

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI
Peripherals	LCD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	176 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	68-LCC (J-Lead)
Supplier Device Package	68-PLCC (24.23x24.23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc924-04i-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: PIC16C9XX FAMILY OF DEVICES

		PIC16C923	PIC16C924
Clock	Maximum Frequency of Operation (MHz)	8	8
Mamani	EPROM Program Memory	4K	4K
Memory	Data Memory (bytes)	176	176
	Timer Module(s)	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2
	Capture/Compare/PWM Module(s)	1	1
Peripheral	Serial Port(s) ^S (SPI/I ² C, USART)	SPI/I ² C	SPI/I ² C
	Parallel Slave Port	—	—
	A/D Converter (8-bit) Channels		5
	LCD Module	4 Com, 32 Seg	4 Com, 32 Seg
	Interrupt Sources	8	9
	I/O Pins	25	25
	Input Pins	27	27
	Voltage Range (Volts)	2.5-6.0	2.5-6.0
Features	In-Circuit Serial Programming	Yes	Yes
	Brown-out Reset	—	—
	Packages	64-pin SDIP, TQFP; 68-pin PLCC, Die	64-pin SDIP, TQFP; 68-pin PLCC, Die

All PICmicro Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16C9XX Family devices use serial programming with clock pin RB6 and data pin RB7.

4.2.2.3 INTCON REGISTER

The INTCON Register is a readable and writable register which contains various enable and flag bits for the TMR0 register overflow, RB Port change and external RB0/INT pin interrupts. **Note:** Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>).

FIGURE 4-5: INTCON REGISTER (ADDRESS 0Bh, 8Bh, 10Bh, 18Bh)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x		
GIE bit7	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF bit0	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'	
bit 7:	- n = Value at POR reset GIE: Global Interrupt Enable bit 1 = Enables all un-masked interrupts 0 = Disables all interrupts								
bit 6:									
bit 5:									
bit 4:	INTE: RB0/INT External Interrupt Enable bit 1 = Enables the RB0/INT external interrupt 0 = Disables the RB0/INT external interrupt								
bit 3:	RBIE : RB Port Change Interrupt Enable bit 1 = Enables the RB port change interrupt 0 = Disables the RB port change interrupt								
bit 2:	TOIF : TMR0 Overflow Interrupt Flag bit 1 = TMR0 register has overflowed (must be cleared in software) 0 = TMR0 register did not overflow								
bit 1:									
bit 0:									
globa	U = None of the RB7:RB4 pins have changed state Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.								

11.0 SYNCHRONOUS SERIAL PORT (SSP) MODULE

The Synchronous Serial Port (SSP) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, dis-

play drivers, A/D converters, etc. The SSP module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C)

Refer to Application Note AN578, "Use of the SSP Module in the I^2C Multi-Master Environment."

FIGURE 11-1: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS 94h)

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0]
SMP	CKE	D/Ā	Р	S	R/W	UA	BF	R = Readable bit W = Writable bit
bit7							bitO	U = Unimplemented bit, read as '0' - n =Value at POR reset
bit 7:	<u>SPI Ma</u> 1 = Inpu 0 = Inpu <u>SPI Sla</u>	<u>ster Mod</u> ut data sa ut data sa ut data sa <u>ve Mode</u>	Impled at o Impled at i	end of data niddle of d	i output time ata output tir ed in slave n			
oit 6:	$\frac{CKP = 0}{1 = Dat}$ $0 = Dat$ $\frac{CKP = 0}{1 = Dat}$	<u>0</u> a transmi a transmi <u>1</u> a transmi	tted on ris tted on fal tted on fal	ct (Figure ing edge o ling edge c ling edge c ing edge o	of SCK of SCK	11-6, and F	⁻ igure 11-7)	
bit 5:	D/A : Data/Address bit (I ² C mode only) 1 = Indicates that the last byte received or transmitted was data 0 = Indicates that the last byte received or transmitted was address							
bit 4:	 P: Stop bit (I²C mode only. This bit is cleared when the SSP module is disabled, or when the Start bit was detected last) 1 = Indicates that a stop bit has been detected last (this bit is '0' on RESET) 0 = Stop bit was not detected last 							
bit 3:	 S: Start bit (I²C mode only. This bit is cleared when the SSP module is disabled, or when the Stop bit was detected last) 1 = Indicates that a start bit has been detected last (this bit is '0' on RESET) 0 = Start bit was not detected last 							
bit 2:	R/W : Read/Write bit information (I^2C mode only) This bit holds the R/W bit information following the last address match. This bit is only valid from the address match to the next start bit, stop bit, or \overline{ACK} bit. 1 = Read 0 = Write							
bit 1:	1 = Indi	cates tha	t the user	t I ² C mode needs to u I to be upd	pdate the ad	dress in the	e SSPADD	register
bit 0:	BF: Buf	fer Full S	tatus bit					
	1 = Rec	eive com		es) PBUF is ful SSPBUF is				
	1 = Trar		rogress, S	SPBUF is PBUF is er				

12.0 ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

This section applies to the PIC16C924 only.

The analog-to-digital (A/D) converter module has five inputs.

The A/D allows conversion of an analog input signal to a corresponding 8-bit digital number (refer to Application Note AN546 for use of A/D Converter). The output of the sample and hold is the input into the converter, which generates the result via successive approximation. The analog reference voltage is software selectable to either the device's AVDD pin or the voltage level on the RA3/AN3/VREF pin. The A/D converter has a unique feature of being able to operate while the device is in SLEEP mode.

To operate in sleep, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

The A/D module has three registers. These registers are:

- A/D Result Register (ADRES)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)

The ADCON0 register, shown in Figure 12-1, controls the operation of the A/D module. The ADCON1 register, shown in Figure 12-2, configures the functions of the port pins. The port pins can be configured as analog inputs (RA3 can also be a voltage reference) or as digital I/O.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	—	ADON	R = Readable bit		
bit7	bit0 W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset									
bit 7-6:										
bit 5-3:	: CHS2:CHS0: Analog Channel Select bits 000 = channel 0, (RA0/AN0) 001 = channel 1, (RA1/AN1) 010 = channel 2, (RA2/AN2) 011 = channel 3, (RA3/AN3) 100 = channel 4, (RA5/AN4)									
bit 2:	GO/DONE: A/D Conversion Status bit									
	If ADON = 1 1 = A/D conversion in progress (setting this bit starts the A/D conversion) 0 = A/D conversion not in progress (This bit is automatically cleared by hardware when the A/D conversion is complete)									
bit 1:	Reserved: Always maintain this bit clear									
bit 0:	 ADON: A/D On bit 1 = A/D converter module is operating 0 = A/D converter module is shutoff and consumes no operating current 									

FIGURE 12-1: ADCON0 REGISTER (ADDRESS 1Fh)

12.1 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 12-4. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), (Figure 12-4). The source impedance affects the offset voltage at the analog input (due to pin leakage current). **The maximum recommended impedance for analog sources is 10 k** Ω . After the analog input channel is selected (changed) this acquisition must be done before the conversion can be started.

To calculate the minimum acquisition time, Equation 12-1 may be used. This equation calculates the acquisition time to within 1/2 LSb error (512 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified accuracy.

EQUATION 12-1: A/D MINIMUM CHARGING TIME

 $VHOLD = (VREF - (VREF/512)) \bullet (1 - e^{(-Tc/CHOLD(Ric + Rss + Rs))})$

Given: VHOLD = (VREF/512), for 1/2 LSb resolution

The above equation reduces to:

 $Tc = -(51.2 \text{ pF})(1 \text{ k}\Omega - \text{Rss} + \text{Rs}) \ln(1/511)$

Example 12-1 shows the calculation of the minimum required acquisition time (TACQ). This calculation is based on the following system assumptions.

CHOLD = 51.2 pF

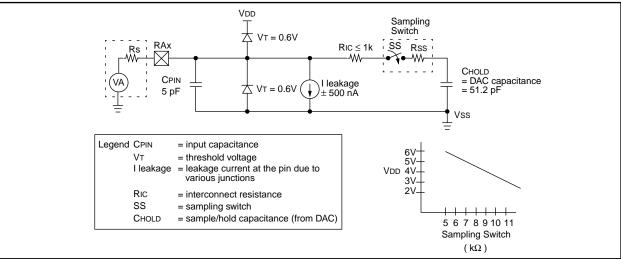
 $Rs = 10 \ k\Omega$

1/2 LSb error

 $V\text{DD} = 5\text{V} \rightarrow \text{Rss} = 7 \text{ k}\Omega$

Temp (system max.) = 50°C

VHOLD = 0 @ t = 0



- Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.
- **Note 2:** The charge holding capacitor (CHOLD) is not discharged after each conversion.
- Note 3: The maximum recommended impedance for analog sources is 10 k Ω . This is required to meet the pin leakage specification.
- **Note 4:** After a conversion has completed, a 2.0 TAD delay must complete before acquisition can begin again. During this time the holding capacitor is not connected to the selected A/D input channel.

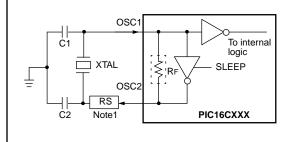
EXAMPLE 12-1: CALCULATING THE MINIMUM REQUIRED SAMPLE TIME

TACQ = Amplifier Settling Time +

- Holding Capacitor Charging Time + Temperature Coefficient
- TACQ = $5 \,\mu s + Tc + [(Temp 25^{\circ}C)(0.05 \,\mu s/^{\circ}C)]$
- TC = -CHOLD (RIC + RSS + RS) ln(1/511) -51.2 pF (1 k Ω + 7 k Ω + 10 k Ω) ln(0.0020) -51.2 pF (18 k Ω) ln(0.0020) -0.921 μ s (-6.2364) 5.747 μ s TACO = 5 μ s + 5 747 μ s + 1/50°C - 25°C)(0.05 μ s/°C
- TACQ = 5 μs + 5.747 μs + [(50°C 25°C)(0.05 μs/°C)] 10.747 μs + 1.25 μs 11.997 μs

14.2 Oscillator Configurations

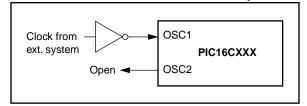
14.2.1 OSCILLATOR TYPES


The PIC16CXXX can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC Resistor/Capacitor

14.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS

In XT, LP or HS modes a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 14-2). The PIC16CXXX oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1/CLKIN pin (Figure 14-3).


FIGURE 14-2: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION)

See Table 14-1 and Table 14-2 for recommended values of C1 and C2.

Note 1: A series resistor may be required for AT strip cut crystals.

FIGURE 14-3: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION)

TABLE 14-1: CERAMIC RESONATORS

lz 15 lz 15	OSC1 - 100 pF - 68 pF - 68 pF	OSC2 68 - 100 pF 15 - 68 pF 15 - 68 pF			
lz 15 lz 15	- 68 pF	15 - 68 pF			
z 15	•				
	- 68 pF	15 - 68 pF			
- 40					
lz 10	- 68 pF	10 - 68 pF			
These values are for design guidance only. See notes at bottom of page.					
:					
nic EFO-/	A455K04B	± 0.3%			
Murata Erie CSA2.00MG ± 0.5%					
Murata Erie CSA4.00MG ± 0.5%					
Erie CSA	8.00MT	± 0.5%			
	es are for d om of page : Dnic EFO-/ Erie CSA	es are for design guidar om of page. : pnic EFO-A455K04B Erie CSA2.00MG			

All resonators used did not have built-in capacitors.

TABLE 14-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR

Оѕс Туре	Crystal Freq	Cap. Range C1	Cap. Range C2
LP	32 kHz	33 pF	33 pF
	200 kHz	15 pF	15 pF
ХТ	200 kHz	47-68 pF	47-68 pF
	1 MHz	15 pF	15 pF
	4 MHz	15 pF	15 pF
HS	4 MHz	15 pF	15 pF
	8 MHz	15-33 pF	15-33 pF

These values are for design guidance only. See notes at bottom of page.

Crystals Used					
32 kHz	Epson C-001R32.768K-A	± 20 PPM			
200 kHz	STD XTL 200.000KHz	± 20 PPM			
1 MHz	ECS ECS-10-13-1	± 50 PPM			
4 MHz	ECS ECS-40-20-1	± 50 PPM			
8 MHz	EPSON CA-301 8.000M-C	± 30 PPM			

Note 1: Recommended values of C1 and C2 are identical to the ranges tested (Table 14-1).

- 2: Higher capacitance increases the stability of oscillator but also increases the start-up time.
- 3: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.
- 4: Rs may be required in HS mode as well as XT mode to avoid overdriving crystals with low drive level specification.

14.4 <u>Power-on Reset (POR), Power-up</u> <u>Timer (PWRT) and Oscillator Start-up</u> <u>Timer (OST)</u>

14.4.1 POWER-ON RESET (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.5V - 2.1V). To take advantage of the POR, just tie the \overline{MCLR} pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset. A maximum rise time for VDD is specified. See Electrical Specifications for details.

When the device starts normal operation (exits the reset condition), device operating parameters (voltage, frequency, temperature, ...) must be met to ensure operation. If these conditions are not met, the device must be held in reset until the operating conditions are met.

For additional information, refer to Application Note AN607, "*Power-up Trouble Shooting*."

14.4.2 POWER-UP TIMER (PWRT)

The Power-up Timer provides a fixed 72 ms nominal time-out on power-up only, from the POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in reset as long as the PWRT is active. The PWRT's time delay allows VDD to rise to an accept-able level. A configuration bit is provided to enable/disable the PWRT.

The power-up time delay will vary from chip to chip due to VDD, temperature, and process variation. See DC parameters for details.

14.4.3 OSCILLATOR START-UP TIMER (OST)

The Oscillator Start-up Timer (OST) provides 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over. This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

14.4.4 TIME-OUT SEQUENCE

On power-up the time-out sequence is as follows: First PWRT time-out is invoked after the POR time delay has expired. Then OST is activated. The total time-out will vary based on oscillator configuration and the status of the PWRT. For example, in RC mode with the PWRT disabled, there will be no time-out at all. Figure 14-8, Figure 14-9, and Figure 14-10 depict time-out sequences on power-up.

Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time-outs will expire. Then bringing $\overline{\text{MCLR}}$ high will begin execution immediately (Figure 14-9). This is useful for testing purposes or to synchronize more than one PIC16CXXX device operating in parallel.

Table 14-5 shows the reset conditions for some special function registers, while Table 14-6 shows the reset conditions for all the registers.

14.4.5 POWER CONTROL/STATUS REGISTER (PCON)

Bit1 is Power-on Reset Status bit POR. It is cleared on a Power-on Reset and unaffected otherwise. The user must set this bit following a Power-on Reset.

Oscillator Configuration	Powe	Wake-up from SLEEP	
	PWRTE = 1	PWRTE = 0	
XT, HS, LP	1024Tosc	72 ms + 1024Tosc	1024 Tosc
RC		72 ms	

TABLE 14-3: TIME-OUT IN VARIOUS SITUATIONS

CLRF	Clear f				
Syntax:	[<i>label</i>] C	[label] CLRF f			
Operands:	$0 \le f \le 12$	$0 \le f \le 127$			
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$				
Status Affected:	Z				
Encoding:	00	0001	lfff	ffff	
Description:	The conter and the Z	-	ster 'f' are	cleared	
Words:	1				
Cycles:	1				
Q Cycle Activity:	Q1	Q2	Q3	Q4	
	Decode	Read register 'f'	Process data	Write register 'f'	
Example	CLRF	FLAG	S_REG		
	After Inst	ore Instruction FLAG_REG = 0x5A r Instruction FLAG_REG = 0x00			
		Z	=	1	

CLRW	Clear W			
Syntax:	[label]	CLRW		
Operands:	None			
Operation:	$00h \rightarrow (V 1 \rightarrow Z$	V)		
Status Affected:	Z			
Encoding:	00	0001	0xxx	xxxx
Description:	W register set.	is cleared	. Zero bit (Z) is
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	No- Operation	Process data	Write to W
Example	CLRW			
	Before In	struction		
			0x5A	
	After Inst		0200	
		VV =	0x00	

PIC16C9XX

INCF	Increment f	INCFSZ	Increment f, Skip if 0			
Syntax:	[<i>label</i>] INCF f,d	Syntax:	[<i>label</i>] INCFSZ f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$	Operands:	0 ≤ f ≤ 127 d ∈ [0,1]			
Operation: Status Affected:	(f) + 1 \rightarrow (destination) Z	Operation:	(f) + 1 \rightarrow (destination), skip if result = 0			
Encoding:	- 00 1010 dfff ffff	Status Affected:	None			
Description:	The contents of register 'f' are incre-	Encoding:	00 1111 dfff ffff			
Words:	mented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.	Description:	The contents of register 'f' are incre- mented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. If the result is 1, the next instruction is			
Cycles:	1		executed. If the result is 0, a NOP is executed instead making it a 2Tcy instruction.			
Q Cycle Activity:	Q1 Q2 Q3 Q4	Words:	1			
	Decode Read Process Write to destination	Cycles:	1(2)			
	'f'	Q Cycle Activity:	Q1 Q2 Q3 Q4			
Example	incf CNT, 1		Decode Read register 'f' Process Write to destination			
	Before Instruction	If Skip:	(2nd Cycle)			
	CNT = 0xFF Z = 0		Q1 Q2 Q3 Q4			
	After Instruction CNT = 0x00 Z = 1		No- OperationNo- OperationNo- Operation			
		Example	HERE INCFSZ CNT, 1 GOTO LOOP CONTINUE • •			
			Before Instruction PC = address HERE After Instruction			

CNT = CNT + 1 if CNT= 0, PC = address CONTINUE

if $CNT \neq 0$, PC = address HERE +1

NOP	No Oper	ation				
Syntax:	[label]	NOP				
Operands:	None					
Operation:	No opera	No operation				
Status Affected:	None					
Encoding:	00	0000	0xx0	0000		
Description:	No operation.					
Words:	1					
Cycles:	1					
Q Cycle Activity:	Q1	Q2	Q3	Q4		
	Decode	No- Operation	No- Operation	No- Operation		
Example	NOP					

Return from Interrupt					
[label]	RETFIE				
None					
$\begin{array}{l} TOS \rightarrow F \\ 1 \rightarrow GIE \end{array}$	$\begin{array}{l} TOS \to PC, \\ 1 \to GIE \end{array}$				
None					
00	0000	0000	1001		
Return from Interrupt. Stack is POPed and Top of Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a two cycle instruction.					
1					
2					
Q1	Q2	Q3	Q4		
Decode	No- Operation	Set the GIE bit	Pop from the Stack		
No- Operation	No- Operation	No- Operation	No- Operation		
	$\begin{bmatrix} label \\ None \\ TOS \rightarrow F \\ 1 \rightarrow GIE \\ None \\ \hline 00 \\ \hline 00 \\ Return fro and Top of PC. Interru Global Interru Global Interru Global Interru Global Interru Global Interruction 1 \\ 2 \\ Q1 \\ \hline Decode \\ \hline No- \\ \end{bmatrix}$	$[label] RETFIE$ None $TOS \rightarrow PC,$ $1 \rightarrow GIE$ None $00 0000$ Return from Interrup and Top of Stack (TC PC. Interrupts are er Global Interrupt Ena (INTCON<7>). This is instruction. 1 2 Q1 Q2 $Decode No-Operation$ No- No-	$\begin{bmatrix} label \end{bmatrix} \text{ RETFIE} \\ \text{None} \\ \hline \text{TOS} \rightarrow \text{PC}, \\ 1 \rightarrow \text{GIE} \\ \hline \text{None} \\ \hline 00 & 0000 & 0000 \\ \hline 0000 & 0000 \\ \hline \text{Return from Interrupt. Stack is and Top of Stack (TOS) is loade PC. Interrupts are enabled by s Global Interrupt Enable bit, GIE (INTCON<7>). This is a two cyrinstruction. \\ 1 \\ 2 \\ \hline Q1 & Q2 & Q3 \\ \hline \hline \text{Decode} & \frac{\text{No-}}{\text{Operation}} & \frac{\text{Set the}}{\text{GIE bit}} \\ \hline \text{No-} & \text{No-} & \text{No-} \\ \hline \end{array}$		

Example

RETFIE

After Interrupt

PC	=	TOS
GIE	=	1

OPTION	Load Op	tion Reg	gister	
Syntax:	[label]	OPTION	٧	
Operands:	None			
Operation:	$(W) \rightarrow O$	PTION		
Status Affected:	None			
Encoding:	00	0000	0110	0010
Description:	The conter loaded in t instruction patibility w Since OPT register, th it.	he OPTIC is suppo ith PIC16 TION is a	DN registe rted for co C5X produ readable/v	r. This de com- ucts. vritable
Words:	1			
Cycles:	1			
Example				
		re PIC16	rd compa CXX production.	

RLF	Rotate Left f through Carry	RRF	Rotate Right f through Carry
Syntax:	[<i>label</i>] RLF f,d	Syntax:	[<i>label</i>] RRF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$	Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	See description below	Operation:	See description below
Status Affected:	С	Status Affected:	С
Encoding:	00 1101 dfff ffff	Encoding:	00 1100 dfff ffff
Description:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is stored back in register 'f'.	Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.
Words:	1	Words:	1
Cycles:	1	Cycles:	1
Q Cycle Activity:	Q1 Q2 Q3 Q4	Q Cycle Activity:	Q1 Q2 Q3 Q4
	Decode Read register 'f' Process data Write to destination		Decode Read register 'f' Process Write to destination
Example	RLF REG1,0	Example	RRF REG1,0
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

PIC16C9XX

SLEEP		SUBLW	Subtract W from Literal
Syntax:	[label] SLEEP	Syntax:	[label] SUBLW k
Operands:	None	Operands:	$0 \le k \le 255$
Operation:	$00h \rightarrow WDT$,	Operation:	$k \text{ - } (W) \to (W)$
	$0 \rightarrow WDT$ prescaler, $1 \rightarrow \overline{TO}$,	Status Affected:	C, DC, Z
	$0 \rightarrow \overline{PD}$	Encoding:	11 110x kkkk kkkk
Status Affected: Encoding:	TO, PD 00 0000 0110 0011	Description:	The W register is subtracted (2's comple- ment method) from the eight bit literal 'k'. The result is placed in the W register.
Description:	The power-down status bit, PD is	Words:	1
cleared. Time-out status bit, TO is set. Watchdog Timer and its pres- caler are cleared. The processor is put into SLEEP mode with the oscillator stopped. See Section 14.8 for more details.	Cycles:	1	
	Q Cycle Activity:	Q1 Q2 Q3 Q4	
		Decode Read Process Write to W	
Words:	1		
Cycles:	1	Example 1:	SUBLW 0x02
Q Cycle Activity:	Q1 Q2 Q3 Q4		Before Instruction
	Decode No- No- Go to Operation Operation Sleep		W = 1 $C = ?$ $Z = ?$
Example:	SLEEP		After Instruction
Example.	عققتين		W = 1 C = 1; result is positive Z = 0
		Example 2:	Before Instruction
			W = 2 C = ? Z = ?
			After Instruction
			W = 0 C = 1; result is zero Z = 1
		Example 3:	Before Instruction
			W = 3 C = ? Z = ?

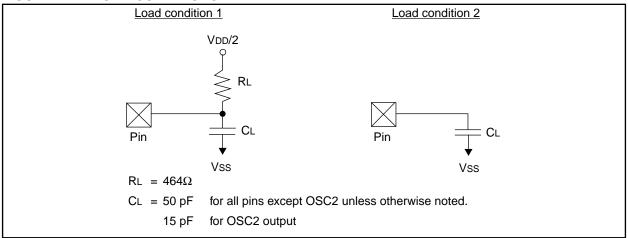
After Instruction

17.3 DC Characteristics:

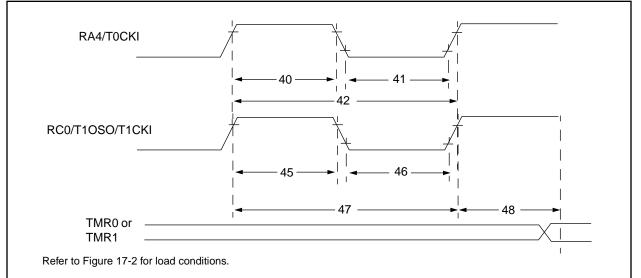
PIC16C923/924-04 (Commercial, Industrial) PIC16C923/924-08 (Commercial, Industrial) PIC16LC923/924-04 (Commercial, Industrial)

		Operati	ng temper			•	l ess otherwise stated) ≤ TA ≤ +85°C for industrial and
	RACTERISTICS	Onerati	na voltage	ם ע	0°C range a		\leq TA \leq +70°C for commercial ribed in DC spec
Param	Characteristic	Sym		Тур	-	Units	
No.				†			
	nput Low Voltage						
	/O ports	VIL					
D030	with TTL buffer		Vss	-	0.15Vdd	V	For entire VDD range
			Vss	-	0.8V	V	$4.5V \le VDD \le 5.5V$
D031	with Schmitt Trigger buffer		Vss	-	0.2Vdd	V	
	MCLR, OSC1 (in RC mode)		Vss	-	0.2Vdd	V	
	DSC1 (in XT, HS and LP)		Vss	-	0.3Vdd	V	Note1
	nput High Voltage						
	/O ports	Vih		-			
D040	with TTL buffer		2.0	-	Vdd	V	$4.5V \le VDD \le 5.5V$
D040A			0.25Vdd	-	Vdd	V	For entire VDD range
			+ 0.8V				
D041	with Schmitt Trigger buffer		0.8Vdd	-	Vdd	V	
-	MCLR		0.8Vdd	-	Vdd	V	
	OSC1 (XT, HS and LP)		0.7Vdd	-	Vdd	V	Note1
	OSC1 (in RC mode)		0.9Vdd	-	Vdd	V	
	PORTB weak pull-up current	IPURB	50	250	400	μΑ	VDD = 5V, VPIN = VSS
	nput Leakage Current Notes 2, 3)						
	/O ports	lı∟	-	-	±1.0	μΑ	$Vss \leq VPIN \leq VDD$, Pin at hi-Z
	MCLR, RA4/T0CKI		-	-	±5	μΑ	$Vss \le VPIN \le VDD$
D063 C	DSC1		-	-	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration
C	Output Low Voltage						
	/O ports	Vol	-	-	0.6	V	IOL = 4.0 mA, VDD = 4.5V
	OSC2/CLKOUT (RC osc mode)		-	-	0.6	V	IOL = 1.6 mA, VDD = 4.5V
	Output High Voltage						
	/O ports (Note 3)	Vон	Vdd - 0.7		-	V	IOH = -3.0 mA, VDD = 4.5V
	OSC2/CLKOUT (RC osc mode)		Vdd - 0.7	-	-	V	IOH = -1.3 mA, VDD = 4.5V
	Capacitive Loading Specs on						
	Output Pins					_	
	OSC2 pin	Cosc2	-	-	15	pF	In XT, HS and LP modes when exter- nal clock is used to drive OSC1.
	All I/O pins and OSC2 (in RC)	Сю	-	-	50	pF	
D102* S	SCL, SDA in I ² C mode	Св	-	-	400	pF	
D150* C	Open -Drain High Voltage	Vdd	-	-	14	V	RA4 pin

These parameters are characterized but not tested.


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C9XX be driven with external clock in RC mode.


2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

FIGURE 17-2: LOAD CONDITIONS

FIGURE 17-6: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

TABLE 17-7: TIMER0 AND TIMER1 EXTERNAL C	CLOCK REQUIREMENTS
--	--------------------

Param No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
40*	Tt0H	T0CKI High Pulse V	Vidth	No Prescaler	0.5Tcy + 20	—	—	ns	Must also meet
				With Prescaler	10	_	_	ns	parameter 42
41*	Tt0L	T0CKI Low Pulse W	/idth	No Prescaler	0.5Tcy + 20	-	-	ns	Must also meet
				With Prescaler	10	-	—	ns	parameter 42
42*	Tt0P	T0CKI Period		No Prescaler	Tcy + 40	—	—	ns	
				With Prescaler	Greater of: 20 or <u>Tcy + 40</u> N	-	_	ns	N = prescale value (2, 4,, 256)
45*	Tt1H	T1CKI High Time	Synchronous, P	rescaler = 1	0.5TCY + 20	_	—	ns	Must also meet
			Synchronous,	PIC16 C 923/924	15	-	-	ns	parameter 47
			Prescaler = 2,4,8	PIC16 LC 923/924	25	-	-	ns	
			Asynchronous	PIC16 C 923/924	30	—	—	ns	
				PIC16LC923/924	50	—	—	ns	-
46*	Tt1L	T1CKI Low Time	Synchronous, P	rescaler = 1	0.5TCY + 20	—	—	ns	Must also meet
			Synchronous,	PIC16 C 923/924	15	—	—	ns	parameter 47
			Prescaler = 2,4,8	PIC16 LC 923/924	25	-	-	ns	
			Asynchronous	PIC16 C 923/924	30	—	—	ns	_
				PIC16LC923/924	50	—	—	ns	
47*	Tt1P	T1CKI input period	Synchronous	PIC16 C 923/924	<u>Greater of:</u> 30 OR <u>TCY + 40</u> N	-	_	ns	N = prescale value $(1, 2, 4, 8)$
				PIC16 LC 923/924	<u>Greater of:</u> 50 or <u>Tcy + 40</u> N				N = prescale value (1, 2, 4, 8)
			Asynchronous	PIC16 C 923/924	60	—	-	ns	
				PIC16LC923/924		-	_	ns	
	Ft1		illator input frequency range enabled by setting bit T1OSCEN)		DC	-	200	kHz	
48	TCKEZtmr	1 Delay from external	clock edge to tin	ner increment	2Tosc	—	7Tosc	—	

These parameters are characterized but not tested.

+ Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Param No.	Sym	Characteristic	Characteristic		Тур†	Max	Units	Conditions
70*	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input		Тсү	—	_	ns	
71*	TscH	SCK input high time (slave mode)	Continuous	1.25Tcy + 30	—	—	ns	
71A*			Single Byte	40	_	_	ns	
72*	TscL	SCK input low time (slave mode)	Continuous	1.25Tcy + 30	—	—	ns	
72A*			Single Byte	40				
73*	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK edge		50	—	_	ns	
74*	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge		50	—	—	ns	
75*	TdoR	SDO data output rise time		—	10	25	ns	
76*	TdoF	SDO data output fall time		—	10	25	ns	
77*	TssH2doZ	SS↑ to SDO output hi-imped	SS↑ to SDO output hi-impedance		—	50	ns	
78*	TscR	SCK output rise time (master	^r mode)	—	10	25	ns	
79*	TscF	SCK output fall time (master	mode)	—	10	25	ns	
80*	TscH2doV, TscL2doV	SDO data output valid after S	SDO data output valid after SCK edge		—	50	ns	
81*	TdoV2scH, TdoV2scL	SDO data output setup to SCK edge		Тсү	—	—	ns	
82*	TssL2doV	SDO data output valid after $\overline{SS}\downarrow$ edge		_	_	50	ns	
83*	TscH2ssH, TscL2ssH	SS ↑ after SCK edge	· · · ·		_	_	ns	
84*	Tb2b	Delay between consecutive b	oytes	1.5TCY + 40	_	_	ns	

TABLE 17-9: SPI MODE REQUIREMENTS

* Characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

PIC16C9XX

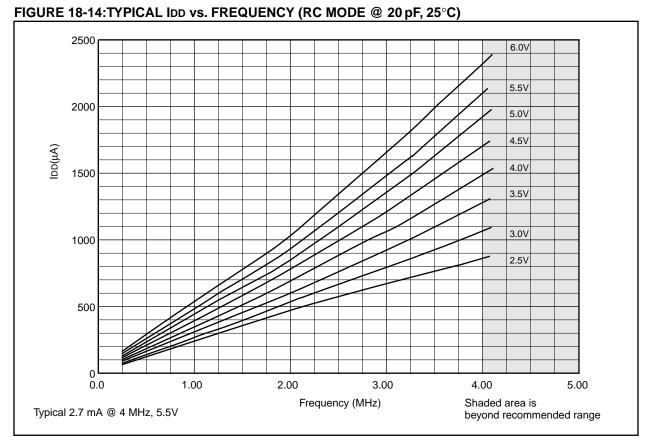
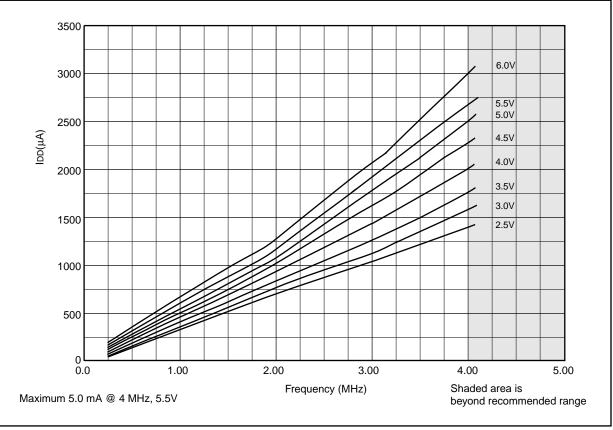
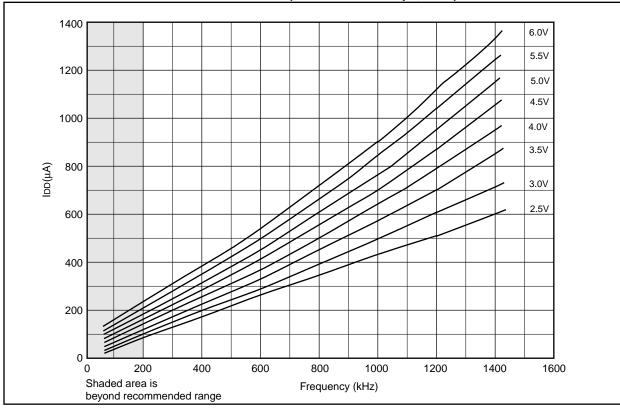
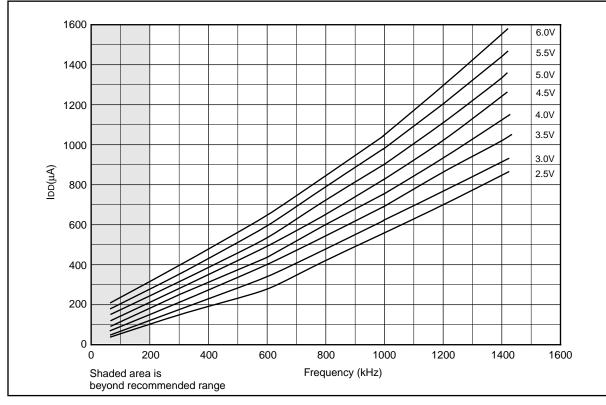
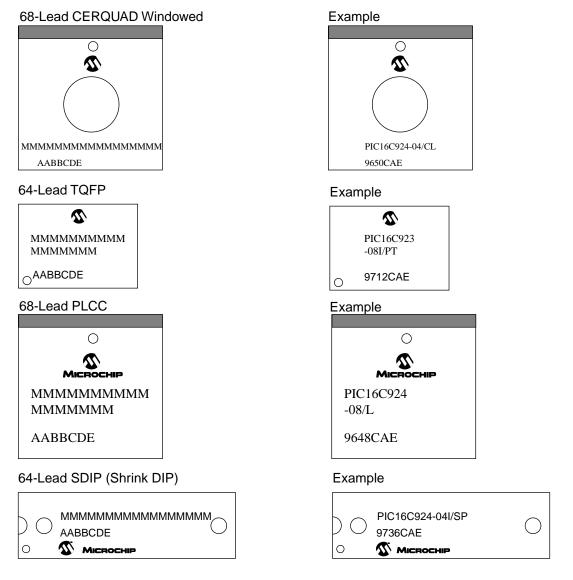



FIGURE 18-15: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 20 pF, -40°C TO +85°C)


FIGURE 18-16:TYPICAL IDD vs. FREQUENCY (RC MODE @ 100 pF, 25°C)

Data based on process characterization samples. See first page of this section for details.

19.4 Package Marking Information

S = Tempe, Arizona, U.S.A.D1Mask revision number for microcontrollerEAssembly code of the plant or country of origin in v part was assembled.
E Assembly code of the plant or country of origin in v
Note: In the event the full Microchip part number cannot be marked of line, it will be carried over to the next line thus limiting the num available characters for customer specific information.

Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask revision number, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

INDEX

	•
-	
-	•

A/D		
Accuracy/Error		86
ADCON0	. 79,	80
ADCON1	. 79,	80
ADIF		
Analog-to-Digital Converter		79
Configuring Analog Port		83
Connection Considerations		87
Conversion time		85
Conversions		
Converter Characteristics		
Faster Conversion - Lower Resolution Tradeoff		85
GO/DONE		
Internal Sampling Switch (Rss) Impedance		82
Operation During Sleep		86
Sampling Requirements		82
Sampling Time		82
Source Impedance		82
Transfer Function		87
A/D Conversion Clock		83
Registers		
Section		19
Absolute Maximum Ratings		
ACK70, 74, 75	, 76,	77
ADCON0 Register		19
ADCON1 Register		20
ADIE bit		26
ADIF bit		27
ADRES	80, 1	09
ALU		9
Application Notes		
AN546		79
AN552		33
AN556		29
AN578		63
AN594		57
AN607	1	07
Architecture		
Harvard		9
Overview		9
von Neumann		9
Assembler		
MPASM Assembler	1	38
В		
		74
BF Block Diagrams		/4
A/D		Q 1
Capture Mode		
Compare Mode External Brown-out1		
External Brown-out2		
External Parallel Cystal Oscillator		
External Power-on Reset		
External Series Crystal Oscillator		
Interrupt Logic LCD Module		
On-Chip Reset Circuit		
PIC16C923		
PIC16C924		
PORTC		
PORTD		
PORTE		38

PORTF	
PORTG	
PWM	
RA3:RA0 and RA5 Port Pins	
RA4/T0CKI Pin	
RB3:RB0 Port Pins	
RB7:RB4 Port Pins	
RC Oscillator	
SSP (I ² C Mode) SSP (SPI Mode)	
Timer0	
Timer0/WDT Prescaler	
Timer1	
Timer2	
Watchdog Timer	
Brown-out Protection Circuit	
С	
C bit	23
Capture/Compare/PWM (CCP)	20
Capture Mode	58
CCP1	
CCP1CON	-
CCPR1H	
CCPR1L	109
Compare Mode	
Compare Mode Block Diagram	58
Prescaler	
PWM Block Diagram	
PWM Mode	
PWM, Example Frequencies/Resolutions	
Section	
Carry bit CCP1CON Register	
CCP1IE bit	
CCP1IF bit	
CCPR1H Register	
CCPR1L Register	
Clocking Scheme	
Code Examples	
Call of a Subroutine in Page 1 from Page 0	
Changing Between Capture Prescalers	
Changing Prescaler (Timer0 to WDT)	
Changing Prescaler (WDT to Timer0)	
Doing an A/D Conversion	
I/O Programming I ² C Module Operation	
Indirect Addressing	
Initializing PORTA	
Initializing PORTB	
Initializing PORTC	
Initializing PORTD	
Initializing PORTE	38
Initializing PORTF	
Initializing PORTG	
Loading the SSPBUF register	
Reading a 16-bit Free-running Timer	
Code Protection	
Computed GOTO Configuration Bits	
Ŭ	103
D	
DC bit	
DC Characteristics	. 142, 143
Development Support	
	137
Development Tools Digit Carry bit	137 137