E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	S08
Core Size	8-Bit
Speed	40MHz
Connectivity	I²C, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	39
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-VFQFN Exposed Pad
Supplier Device Package	48-QFN-EP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s08gt32acfde

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Sec		umper
	7.2.3	External Clock Connections
	7.2.4	External Crystal/Resonator Conne
7 2	Eurotio	nal Decomination

Title

	7.2.3	External Clock Connections	108
	7.2.4	External Crystal/Resonator Connections	108
7.3	Function	nal Description	109
	7.3.1	Off Mode (Off)	109
		7.3.1.1 BDM Active	109
		7.3.1.2 OSCSTEN Bit Set	109
		7.3.1.3 Stop/Off Mode Recovery	109
	7.3.2	Self-Clocked Mode (SCM)	109
	7.3.3	FLL Engaged, Internal Clock (FEI) Mode	111
		7.3.3.1 FLL Engaged Internal Unlocked	111
		7.3.3.2 FLL Engaged Internal Locked	111
	7.3.4	FLL Bypassed, External Clock (FBE) Mode	111
	7.3.5	FLL Engaged, External Clock (FEE) Mode	111
		7.3.5.1 FLL Engaged External Unlocked	112
		7.3.5.2 FLL Engaged External Locked	112
	7.3.6	FLL Lock and Loss-of-Lock Detection	112
	7.3.7	FLL Loss-of-Clock Detection	113
	7.3.8	Clock Mode Requirements	114
	7.3.9	Fixed Frequency Clock	115
	7.3.10	High Gain Oscillator	115
7.4	Initializa	ation/Application Information	115
	7.4.1	Introduction	115
	7.4.2	Example #1: External Crystal = 32 kHz, Bus Frequency = 4.19 MHz	118
	7.4.3	Example #2: External Crystal = 4 MHz, Bus Frequency = 20 MHz	119
	7.4.4	Example #3: No External Crystal Connection, 5.4 MHz Bus Frequency	121
	7.4.5	Example #4: Internal Clock Generator Trim	122
7.5	ICG Reg	gisters and Control Bits	123
	7.5.1	ICG Control Register 1 (ICGC1)	124
	7.5.2	ICG Control Register 2 (ICGC2)	125
	7.5.3	ICG Status Register 1 (ICGS1)	126
	7.5.4	ICG Status Register 2 (ICGS2)	127
	7.5.5	ICG Filter Registers (ICGFLTU, ICGFLTL)	127
	7.5.6	ICG Trim Register (ICGTRM)	128

Chapter 8 Central Processor Unit (S08CPUV2)

8.1	Introduc	tion	129
	8.1.1	Features	
8.2	Program	mer's Model and CPU Registers	
	8.2.1	Accumulator (A)	
	8.2.2	Index Register (H:X)	
	8.2.3	Stack Pointer (SP)	
	8.2.4	Program Counter (PC)	
	8.2.5	Condition Code Register (CCR)	131

Chapter 2 Pins and Connections

Figure 2-5. Basic System Connections

5.5.2.2 Edge and Level Sensitivity

The IRQMOD control bit re-configures the detection logic so it detects edge events and pin levels. In this edge detection mode, the IRQF status flag becomes set when an edge is detected (when the IRQ pin changes from the deasserted to the asserted level), but the flag is continuously set (and cannot be cleared) as long as the IRQ pin remains at the asserted level.

5.5.3 Interrupt Vectors, Sources, and Local Masks

Table 5-1 provides a summary of all interrupt sources. Higher-priority sources are located toward the bottom of the table. The high-order byte of the address for the interrupt service routine is located at the first address in the vector address column, and the low-order byte of the address for the interrupt service routine is located at the next higher address.

When an interrupt condition occurs, an associated flag bit becomes set. If the associated local interrupt enable is 1, an interrupt request is sent to the CPU. Within the CPU, if the global interrupt mask (I bit in the CCR) is 0, the CPU will finish the current instruction, stack the PCL, PCH, X, A, and CCR CPU registers, set the I bit, and then fetch the interrupt vector for the highest priority pending interrupt. Processing then continues in the interrupt service routine.

Chapter 5 Resets, Interrupts, and System Configuration

configured for low bandwidth operation (RANGE = 0). If active BDM mode is enabled in stop3, the internal RTI clock is not available.

The SRTISC register includes a read-only status flag, a write-only acknowledge bit, and a 3-bit control value (RTIS2:RTIS1:RTIS0) used to select one of seven RTI periods. The RTI has a local interrupt enable, RTIE, to allow masking of the real-time interrupt. The module can be disabled by writing 0:0:0 to RTIS2:RTIS1:RTIS0 in which case the clock source input is disabled and no interrupts will be generated. See Section 5.8.6, "System Real-Time Interrupt Status and Control Register (SRTISC)," for detailed information about this register.

5.8 Reset, Interrupt, and System Control Registers and Control Bits

One 8-bit register in the direct page register space and eight 8-bit registers in the high-page register space are related to reset and interrupt systems.

Refer to the direct-page register summary in Chapter 4, "Memory" of this data sheet for the absolute address assignments for all registers. This section refers to registers and control bits only by their names. A Freescale-provided equate or header file is used to translate these names into the appropriate absolute addresses.

Some control bits in the SOPT and SPMSC2 registers are related to modes of operation. Although brief descriptions of these bits are provided here, the related functions are discussed in greater detail in Chapter 3, "Modes of Operation."

5.8.7 System Power Management Status and Control 1 Register (SPMSC1)

¹ This bit can be written only one time after reset. Additional writes are ignored.

Figure 5-9. System Power Management Status and Control 1 Register (SPMSC1)

Field	Description
7 LVDF	Low-Voltage Detect Flag — Provided LVDE = 1, this read-only status bit indicates a low-voltage detect event.
6 LVDACK	Low-Voltage Detect Acknowledge — This write-only bit is used to acknowledge low voltage detection errors (write 1 to clear LVDF). Reads always return 0.
5 LVDIE	 Low-Voltage Detect Interrupt Enable — This read/write bit enables hardware interrupt requests for LVDF. Hardware interrupt disabled (use polling). Request a hardware interrupt when LVDF = 1.
4 LVDRE	 Low-Voltage Detect Reset Enable — This read/write bit enables LVDF events to generate a hardware reset (provided LVDE = 1). 0 LVDF does not generate hardware resets. 1 Force an MCU reset when LVDF = 1.
3 LVDSE	 Low-Voltage Detect Stop Enable — Provided LVDE = 1, this read/write bit determines whether the low-voltage detect function operates when the MCU is in stop mode. 0 Low-voltage detect disabled during stop mode. 1 Low-voltage detect enabled during stop mode.
2 LVDE	 Low-Voltage Detect Enable — This read/write bit enables low-voltage detect logic and qualifies the operation of other bits in this register. 0 LVD logic disabled. 1 LVD logic enabled.

Table 5-10. SPMSC1 Field Descriptions

6.3.4 Port D, TPM1 and TPM2

Port D		Bit 7	6	5	4	3	2	1	Bit 0
	MCU Pin:	PTD7/ TPM2CH4	PTD6/ TPM2CH3	PTD5/ TPM2CH2	PTD4/ TPM2CH1	PTD3/ TPM2CH0	PTD2/ TPM1CH2	PTD1/ TPM1CH1	PTD0/ TPM1CH0

Figure 6-5. Port D Pin Names

Port D is an 8-bit port shared with the two TPM modules, TPM1 and TPM2, and general-purpose I/O. When the TPM1 or TPM2 modules are enabled in output compare or input capture modes of operation, the pin direction will be controlled by the module function.

Port D pins are available as general-purpose I/O pins controlled by the port D data (PTDD), data direction (PTDDD), pullup enable (PTDPE), and slew rate control (PTDSE) registers. Refer to Section 6.4, "Parallel I/O Controls" for more information about general-purpose I/O control.

The TPM2 module can be configured to use PTD7–PTD3 as either input capture, output compare, PWM, or external clock input pins (PTD3 only). Refer to Chapter 10, "Timer/PWM (S08TPMV1)" for more information about using PTD7–PTD3 as timer pins.

The TPM1 module can be configured to use PTD2–PTD0 as either input capture, output compare, PWM, or external clock input pins (PTD0 only). Refer to Chapter 10, "Timer/PWM (S08TPMV1)" for more information about using PTD2–PTD0 as timer pins.

6.3.5 Port E, SCI1, and SPI

Port E		Bit 7	6	5	4	3	2	1	Bit 0
	MCU Pin:	PTE7	PTE6	PTE5/ SPSCK1	PTE4/ MOSI1	PTE3/ MISO1	PTE2/ SS1	PTE1/ RxD1	PTE0/ TxD1

Figure 6-6. Port E Pin Names

Port E is an 8-bit port shared with the SCI1 module, SPI1 module, and general-purpose I/O. When the SCI or SPI modules are enabled, the pin direction will be controlled by the module function.

Port E pins are available as general-purpose I/O pins controlled by the port E data (PTED), data direction (PTEDD), pullup enable (PTEPE), and slew rate control (PTESE) registers. Refer to Section 6.4, "Parallel I/O Controls" for more information about general-purpose I/O control.

When the SCI1 module is enabled, PTE0 serves as the SCI1 module's transmit pin (TxD1) and PTE1 serves as the receive pin (RxD1). Refer to Chapter 11, "Serial Communications Interface (S08SCIV1)" for more information about using PTE0 and PTE1 as SCI pins.

When the SPI module is enabled, PTE2 serves as the SPI module's slave select pin ($\overline{SS1}$), PTE3 serves as the master-in slave-out pin (MISO1), PTE4 serves as the master-out slave-in pin (MOS11), and PTE5 serves as the SPI clock pin (SPSCK1). Refer to Chapter 12, "Serial Peripheral Interface (S08SPIV3) for more information about using PTE5–PTE2 as SPI pins.

Figure 7-13. ICG Control Register 2 (ICGC2)

Table 7-7. ICGC2 Field Descriptions

Field	Description
7 LOLRE	Loss of Lock Reset Enable — The LOLRE bit determines what type of request is made by the ICG following aloss of lock indication. The LOLRE bit only has an effect when LOLS is set.0Generate an interrupt request on loss of lock.1Generate a reset request on loss of lock.
6:4 MFD	Multiplication Factor — The MFD bits control the programmable multiplication factor in the FLL loop. The valuespecified by the MFD bits establishes the multiplication factor (N) applied to the reference frequency. Writes tothe MFD bits will not take effect if a previous write is not complete. Select a low enough value for N such that $f_{ICGDCLK}$ does not exceed its maximum specified rating.000Multiplication Factor (N) = 4001001Multiplication Factor (N) = 6010011Multiplication Factor (N) = 8011012103Multiplication Factor (N) = 12104105Multiplication Factor (N) = 14110Multiplication Factor (N) = 18
3 LOCRE	 Loss of Clock Reset Enable — The LOCRE bit determines how the system handles a loss of clock condition. Generate an interrupt request on loss of clock. Generate a reset request on loss of clock.
2:0 RFD	Reduced Frequency Divider — The RFD bits control the value of the divider following the clock select circuitry. The value specified by the RFD bits establishes the division factor (R) applied to the selected output clock source. Writes to the RFD bits will not take effect if a previous write is not complete. 000 Division Factor (R) = 1 001 Division Factor (R) = 2 010 Division Factor (R) = 4 011 Division Factor (R) = 8 100 Division Factor (R) = 16 101 Division Factor (R) = 32 110 Division Factor (R) = 64 111 Division Factor (R) = 128

Chapter 8 Central Processor Unit (S08CPUV2)

Source		-		c	Eff on (eci CC	t R		ess de	ode	and	rcles ¹
Form	Operation	Description	v	н	I	N	z	с	Addr Mog	Opco	Opera	Bus Cy
LDX #opr8i LDX opr8a LDX opr16a LDX opr16,X LDX oprx8,X LDX oprx8,SP LDX oprx8,SP	Load X (Index Register Low) from Memory	X ← (M)	0	_	_	€	\$	_	IMM DIR EXT IX2 IX1 SP2 SP1	AE BE CE DE EE FE 9EDE 9EEE	ii dd hh II ee ff ff ee ff	2 3 4 3 3 5 4
LSL opr8a LSLA LSLX LSL oprx8,X LSL ,X LSL oprx8,SP	Logical Shift Left (Same as ASL)	C →	¢	_	_	€	¢	¢	DIR INH INH IX1 IX SP1	38 48 58 68 78 9E68	dd ff ff	5 1 5 4 6
LSR opr8a LSRA LSRX LSR oprx8,X LSR ,X LSR oprx8,SP	Logical Shift Right	0 → C b7 b0	\$	_	_	0	€	¢	DIR INH INH IX1 IX SP1	34 44 54 64 74 9E64	dd ff ff	511546
MOV opr8a,opr8a MOV opr8a,X+ MOV #opr8i,opr8a MOV ,X+,opr8a	Move	(M) _{destination} ← (M) _{source} H:X ← (H:X) + 0x0001 in IX+/DIR and DIR/IX+ Modes	0	-	-	\leftrightarrow	€	-	DIR/DIR DIR/IX+ IMM/DIR IX+/DIR	4E 56 7	dd dd dd ii dd dd	5545
MUL	Unsigned multiply	$X:A \leftarrow (X) \times (A)$	—	0	Ι	Ι	-	0	INH	42		5
NEG opr8a NEGA NEGX NEG oprx8,X NEG ,X NEG oprx8,SP	Negate (Two's Complement)	$\begin{array}{l} M \leftarrow - (M) = 0 \\ x 0 0 - (M) \\ A \leftarrow - (A) = 0 \\ x 0 0 - (A) \\ X \leftarrow - (X) = 0 \\ x 0 0 - (X) \\ M \leftarrow - (M) = 0 \\ x 0 0 - (M) \\ M \leftarrow - (M) = 0 \\ x 0 0 - (M) \end{array}$	\$	_	_	¢	\$	\$	DIR INH INH IX1 IX SP1	30 40 50 60 70 9E60	dd ff ff	5 1 5 4 6
NOP	No Operation	Uses 1 Bus Cycle	-	-	-	Ι	-	—	INH	9D		1
NSA	Nibble Swap Accumulator	A ← (A[3:0]:A[7:4])	-	-	_	-	-	-	INH	62		1
ORA #opr8i ORA opr8a ORA opr16a ORA oprx16,X ORA oprx8,X ORA ,X ORA ,X ORA oprx8,SP	Inclusive OR Accumulator and Memory	A ← (A) (M)	0	_	_	\$	\$	_	IMM DIR EXT IX2 IX1 IX SP2 SP1	AA BA CA DA EA 9EDA 9EEA	ii dd hh II ee ff ff ee ff ff	2 3 4 3 3 5 4
PSHA	Push Accumulator onto Stack	Push (A); SP \leftarrow (SP) – 0x0001	-	_	-	-	-	-	INH	87		2
PSHH	Push H (Index Register High) onto Stack	Push (H); SP \leftarrow (SP) – 0x0001	-	-	_	-	-	-	INH	8B		2
PSHX	Push X (Index Register Low) onto Stack	Push (X); SP \leftarrow (SP) – 0x0001	-	-	Ι	-	-	-	INH	89		2
PULA	Pull Accumulator from Stack	$SP \leftarrow (SP + 0x0001); Pull (A)$	-	-	_	-	-	-	INH	86		3
PULH	Pull H (Index Register High) from Stack	$SP \leftarrow (SP + 0x0001); Pull(H)$	-	-	_	-	-	-	INH	8A		3
PULX	Pull X (Index Register Low) from Stack	$SP \leftarrow (SP + 0x0001); Pull(X)$	-	-	_	_	_	-	INH	88		3
ROL opr8a ROLA ROLX ROL oprx8,X ROL ,X ROL oprx8,SP	Rotate Left through Carry	C-C	¢	_	_	¢	¢	¢	DIR INH INH IX1 IX SP1	39 49 59 69 79 9E69	dd ff ff	5 1 5 4 6

Table 8-2. HCS08	8 Instruction S	et Summary	(Sheet 5 d	of 7)
------------------	-----------------	------------	------------	-------

Serial Communications Interface (S08SCIV1)

Figure 11-3 shows the receiver portion of the SCI.

Figure 11-3. SCI Receiver Block Diagram

11.2 Register Definition

The SCI has eight 8-bit registers to control baud rate, select SCI options, report SCI status, and for transmit/receive data.

Refer to the direct-page register summary in the Memory chapter of this data sheet for the absolute address assignments for all SCI registers. This section refers to registers and control bits only by their names. A Freescale-provided equate or header file is used to translate these names into the appropriate absolute addresses.

11.2.1 SCI Baud Rate Registers (SCIxBDH, SCIxBHL)

This pair of registers controls the prescale divisor for SCI baud rate generation. To update the 13-bit baud rate setting [SBR12:SBR0], first write to SCIxBDH to buffer the high half of the new value and then write to SCIxBDL. The working value in SCIxBDH does not change until SCIxBDL is written.

SCIxBDL is reset to a non-zero value, so after reset the baud rate generator remains disabled until the first time the receiver or transmitter is enabled (RE or TE bits in SCIxC2 are written to 1).

Figure 11-4. SCI Baud Rate Register (SCIxBDH)

Table 11-1. SCIxBDH Register Field Descriptions

-	
Field	Description
4:0	Baud Rate Modulo Divisor — These 13 bits are referred to collectively as BR, and they set the modulo divide
SBR[12:8]	rate for the SCI baud rate generator. When BR = 0, the SCI baud rate generator is disabled to reduce supply
	current. When BR = 1 to 8191, the SCI baud rate = BUSCLK/(16×BR). See also BR bits in Table 11-2.

					I			
	7	6	5	4	3	2	1	0
R W	SBR7	SBR6	SBR5	SBR4	SBR3	SBR2	SBR1	SBR0
Reset	0	0	0	0	0	1	0	0

Figure 11-5. SCI Baud Rate Register (SCIxBDL)

Table 11-2. SCIxBDL Register Field Descriptions

Field	Description
7:0 SBR[7:0]	Baud Rate Modulo Divisor — These 13 bits are referred to collectively as BR, and they set the modulo divide rate for the SCI baud rate generator. When BR = 0, the SCI baud rate generator is disabled to reduce supply current. When BR = 1 to 8191, the SCI baud rate = BUSCLK/($16 \times BR$). See also BR bits in Table 11-1.

Chapter 13 Inter-Integrated Circuit (S08IICV1)

13.1 Introduction

The MC9S08GBxxA/GTxxA series of microcontrollers provides one inter-integrated circuit (IIC) module for communication with other integrated circuits. The two pins associated with this module, SDA1 and SCL1 share port C pins 2 and 3, respectively. All functionality as described in this section is available on MC9S08GBxxA/GTxxA. When the IIC is enabled, the direction of pins is controlled by module configuration. If the IIC is disabled, both pins can be used as general-purpose I/O.

- ATD input capacitance $(C_{AIN} maximum value 50 \text{ pF})$ This is the internal capacitance of the ATD sample and hold circuit. This capacitance varies with temperature, voltage, and process variation but a worst case number is necessary to compute worst case sample error.
- ATD conversion clock frequency (f_{ATDCLK} maximum value 2 MHz) This is the frequency of the clock input to the ATD and is dependent on the bus clock frequency and the ATD prescaler. This frequency determines the width of the sample window, which is 14 ATDCLK cycles.
- Input sample frequency (f_{SAMP} see Appendix A, "Electrical Characteristics") This is the frequency that a given input is sampled.
- Delta-input sample voltage (ΔV_{SAMP}) This is the difference between the current input voltage (intended for conversion) and the previously sampled voltage (which may be from a different channel). In non-continuous convert mode, this is assumed to be the greater of ($V_{REFH} V_{AIN}$) and ($V_{AIN} V_{REFL}$). In continuous convert mode, 5 LSB should be added to the known difference to account for leakage and other losses.
- Delta-analog input voltage (ΔV_{AIN}) This is the difference between the current input voltage and the input voltage during the last conversion on a given channel. This is based on the slew rate of the input.

In cases where there is no external filtering capacitance, the sampling error is determined by the number of time constants of charging and the change in input voltage relative to the resolution of the ATD:

of time constants (
$$\tau$$
) = (14 / f_{ATDCLK}) / ((R_{AS} + R_{AIN}) * C_{AIN}) Eqn. 14-1
sampling error in LSB (E_S) = 2^N * (ΔV_{SAMP} / (V_{REFH} - V_{REFL})) * e^{- τ}

The maximum sampling error (assuming maximum change on the input voltage) will be:

$$E_{S} = (3.6/3.6) * e^{-(14/((7 k + 10 k) * 50 p * 2 M))} * 1024 = 0.271 LSB$$
 Eqn. 14-2

In the case where an external filtering capacitance is applied, the sampling error can be reduced based on the size of the source capacitor (C_{AS}) relative to the analog input capacitance (C_{AIN}). Ignoring the analog source impedance (R_{AS}), C_{AS} will charge C_{AIN} to a value of:

$$E_{S} = 2^{N} * (\Delta V_{SAMP} / (V_{REFH} - V_{REFL})) * (C_{AIN} / (C_{AIN} + C_{AS}))$$
 Eqn. 14-3

In the case of a 0.1 μ F C_{AS}, a worst case sampling error of 0.5 LSB is achieved regardless of R_{AS}. However, in the case of repeated conversions at a rate of f_{SAMP}, R_{AS} must re-charge C_{AS}. This recharge is continuous and controlled only by R_{AS} (not R_{AIN}), and reduces the overall sampling error to:

$$\begin{split} & \mathsf{E}_{\mathsf{S}} = 2^{\mathsf{N}} * \{ (\triangle \mathsf{V}_{\mathsf{A}\mathsf{IN}} \,/\, (\mathsf{V}_{\mathsf{R}\mathsf{E}\mathsf{F}\mathsf{H}} - \mathsf{V}_{\mathsf{R}\mathsf{E}\mathsf{F}\mathsf{L}})) * \mathsf{e}^{-(1\,/\,(^{\mathsf{f}}\mathsf{S}\mathsf{A}\mathsf{M}\mathsf{P}} \,^{*\,\mathsf{R}}\mathsf{A}\mathsf{S} \,^{*\,\mathsf{C}}\mathsf{A}\mathsf{S}\,^{)} \\ & + (\triangle \mathsf{V}_{\mathsf{S}\mathsf{A}\mathsf{M}\mathsf{P}} \,/\, (\mathsf{V}_{\mathsf{R}\mathsf{E}\mathsf{F}\mathsf{H}} \,-\, \mathsf{V}_{\mathsf{R}\mathsf{E}\mathsf{F}\mathsf{L}})) * \mathsf{Min}[(\mathsf{C}_{\mathsf{A}\mathsf{IN}} \,/\, (\mathsf{C}_{\mathsf{A}\mathsf{IN}} \,+\, \mathsf{C}_{\mathsf{A}\mathsf{S}})), \, \mathsf{e}^{-(1\,/\,(^{\mathsf{f}}\mathsf{A}\mathsf{T}\mathsf{D}\mathsf{C}\mathsf{L}\mathsf{K} \,^{*\,(\mathsf{R}}\mathsf{A}\mathsf{S} \,^{+\,\mathsf{R}}\mathsf{A}\mathsf{IN})^{\,*\,\mathsf{C}}\mathsf{A}\mathsf{IN}\,^{)}] \} \qquad \textit{Eqn. 14-4} \end{split}$$

This is a worst case sampling error which does not account for R_{AS} recharging the combination of C_{AS} and C_{AIN} during the sample window. It does illustrate that high values of R_{AS} (>10 k Ω) are possible if a large C_{AS} is used and sufficient time to recharge C_{AS} is provided between samples. In order to achieve accuracy specified under the worst case conditions of maximum ΔV_{SAMP} and minimum C_{AS} , R_{AS} must be less than the maximum value of 10 k Ω . The maximum value of 10 k Ω for R_{AS} is to ensure low sampling error in the worst case condition of maximum ΔV_{SAMP} and minimum C_{AS} .

Development Support

Figure 15-3 shows the host receiving a logic 1 from the target HCS08 MCU. Because the host is asynchronous to the target MCU, there is a 0-to-1 cycle delay from the host-generated falling edge on BKGD to the perceived start of the bit time in the target MCU. The host holds the BKGD pin low long enough for the target to recognize it (at least two target BDC cycles). The host must release the low drive before the target MCU drives a brief active-high speedup pulse seven cycles after the perceived start of the bit time. The host should sample the bit level about 10 cycles after it started the bit time.

Figure 15-3. BDC Target-to-Host Serial Bit Timing (Logic 1)

15.3.6 Hardware Breakpoints

The BRKEN control bit in the DBGC register may be set to 1 to allow any of the trigger conditions described in Section 15.3.5, "Trigger Modes," to be used to generate a hardware breakpoint request to the CPU. TAG in DBGC controls whether the breakpoint request will be treated as a tag-type breakpoint or a force-type breakpoint. A tag breakpoint causes the current opcode to be marked as it enters the instruction queue. If a tagged opcode reaches the end of the pipe, the CPU executes a BGND instruction to go to active background mode rather than executing the tagged opcode. A force-type breakpoint causes the CPU to finish the current instruction and then go to active background mode.

If the background mode has not been enabled (ENBDM = 1) by a serial WRITE_CONTROL command through the BKGD pin, the CPU will execute an SWI instruction instead of going to active background mode.

15.4 Register Definition

This section contains the descriptions of the BDC and DBG registers and control bits.

Refer to the high-page register summary in the device overview chapter of this data sheet for the absolute address assignments for all DBG registers. This section refers to registers and control bits only by their names. A Freescale-provided equate or header file is used to translate these names into the appropriate absolute addresses.

15.4.1 BDC Registers and Control Bits

The BDC has two registers:

- The BDC status and control register (BDCSCR) is an 8-bit register containing control and status bits for the background debug controller.
- The BDC breakpoint match register (BDCBKPT) holds a 16-bit breakpoint match address.

These registers are accessed with dedicated serial BDC commands and are not located in the memory space of the target MCU (so they do not have addresses and cannot be accessed by user programs).

Some of the bits in the BDCSCR have write limitations; otherwise, these registers may be read or written at any time. For example, the ENBDM control bit may not be written while the MCU is in active background mode. (This prevents the ambiguous condition of the control bit forbidding active background mode while the MCU is already in active background mode.) Also, the four status bits (BDMACT, WS, WSF, and DVF) are read-only status indicators and can never be written by the WRITE_CONTROL serial BDC command. The clock switch (CLKSW) control bit may be read or written at any time.

Development Support

¹ BDFR is writable only through serial background mode debug commands, not from user programs.

Figure 15-6. System Background Debug Force Reset Register (SBDFR)

Table 15-3. SBDFR Register Field Description

Field	Description
0 BDFR	Background Debug Force Reset — A serial active background mode command such as WRITE_BYTE allows an external debug host to force a target system reset. Writing 1 to this bit forces an MCU reset. This bit cannot be written from a user program.

15.4.3 DBG Registers and Control Bits

The debug module includes nine bytes of register space for three 16-bit registers and three 8-bit control and status registers. These registers are located in the high register space of the normal memory map so they are accessible to normal application programs. These registers are rarely if ever accessed by normal user application programs with the possible exception of a ROM patching mechanism that uses the breakpoint logic.

15.4.3.1 Debug Comparator A High Register (DBGCAH)

This register contains compare value bits for the high-order eight bits of comparator A. This register is forced to 0x00 at reset and can be read at any time or written at any time unless ARM = 1.

15.4.3.2 Debug Comparator A Low Register (DBGCAL)

This register contains compare value bits for the low-order eight bits of comparator A. This register is forced to 0x00 at reset and can be read at any time or written at any time unless ARM = 1.

15.4.3.3 Debug Comparator B High Register (DBGCBH)

This register contains compare value bits for the high-order eight bits of comparator B. This register is forced to 0x00 at reset and can be read at any time or written at any time unless ARM = 1.

15.4.3.4 Debug Comparator B Low Register (DBGCBL)

This register contains compare value bits for the low-order eight bits of comparator B. This register is forced to 0x00 at reset and can be read at any time or written at any time unless ARM = 1.

Table A-4. DC Characteristics (Sheet 2 of 3) (Temperature Range = -40 to 85° C Ambient)

Parameter	Symbol	Min	Typical ¹	Мах	Unit
Low-voltage warning threshold — low range (V _{DD} falling) (V _{DD} rising)	V _{LVWL}	2.08 2.16	2.1 2.19	2.2 2.27	V
Power on reset (POR) re-arm voltage ⁽²⁾ Mode = stop Mode = run and Wait	V _{Rearm}	0.20 0.50	0.30 0.80	0.40 1.2	V
Input high voltage (V_{DD} > 2.3 V) (all digital inputs)	V _{IH}	$0.70\times V_{DD}$		—	V
Input high voltage (1.8 V \leq V _{DD} \leq 2.3 V) (all digital inputs)	V _{IH}	$0.85 \times V_{DD}$		_	V
Input low voltage (V_{DD} > 2.3 V) (all digital inputs)	V _{IL}	_		$0.35 \times V_{DD}$	V
Input low voltage (1.8 V \leq V _{DD} \leq 2.3 V) (all digital inputs)	V _{IL}	_		$0.30 \times V_{DD}$	V
Input hysteresis (all digital inputs)	V _{hys}	$0.06 \times V_{DD}$		—	V
Input leakage current (per pin) V _{In} = V _{DD} or V _{SS,} all input only pins	I _{In}	_	0.025	1.0	μA
High impedance (off-state) leakage current (per pin) V _{In} = V _{DD} or V _{SS} , all input/output	ll _{OZ} l	_	0.025	1.0	μA
Internal pullup and pulldown resistors ³ (all port pins and IRQ)	R _{PU}	17.5		52.5	kΩ
Internal pulldown resistors (Port A4–A7 and IRQ)	R _{PD}	17.5		52.5	kΩ
Output high voltage ($V_{DD} \ge 1.8 \text{ V}$) I _{OH} = -2 mA (ports A, B, D, E, and G)		V _{DD} – 0.5		_	
	V _{OH}	V _{DD} – 0.5			V
Maximum total I _{OH} for all port pins	II _{OHT} I	—		60	mA
Output low voltage (V _{DD} \ge 1.8 V) I _{OL} = 2.0 mA (ports A, B, D, E, and G)		_		0.5	
$\begin{array}{l} \mbox{Output low voltage (ports C and F)} \\ I_{OL} = 10.0 \mbox{ mA } (V_{DD} \ge 2.7 \mbox{ V}) \\ I_{OL} = 6 \mbox{ mA } (V_{DD} \ge 2.3 \mbox{ V}) \\ I_{OL} = 3 \mbox{ mA } (V_{DD} \ge 1.8 \mbox{ V}) \end{array}$	V _{OL}			0.5 0.5 0.5	V
Maximum total I _{OL} for all port pins	I _{OLT}	_		60	mA

Appendix A Electrical Characteristics

A.8.1 ICG Frequency Specifications

Table A-9. ICG Frequency Specifications $(V_{DDA} = V_{DDA} \text{ (min) to } V_{DDA} \text{ (max)}, \text{ Temperature Range = -40 to 85°C Ambient)}$

Characteristic	Symbol	Min	Typical	Max	Unit
Oscillator crystal or resonator ⁴ (REFS = 1) (Fundamental mode crystal or ceramic resonator) Low range	flo	32	_	100	kHz
High Gain, FBE (HGO=1,CLKS = 10) High Gain, FEE (HGO=1,CLKS = 11) Low Power, FBE (HGO=0, CLKS=10) Low Power, FEE (HGO=0, CLKS=11)	fhi_byp fhi_eng flp_byp flp_eng	1 2 1 2		16 10 10 10	MHz MHz MHz MHz
Input clock frequency (CLKS = 11, REFS = 0) Low range High range	f _{lo} f _{hi_eng}	32 2	_	100 10	kHz MHz
Input clock frequency (CLKS = 10, REFS = 0)	f _{Extal}	0		40	MHz
Internal reference frequency (untrimmed)	fICGIRCLK	182.25	243	303.75	kHz
Duty cycle of input $clock^4$ (REFS = 0)	t _{dc}	40	_	60	%
Output clock ICGOUT frequency CLKS = 10, REFS = 0 All other cases	ficgout	f _{Extal} (min) f _{lo} (min)		f _{Extal} (max) ^f ICGDCLKmax (max)	MHz
Minimum DCO clock (ICGDCLK) frequency	f _{ICGDCLKmin}	8	_		MHz
Maximum DCO clock (ICGDCLK) frequency	f _{ICGDCLKmax}		_	40	MHz
Self-clock mode (ICGOUT) frequency ¹	f _{Self}	f _{ICGDCLKmin}		f _{ICGDCLKmax}	MHz
Self-clock mode reset (ICGOUT) frequency	f _{Self_reset}	5.5	8	10.5	MHz
Loss of reference frequency ² Low range High range	f _{LOR}	5 50		25 500	kHz
Loss of DCO frequency ³	f _{LOD}	0.5		1.5	MHz
Crystal start-up time ^{4, 5} Low range High range	^t CSTL t CSTH		430 4		ms
FLL lock time ^{4, 6} Low range High range	t _{Lockl} t _{Lockh}			2 2	ms
FLL frequency unlock range	n _{Unlock}	-4*N		4*N	counts
FLL frequency lock range	n _{Lock}	-2*N		2*N	counts
ICGOUT period jitter, ^{4, 7} measured at f _{ICGOUT} Max Long term jitter (averaged over 2 ms interval)	C _{Jitter}	_		0.2	% f _{ICG}
Internal oscillator deviation from trimmed frequency ⁸ $V_{DD} = 1.8 - 3.6$ V, (constant temperature) $V_{DD} = 3.0$ V ±10%, -40° C to 85° C	ACC _{int}		±0.5 ±0.5	±2 ±2	%

© FREESCALE SEMICONDUCTOR, INC. All RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NO	T TO SCALE
TITLE:		DOCUMENT NO): 98ASB42767B	REV: A
42 LD PDIP	CASE NUMBER: 858-01 24 OCT			
		STANDARD: NO)N-JEDEC	

© FREESCALE SEMICONDUCTOR, INC. All rights reserved.		L OUTLINE	PRINT VERSION NO	DT TO SCALE
^{title:} 64LD LQFP,		DOCUMENT NO): 98ASS23234W	REV: D
10 X 10 X 1.4 P	CASE NUMBER	2:840F-02	06 APR 2005	
O.5 PITCH, CASE OUTLINE		STANDARD: JE	DEC MS-026 BCD	

© FREESCALE SEMICONDUCTOR, INC. All RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NOT TO SCALE		
TITLE:		DOCUMENT NO): 98ASB42839B	REV: B	
44LD QFP, 10x10x2 0 PKG 0 8 PI	РІТСН	CASE NUMBER	R: 824A-01	06 APR 2005	
10/10//2. 0 11/0, 0. 0 1		STANDARD: NC	N-JEDEC		