |                         |                       |      |                     |              |                    |
| 45"          | ITTH      | I TCKI High Time       | Synchronous, P                              |                         | 0.51CY + 20           |      |                     | ns           | Must also meet     |
|              |           |                        | Synchronous,                                | PIC16C923/924           | 15                    |      |                     | ns           |                    |
|              |           |                        | 2,4,8                                       | PIC16 <b>LC</b> 923/924 | 25                    | _    | _                   | ns           |                    |
|              |           |                        | Asynchronous                                | PIC16 <b>C</b> 923/924  | 30                    | —    | —                   | ns           |                    |
|              |           |                        |                                             | PIC16LC923/924          | 50                    | —    | —                   | ns           |                    |
| 46*          | Tt1L      | T1CKI Low Time         | Synchronous, F                              | rescaler = 1            | 0.5Tcy + 20           | —    | —                   | ns           | Must also meet     |
|              |           |                        | Synchronous,                                | PIC16 <b>C</b> 923/924  | 15                    | —    | —                   | ns           | parameter 47       |
|              |           |                        | Prescaler = 2,4,8                           | PIC16 <b>LC</b> 923/924 | 25                    | -    | _                   | ns           |                    |
|              |           |                        | Asynchronous                                | PIC16 <b>C</b> 923/924  | 30                    | -    | —                   | ns           |                    |
|              |           |                        |                                             | PIC16LC923/924          | 50                    | —    | —                   | ns           |                    |
| 47*          | Tt1P      | T1CKI input period     | Synchronous                                 | PIC16 <b>C</b> 923/924  | Greater of:           | -    | —                   | ns           | N = prescale value |
|              |           |                        |                                             |                         | 30 OR <u>TCY + 40</u> |      |                     |              | (1, 2, 4, 8)       |
|              |           |                        |                                             |                         | N                     |      |                     |              |                    |
|              |           |                        |                                             | PIC16LC923/924          | Greater of:           |      |                     |              | N = prescale value |
|              |           |                        |                                             |                         | 50 OR <u>TCY + 40</u> |      |                     |              | (1, 2, 4, 8)       |
|              |           |                        | Asynchronous                                | PIC16C023/02/           | 60                    |      |                     | ne           |                    |
|              |           |                        | Asylicilionous                              | PIC16I C023/024         | 100                   |      |                     | ne           |                    |
|              | Et1       | Timer1 oscillator inr  | PIC 10LC923/924                             |                         |                       | +=-  | 200                 | kH7          |                    |
|              |           | (oscillator enabled b  | (oscillator enabled by setting bit T1OSCEN) |                         |                       |      | 200                 |              |                    |
| 48           | TCKEZtmr1 | Delay from external    | clock edge to tir                           | ner increment           | 2Tosc                 | -    | 7Tosc               |              |                    |
|              |           | ,,                     |                                             |                         |                       | I    |                     |              |                    |

These parameters are characterized but not tested.

+ Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

# FIGURE 17-10:SPI SLAVE MODE TIMING (CKE = 0)



# FIGURE 17-11:SPI SLAVE MODE TIMING (CKE = 1)



# PIC16C9XX





FIGURE 18-19:MAXIMUM IDD vs. FREQUENCY (RC MODE @ 300 pF, -40°C TO +85°C)



Data based on process characterization samples. See first page of this section for details.