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debug connector so a development system can directly reset the MCU system. If desired, a manual external 
reset can be added by supplying a simple switch to ground (pull reset pin low to force a reset).

Whenever any reset is initiated (whether from an external signal or from an internal system), the reset pin 
is driven low for approximately 34 cycles of fSelf_reset, released, and sampled again approximately 38 
cycles of fSelf_reset later. If reset was caused by an internal source such as low-voltage reset or watchdog 
timeout, the circuitry expects the reset pin sample to return a logic 1. The reset circuitry decodes the cause 
of reset and records it by setting a corresponding bit in the system control reset status register (SRS).

In EMC-sensitive applications, an external RC filter is recommended on the reset pin. See Figure 2-4 for 
an example.

2.3.4 Background / Mode Select (PTG0/BKGD/MS)

The background/mode select (BKGD/MS) shares its function with an I/O port pin. While in reset, the pin 
functions as a mode select pin. Immediately after reset rises the pin functions as the background pin and 
can be used for background debug communication. While functioning as a background/mode select pin, 
the pin includes an internal pullup device, input hysteresis, a standard output driver, and no output slew 
rate control. When used as an I/O port (PTG0) the pin is limited to output only. 

If nothing is connected to this pin, the MCU will enter normal operating mode at the rising edge of reset. 
If a debug system is connected to the 6-pin standard background debug header, it can hold BKGD/MS low 
during the rising edge of reset which forces the MCU to active background mode.

The BKGD pin is used primarily for background debug controller (BDC) communications using a custom 
protocol that uses 16 clock cycles of the target MCU’s BDC clock per bit time. The target MCU’s BDC 
clock could be as fast as the bus clock rate, so there should never be any significant capacitance connected 
to the BKGD/MS pin that could interfere with background serial communications.

Although the BKGD pin is a pseudo open-drain pin, the background debug communication protocol 
provides brief, actively driven, high speedup pulses to ensure fast rise times. Small capacitances from 
cables and the absolute value of the internal pullup device play almost no role in determining rise and fall 
times on the BKGD pin.

2.3.5 General-Purpose I/O and Peripheral Ports

The remaining 55 pins are shared among general-purpose I/O and on-chip peripheral functions such as 
timers and serial I/O systems. (17 of these pins are not bonded out on the 48-pin package, 20 of these pins 
are not bonded out on the 44-pin package and 22 of hese pins are not bonded out on the 42-pin package.) 
Immediately after reset, all 55 of these pins are configured as high-impedance general-purpose inputs with 
internal pullup devices disabled. 

NOTE
To prevent extra current drain from floating input pins, the reset 
initialization routine in the application program should either enable 
on-chip pullup devices or change the direction of unused pins to outputs so 
the pins do not float.
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• Illegal opcode detect
• Background debug forced reset
• The reset pin (RESET)
• Clock generator loss of lock and loss of clock reset

Each of these sources, with the exception of the background debug forced reset, has an associated bit in 
the system reset status register. Whenever the MCU enters reset, the internal clock generator (ICG) module 
switches to self-clocked mode with the frequency of fSelf_reset selected. The reset pin is driven low for 34 
internal bus cycles where the internal bus frequency is half the ICG frequency. After the 34 cycles are 
completed, the pin is released and will be pulled up by the internal pullup resistor, unless it is held low 
externally. After the pin is released, it is sampled after another 38 cycles to determine whether the reset pin 
is the cause of the MCU reset.

5.4 Computer Operating Properly (COP) Watchdog
The COP watchdog is intended to force a system reset when the application software fails to execute as 
expected. To prevent a system reset from the COP timer (when it is enabled), application software must 
reset the COP timer periodically. If the application program gets lost and fails to reset the COP before it 
times out, a system reset is generated to force the system back to a known starting point. The COP 
watchdog is enabled by the COPE bit in SOPT (see Section 5.8.4, “System Options Register (SOPT)” for 
additional information). The COP timer is reset by writing any value to the address of SRS. This write does 
not affect the data in the read-only SRS. Instead, the act of writing to this address is decoded and sends a 
reset signal to the COP timer.

After any reset, the COP timer is enabled. This provides a reliable way to detect code that is not executing 
as intended. If the COP watchdog is not used in an application, it can be disabled by clearing the COPE 
bit in the write-once SOPT register. Also, the COPT bit can be used to choose one of two timeout periods 
(218 or 213 cycles of the bus rate clock). Even if the application will use the reset default settings in COPE 
and COPT, the user should still write to write-once SOPT during reset initialization to lock in the settings. 
That way, they cannot be changed accidentally if the application program gets lost.

The write to SRS that services (clears) the COP timer should not be placed in an interrupt service routine 
(ISR) because the ISR could continue to be executed periodically even if the main application program 
fails.

When the MCU is in active background mode, the COP timer is temporarily disabled.

5.5 Interrupts
Interrupts provide a way to save the current CPU status and registers, execute an interrupt service routine 
(ISR), and then restore the CPU status so processing resumes where it left off before the interrupt. Other 
than the software interrupt (SWI), which is a program instruction, interrupts are caused by hardware events 
such as an edge on the IRQ pin or a timer-overflow event. The debug module can also generate an SWI 
under certain circumstances.

If an event occurs in an enabled interrupt source, an associated read-only status flag will become set. The 
CPU will not respond until and unless the local interrupt enable is set to 1 to enable the interrupt. The I bit 
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Port A can be configured to be keyboard interrupt input pins. Refer to Chapter 9, “Keyboard Interrupt 
(S08KBIV1),” for more information about using port A pins as keyboard interrupts pins.

6.3.2 Port B and Analog to Digital Converter Inputs
j

Figure 6-3. Port B Pin Names

Port B is an 8-bit port shared among the ATD inputs and general-purpose I/O. Any pin enabled as an ATD 
input will be forced to act as an input.

Port B pins are available as general-purpose I/O pins controlled by the port B data (PTBD), data direction 
(PTBDD), pullup enable (PTBPE), and slew rate control (PTBSE) registers. Refer to Section 6.4, “Parallel 
I/O Controls,” for more information about general-purpose I/O control.

When the ATD module is enabled, analog pin enables are used to specify which pins on port B will be used 
as ATD inputs. Refer to Chapter 14, “Analog-to-Digital Converter (S08ATDV3),” for more information 
about using port B pins as ATD pins.

6.3.3 Port C and SCI2, IIC, and High-Current Drivers

Figure 6-4. Port C Pin Names

Port C is an 8-bit port which is shared among the SCI2 and IIC1 modules, and general-purpose I/O. When 
SCI2 or IIC1 modules are enabled, the pin direction will be controlled by the module or function. Port C 
has high current output drivers.

Port C pins are available as general-purpose I/O pins controlled by the port C data (PTCD), data direction 
(PTCDD), pullup enable (PTCPE), and slew rate control (PTCSE) registers. Refer to Section 6.4, “Parallel 
I/O Controls,” for more information about general-purpose I/O control.

When the SCI2 module is enabled, PTC0 serves as the SCI2 module’s transmit pin (TxD2) and PTC1 
serves as the receive pin (RxD2). Refer to Chapter 11, “Serial Communications Interface (S08SCIV1),” 
for more information about using PTC0 and PTC1 as SCI pins

When the IIC module is enabled, PTC2 serves as the IIC modules’s serial data input/output pin (SDA1) 
and PTC3 serves as the clock pin (SCL1). Refer to Chapter 13, “Inter-Integrated Circuit (S08IICV1),” for 
more information about using PTC2 and PTC3 as IIC pins.

Port B Bit 7 6 5 4 3 2 1 Bit 0

MCU Pin:
PTB7/
AD1P7

PTB6/
AD1P6

PTB5/
AD1P5

PTB4/
AD1P4

PTB3/
AD1P3

PTB2/
AD1P2

PTB1/
AD1P1

PTB0/
AD1P0

Port C Bit 7 6 5 3 3 2 1 Bit 0

MCU Pin: PTC7 PTC6 PTC5 PTC4
PTC3/
SCL1

PTC2/
SDA1

PTC1/
RxD2

PTC0/
TxD2
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6.5 Stop Modes
Depending on the stop mode, I/O functions differently as the result of executing a STOP instruction. An 
explanation of I/O behavior for the various stop modes follows:

• When the MCU enters stop1 mode, all internal registers including general-purpose I/O control and 
data registers are powered down. All of the general-purpose I/O pins assume their reset state: 
output buffers and pullups turned off. Upon exit from stop1, all I/O must be initialized as if the 
MCU had been reset.

• When the MCU enters stop2 mode, the internal registers are powered down as in stop1 but the I/O 
pin states are latched and held. For example, a port pin that is an output driving low continues to 
function as an output driving low even though its associated data direction and output data registers 
are powered down internally. Upon exit from stop2, the pins continue to hold their states until a 1 
is written to the PPDACK bit. To avoid discontinuity in the pin state following exit from stop2, the 
user must restore the port control and data registers to the values they held before entering stop2. 
These values can be stored in RAM before entering stop2 because the RAM is maintained during 
stop2.

• In stop3 mode, all I/O is maintained because internal logic circuity stays powered up. Upon 
recovery, normal I/O function is available to the user.

6.6 Parallel I/O Registers and Control Bits
This section provides information about all registers and control bits associated with the parallel I/O ports.

Refer to tables in Chapter 4, “Memory” for the absolute address assignments for all parallel I/O registers. 
This section refers to registers and control bits only by their names. A Freescale-provided equate or header 
file normally is used to translate these names into the appropriate absolute addresses.

6.6.1 Port A Registers (PTAD, PTAPE, PTASE, and PTADD)

Port A includes eight pins shared between general-purpose I/O and the KBI module. Port A pins used as 
general-purpose I/O pins are controlled by the port A data (PTAD), data direction (PTADD), pullup enable 
(PTAPE), and slew rate control (PTASE) registers.

If the KBI takes control of a port A pin, the corresponding PTASE bit is ignored since the pin functions as 
an input. As long as PTADD is 0, the PTAPE controls the pullup enable for the KBI function. Reads of 
PTAD will return the logic value of the corresponding pin, provided PTADD is 0.
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Chapter 7  
Internal Clock Generator (S08ICGV2)
The MC9S08GBxxA/GTxxA microcontroller provides one internal clock generation (ICG) module to 
create the system bus frequency. All functions described in this section are available on the 
MC9S08GBxxA/GTxxA microcontroller. The EXTAL and XTAL pins share port G bits 2 and 1, 
respectively. Analog supply lines VDDA and VSSA are internally derived from the MCU’s VDD and VSS 
pins. Electrical parametric data for the ICG may be found in Appendix A, “Electrical Characteristics.” 

Figure 7-1. System Clock Distribution Diagram

NOTE
Freescale Semiconductor recommends that flash location $FFBE be 
reserved to store a nonvolatile version of ICGTRM. This will allow 
debugger and programmer vendors to perform a manual trim operation and 
store the resultant ICGTRM value for users to access at a later time.

ATD has min and max
frequency requirements. See 
Chapter 1, “Device Overview” and 
Appendix A, “Electrical Characteristics.

Flash has frequency
requirements for program
and erase operation.
See Appendix A, “Electrical 
Characteristics.

* ICGLCLK is the alternate BDC clock source for the MC9S08GBxxA/GTxxA.

TPM1 TPM2 IIC1 SCI1 SCI2 SPI1 

BDCCPU ATD1 RAM FLASH

ICG

ICGOUT ÷2 

FFE

SYSTEM

LOGIC

BUSCLK

ICGLCLK*

CONTROL

FIXED FREQ CLOCK (XCLK)

ICGERCLK
RTI 

÷2 
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Figure 7-8 shows flow charts for three conditions requiring ICG initialization.

  

Figure 7-8. ICG Initialization for FEE in Example #1

7.4.3 Example #2: External Crystal = 4 MHz, Bus Frequency = 20 MHz

In this example, the FLL will be used (in FEE mode) to multiply the external 4 MHz oscillator up to 
40-MHz to achieve 20 MHz bus frequency. 

After the MCU is released from reset, the ICG is in self-clocked mode (SCM) and supplies approximately 
8 MHz on ICGOUT which corresponds to a 4 MHz bus frequency (fBus). 

During reset initialization software, the clock scheme will be set to FLL engaged, external (FEE). So 

fICGOUT = fext * P * N / R ; P = 1, fext = 4.00 MHz Eqn. 7-3

Solving for N / R gives: 

N / R = 40 MHz /(4 MHz * 1) = 10 ; We can choose N = 10 and R = 1 Eqn. 7-4

The values needed in each register to set up the desired operation are:

ICGC1 = $78    (%01111000) 

Bit 7 HGO 0 Configures oscillator for low-power operation
Bit 6 RANGE 1 Configures oscillator for high-frequency range; FLL prescale factor is 1
Bit 5 REFS 1 Requests an oscillator
Bits 4:3 CLKS 11 FLL engaged, external reference clock mode
Bit 2 OSCSTEN 0 Disables the oscillator in stop modes
Bit 1 LOCD 0 Loss-of-clock detection enabled
Bit 0 0 Unimplemented or reserved, always reads zero

RECOVERY FROM

CONTINUE

RECOVERY FROM STOP3

 

CHECK

LOCK = 1?

NO

YES

FLL LOCK STATUS.

INITIALIZE ICG 
ICG1 = $38
ICG2 = $00

RECOVERY FROM STOP3
OSCSTEN = 1 OSCSTEN = 0

CONTINUE

 

CHECK

LOCK = 1?

NO

YES

FLL LOCK STATUS.

CONTINUE

 

CHECK

LOCK = 1?

NO

YES

FLL LOCK STATUS.

NOTE:  THIS WILL REQUIRE THE OSCILLATOR TO START AND
STABILIZE. ACTUAL TIME IS DEPENDENT ON CRYSTAL /RESONATOR
AND EXTERNAL CIRCUITRY. 

QUICK RECOVERY FROM STOP MINIMUM CURRENT DRAW IN STOP
RESET, STIO1, STOP2
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7.5.6 ICG Trim Register (ICGTRM)

 7 6 5 4 3 2 1 0

R
FLT

W

Reset 1 1 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 7-17. ICG Upper Filter Register (ICGFLTL)

Table 7-11. ICGFLTL Field Descriptions

Field Description

7:0
FLT

Filter Value — The FLT bits indicate the current filter value, which controls the DCO frequency. The FLT bits are 
read only except when the CLKS bits are programmed to self-clocked mode (CLKS = 00). In self-clocked mode, 
any write to ICGFLTU updates the current 12-bit filter value. Writes to the ICGFLTU register will not affect FLT if 
a previous latch sequence is not complete. 

 7 6 5 4 3 2 1 0

R
TRIM

W

POR: 1 0 0 0 0 0 0 0

Reset: u u u u u u u u

= Unimplemented or Reserved u = Unaffected by MCU reset

Figure 7-18. ICG Trim Register (ICGTRM)

Table 7-12. ICGTRM Field Descriptions

Field Description

7:0
TRIM

ICG Trim Setting — The TRIM bits control the internal reference generator frequency. They allow a ± 25% 
adjustment of the nominal (POR) period. The bit’s effect on period is binary weighted (i.e., bit 1 will adjust twice 
as much as changing bit 0). Increasing the binary value in TRIM will increase the period and decreasing the value 
will decrease the period.
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ROR  opr8a
RORA
RORX
ROR  oprx8,X
ROR  ,X
ROR  oprx8,SP

Rotate Right through 
Carry – –

DIR
INH
INH
IX1
IX
SP1

36
46
56
66
76

9E66

dd

ff

ff

5
1
1
5
4
6

RSP Reset Stack Pointer SP ← 0xFF
(High Byte Not Affected) – – – – – – INH 9C 1

RTI Return from Interrupt

SP ← (SP) + 0x0001;  Pull (CCR)
SP ← (SP) + 0x0001;  Pull (A)
SP ← (SP) + 0x0001;  Pull (X)

SP ← (SP) + 0x0001;  Pull (PCH)
SP ← (SP) + 0x0001;  Pull (PCL)

INH 80 9

RTS Return from Subroutine SP ← SP + 0x0001; Pull (PCH)
SP ← SP + 0x0001; Pull (PCL) – – – – – – INH 81 6

SBC  #opr8i
SBC  opr8a
SBC  opr16a
SBC  oprx16,X
SBC  oprx8,X
SBC   ,X
SBC  oprx16,SP
SBC oprx8,SP

Subtract with Carry A ← (A) – (M) – (C) – –

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A2
B2
C2
D2
E2
F2

9ED2
9EE2

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
3
5
4

SEC Set Carry Bit C ← 1 – – – – – 1 INH 99 1

SEI Set Interrupt Mask Bit I ← 1 – – 1 – – – INH 9B 1

STA  opr8a
STA  opr16a
STA  oprx16,X
STA  oprx8,X
STA   ,X
STA  oprx16,SP
STA oprx8,SP

Store Accumulator in 
Memory M ← (A) 0 – – –

DIR
EXT
IX2
IX1
IX
SP2
SP1

B7
C7
D7
E7
F7

9ED7
9EE7

dd
hh ll
ee ff
ff

ee ff
ff

3
4
4
3
2
5
4

STHX opr8a
STHX opr16a
STHX oprx8,SP

Store H:X (Index Reg.) (M:M + 0x0001) ← (H:X) 0 – – –
DIR
EXT
SP1

35
96

9EFF

dd
hh ll
ff

4
5
5

STOP

Enable Interrupts: 
Stop Processing 
Refer to MCU 
Documentation

I bit ← 0; Stop Processing – – 0 – – – INH 8E 2+

STX  opr8a
STX  opr16a
STX  oprx16,X
STX  oprx8,X
STX   ,X
STX  oprx16,SP
STX oprx8,SP

Store X (Low 8 Bits of 
Index Register)
in Memory

M ← (X) 0 – – –

DIR
EXT
IX2
IX1
IX
SP2
SP1

BF
CF
DF
EF
FF

9EDF
9EEF

dd
hh ll
ee ff
ff

ee ff
ff

3
4
4
3
2
5
4

SUB  #opr8i
SUB  opr8a
SUB  opr16a
SUB  oprx16,X
SUB  oprx8,X
SUB   ,X
SUB  oprx16,SP
SUB oprx8,SP

Subtract A ← (A) – (M) – –

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A0
B0
C0
D0
E0
F0

9ED0
9EE0

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
3
5
4

SWI Software Interrupt

PC ← (PC) + 0x0001
Push (PCL); SP ← (SP) – 0x0001
Push (PCH); SP ← (SP) – 0x0001

Push (X); SP ← (SP) – 0x0001
Push (A); SP ← (SP) – 0x0001

Push (CCR); SP ← (SP) – 0x0001
I ← 1;

PCH ← Interrupt Vector High Byte
PCL ← Interrupt Vector Low Byte

– – 1 – – – INH 83 11

Table 8-2. HCS08 Instruction Set Summary (Sheet 6 of 7)

Source
Form

Operation Description

Effect
on CCR

A
d

d
re

ss
M

o
d

e

O
p

co
d

e

O
p

er
an

d

B
u

s 
C

yc
le

s1

V H I N Z C

b0b7

C



MC9S08GB60A Data Sheet, Rev. 2

Freescale Semiconductor  149
   

Chapter 9  
Keyboard Interrupt (S08KBIV1)

9.1 Introduction
The MC9S08GBxxA/GTxxA has one KBI module with eight keyboard interrupt inputs that share port A 
pins. See Chapter 2, “Pins and Connections” for more information about the logic and hardware aspects 
of these pins.

9.1.1 Port A and Keyboard Interrupt Pins

Figure 9-1. Port A Pin Names

The following paragraphs discuss controlling the keyboard interrupt pins.

Port A is an 8-bit port which is shared among the KBI keyboard interrupt inputs and general-purpose I/O. 
The eight KBIPEn control bits in the KBIPE register allow selection of any combination of port A pins to 
be assigned as KBI inputs. Any pins which are enabled as KBI inputs will be forced to act as inputs and 
the remaining port A pins are available as general-purpose I/O pins controlled by the port A data (PTAD), 
data direction (PTADD), and pullup enable (PTAPE) registers.

KBI inputs can be configured for edge-only sensitivity or edge-and-level sensitivity. Bits 3 through 0 of 
port A are falling-edge/low-level sensitive while bits 7 through 4 can be configured for 
rising-edge/high-level or for falling-edge/low-level sensitivity.

The eight PTAPEn control bits in the PTAPE register allow you to select whether an internal pullup device 
is enabled on each port A pin that is configured as an input. When any of bits 7 through 4 of port A are 
enabled as KBI inputs and are configured to detect rising edges/high levels, the pullup enable bits enable 
pulldown rather than pullup devices.

An enabled keyboard interrupt can be used to wake the MCU from wait or standby (stop3).

9.2 Features
The keyboard interrupt (KBI) module features include:

• Keyboard interrupts selectable on eight port pins:
— Four falling-edge/low-level sensitive
— Four falling-edge/low-level or rising-edge/high-level sensitive
— Choice of edge-only or edge-and-level sensitivity
— Common interrupt flag and interrupt enable control
— Capable of waking up the MCU from stop3 or wait mode

MCU Pin:
PTA7/

KBI1P7
PTA6/

KBI1P6
PTA5/

KBI1P5
PTA4/

KBI1P4
PTA3/

KBI1P3
PTA2/

KBI1P2
PTA1/

KBI1P1
PTA0/

KBI1P0
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associated TPM act as center-aligned PWM channels. When CPWMS = 0, each channel can 
independently be configured to operate in input capture, output compare, or buffered edge-aligned PWM 
mode.

The following sections describe the main 16-bit counter and each of the timer operating modes (input 
capture, output compare, edge-aligned PWM, and center-aligned PWM). Because details of pin operation 
and interrupt activity depend on the operating mode, these topics are covered in the associated mode 
sections.

10.5.1 Counter

All timer functions are based on the main 16-bit counter (TPMxCNTH:TPMxCNTL). This section 
discusses selection of the clock source, up-counting vs. up-/down-counting, end-of-count overflow, and 
manual counter reset.

After any MCU reset, CLKSB:CLKSA = 0:0 so no clock source is selected and the TPM is inactive. 
Normally, CLKSB:CLKSA would be set to 0:1 so the bus clock drives the timer counter. The clock source 
for each of the TPM can be independently selected to be off, the bus clock (BUSCLK), the fixed system 
clock (XCLK), or an external input through the TPMxCH0 pin. The maximum frequency allowed for the 
external clock option is one-fourth the bus rate. Refer to Section 10.7.1, “Timer x Status and Control 
Register (TPMxSC),” and Table 10-2 for more information about clock source selection.

When the microcontroller is in active background mode, the TPM temporarily suspends all counting until 
the microcontroller returns to normal user operating mode. During stop mode, all TPM clocks are stopped; 
therefore, the TPM is effectively disabled until clocks resume. During wait mode, the TPM continues to 
operate normally.

The main 16-bit counter has two counting modes. When center-aligned PWM is selected (CPWMS = 1), 
the counter operates in up-/down-counting mode. Otherwise, the counter operates as a simple up-counter. 
As an up-counter, the main 16-bit counter counts from $0000 through its terminal count and then continues 
with $0000. The terminal count is $FFFF or a modulus value in TPMxMODH:TPMxMODL.

When center-aligned PWM operation is specified, the counter counts upward from $0000 through its 
terminal count and then counts downward to $0000 where it returns to up-counting. Both $0000 and the 
terminal count value (value in TPMxMODH:TPMxMODL) are normal length counts (one timer clock 
period long).

An interrupt flag and enable are associated with the main 16-bit counter. The timer overflow flag (TOF) is 
a software-accessible indication that the timer counter has overflowed. The enable signal selects between 
software polling (TOIE = 0) where no hardware interrupt is generated, or interrupt-driven operation 
(TOIE = 1) where a static hardware interrupt is automatically generated whenever the TOF flag is 1.

The conditions that cause TOF to become set depend on the counting mode (up or up/down). In 
up-counting mode, the main 16-bit counter counts from $0000 through $FFFF and overflows to $0000 on 
the next counting clock. TOF becomes set at the transition from $FFFF to $0000. When a modulus limit 
is set, TOF becomes set at the transition from the value set in the modulus register to $0000. When the 
main 16-bit counter is operating in up-/down-counting mode, the TOF flag gets set as the counter changes 
direction at the transition from the value set in the modulus register and the next lower count value. This 
corresponds to the end of a PWM period. (The $0000 count value corresponds to the center of a period.)
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10.7.2 Timer x Counter Registers (TPMxCNTH:TPMxCNTL)

The two read-only TPM counter registers contain the high and low bytes of the value in the TPM counter. 
Reading either byte (TPMxCNTH or TPMxCNTL) latches the contents of both bytes into a buffer where 
they remain latched until the other byte is read. This allows coherent 16-bit reads in either order. The 
coherency mechanism is automatically restarted by an MCU reset, a write of any value to TPMxCNTH or 
TPMxCNTL, or any write to the timer status/control register (TPMxSC).

Reset clears the TPM counter registers. 

Table 10-2. TPM Clock Source Selection

CLKSB:CLKSA TPM Clock Source to Prescaler Input

0:0 No clock selected (TPM disabled)

0:1 Bus rate clock (BUSCLK)

1:0 Fixed system clock (XCLK)

1:1 External source (TPMx Ext Clk)1,2

1. The maximum frequency that is allowed as an external clock is one-fourth of the bus frequency.
2. When the TPMxCH0 pin is selected as the TPM clock source, the corresponding ELS0B:ELS0A control bits should be set to 

0:0 so channel 0 does not try to use the same pin for a conflicting function.

Table 10-3. Prescale Divisor Selection

PS2:PS1:PS0 TPM Clock Source Divided-By

0:0:0 1

0:0:1 2

0:1:0 4

0:1:1 8

1:0:0 16

1:0:1 32

1:1:0 64

1:1:1 128

 7 6 5 4 3 2 1 0

R Bit 15 14 13 12 11 10 9 Bit 8

W Any write to TPMxCNTH clears the 16-bit counter.

Reset 0 0 0 0 0 0 0 0

Figure 10-6. Timer x Counter Register High (TPMxCNTH)

 7 6 5 4 3 2 1 0

R Bit 7 6 5 4 3 2 1 Bit 0

W Any write to TPMxCNTL clears the 16-bit counter.

Reset 0 0 0 0 0 0 0 0

Figure 10-7. Timer x Counter Register Low (TPMxCNTL)
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10.7.4 Timer x Channel n Status and Control Register (TPMxCnSC)

TPMxCnSC contains the channel interrupt status flag and control bits that are used to configure the 
interrupt enable, channel configuration, and pin function.

 7 6 5 4 3 2 1 0

R
CHnF CHnIE MSnB MSnA ELSnB ELSnA

0 0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 10-10. Timer x Channel n Status and Control Register (TPMxCnSC)

Table 10-4. TPMxCnSC Register Field Descriptions

Field Description

7
CHnF

Channel n Flag — When channel n is configured for input capture, this flag bit is set when an active edge occurs 
on the channel n pin. When channel n is an output compare or edge-aligned PWM channel, CHnF is set when 
the value in the TPM counter registers matches the value in the TPM channel n value registers. This flag is 
seldom used with center-aligned PWMs because it is set every time the counter matches the channel value 
register, which correspond to both edges of the active duty cycle period.
A corresponding interrupt is requested when CHnF is set and interrupts are enabled (CHnIE = 1). Clear CHnF 
by reading TPMxCnSC while CHnF is set and then writing a 0 to CHnF. If another interrupt request occurs before 
the clearing sequence is complete, the sequence is reset so CHnF would remain set after the clear sequence 
was completed for the earlier CHnF. This is done so a CHnF interrupt request cannot be lost by clearing a 
previous CHnF. Reset clears CHnF. Writing a 1 to CHnF has no effect.
0 No input capture or output compare event occurred on channel n
1 Input capture or output compare event occurred on channel n

6
CHnIE

Channel n Interrupt Enable — This read/write bit enables interrupts from channel n. Reset clears CHnIE.
0 Channel n interrupt requests disabled (use software polling)
1 Channel n interrupt requests enabled

5
MSnB

Mode Select B for TPM Channel n — When CPWMS = 0, MSnB = 1 configures TPM channel n for 
edge-aligned PWM mode. For a summary of channel mode and setup controls, refer to Table 10-5.

4
MSnA

Mode Select A for TPM Channel n — When CPWMS = 0 and MSnB = 0, MSnA configures TPM channel n for 
input capture mode or output compare mode. Refer to Table 10-5 for a summary of channel mode and setup 
controls.

3:2
ELSn[B:A]

Edge/Level Select Bits — Depending on the operating mode for the timer channel as set by 
CPWMS:MSnB:MSnA and shown in Table 10-5, these bits select the polarity of the input edge that triggers an 
input capture event, select the level that will be driven in response to an output compare match, or select the 
polarity of the PWM output.
Setting ELSnB:ELSnA to 0:0 configures the related timer pin as a general-purpose I/O pin unrelated to any timer 
channel functions. This function is typically used to temporarily disable an input capture channel or to make the 
timer pin available as a general-purpose I/O pin when the associated timer channel is set up as a software timer 
that does not require the use of a pin. This is also the setting required for channel 0 when the TPMxCH0 pin is 
used as an external clock input.
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Figure 11-1. Block Diagram Highlighting the SCI Modules
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NOTE

Ensure that the SPI should not be disabled (SPE=0) at the same time as a bit change to the CPHA bit. These 
changes should be performed as separate operations or unexpected behavior may occur.

12.4.2 SPI Control Register 2 (SPI1C2)

This read/write register is used to control optional features of the SPI system. Bits 7, 6, 5, and 2 are not 
implemented and always read 0.

4
MSTR

Master/Slave Mode Select
0 SPI module configured as a slave SPI device
1 SPI module configured as a master SPI device

3
CPOL

Clock Polarity — This bit effectively places an inverter in series with the clock signal from a master SPI or to a 
slave SPI device. Refer to Section 12.5.1, “SPI Clock Formats” for more details.
0 Active-high SPI clock (idles low)
1 Active-low SPI clock (idles high)

2
CPHA

Clock Phase — This bit selects one of two clock formats for different kinds of synchronous serial peripheral 
devices. Refer to Section 12.5.1, “SPI Clock Formats” for more details.
0 First edge on SPSCK occurs at the middle of the first cycle of an 8-cycle data transfer
1 First edge on SPSCK occurs at the start of the first cycle of an 8-cycle data transfer

1
SSOE

Slave Select Output Enable — This bit is used in combination with the mode fault enable (MODFEN) bit in 
SPCR2 and the master/slave (MSTR) control bit to determine the function of the SS pin as shown in Table 12-2.

0
LSBFE

LSB First (Shifter Direction)
0 SPI serial data transfers start with most significant bit
1 SPI serial data transfers start with least significant bit

Table 12-2. SS Pin Function

MODFEN SSOE Master Mode Slave Mode

0 0 General-purpose I/O (not SPI) Slave select input

0 1 General-purpose I/O (not SPI) Slave select input

1 0 SS input for mode fault Slave select input

1 1 Automatic SS output Slave select input

 7 6 5 4 3 2 1 0

R 0 0 0
MODFEN BIDIROE

0
SPISWAI SPC0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 12-6. SPI Control Register 2 (SPI1C2)

Table 12-1. SPI1C1 Field Descriptions (continued)

Field Description
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in LSBFE. Both variations of SPSCK polarity are shown, but only one of these waveforms applies for a 
specific transfer, depending on the value in CPOL. The SAMPLE IN waveform applies to the MOSI input 
of a slave or the MISO input of a master. The MOSI waveform applies to the MOSI output pin from a 
master and the MISO waveform applies to the MISO output from a slave. The SS OUT waveform applies 
to the slave select output from a master (provided MODFEN and SSOE = 1). The master SS output goes 
to active low at the start of the first bit time of the transfer and goes back high one-half SPSCK cycle after 
the end of the eighth bit time of the transfer. The SS IN waveform applies to the slave select input of a 
slave.

Figure 12-11. SPI Clock Formats (CPHA = 0)

When CPHA = 0, the slave begins to drive its MISO output with the first data bit value (MSB or LSB 
depending on LSBFE) when SS goes to active low. The first SPSCK edge causes both the master and the 
slave to sample the data bit values on their MISO and MOSI inputs, respectively. At the second SPSCK 
edge, the SPI shifter shifts one bit position which shifts in the bit value that was just sampled and shifts the 
second data bit value out the other end of the shifter to the MOSI and MISO outputs of the master and 
slave, respectively. When CPHA = 0, the slave’s SS input must go to its inactive high level between 
transfers.
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13.4.1.1 START Signal

When the bus is free; i.e., no master device is engaging the bus (both SCL and SDA lines are at logical 
high), a master may initiate communication by sending a START signal. As shown in Figure 13-8, a 
START signal is defined as a high-to-low transition of SDA while SCL is high. This signal denotes the 
beginning of a new data transfer (each data transfer may contain several bytes of data) and brings all slaves 
out of their idle states.

13.4.1.2 Slave Address Transmission

The first byte of data transferred immediately after the START signal is the slave address transmitted by 
the master. This is a seven-bit calling address followed by a R/W bit. The R/W bit tells the slave the desired 
direction of data transfer.

1 = Read transfer, the slave transmits data to the master.
0 = Write transfer, the master transmits data to the slave.

Only the slave with a calling address that matches the one transmitted by the master will respond by 
sending back an acknowledge bit. This is done by pulling the SDA low at the 9th clock (see Figure 13-8).

No two slaves in the system may have the same address. If the IIC module is the master, it must not 
transmit an address that is equal to its own slave address. The IIC cannot be master and slave at the same 
time. However, if arbitration is lost during an address cycle, the IIC will revert to slave mode and operate 
correctly even if it is being addressed by another master.

13.4.1.3 Data Transfer

Before successful slave addressing is achieved, the data transfer can proceed byte-by-byte in a direction 
specified by the R/W bit sent by the calling master.

All transfers that come after an address cycle are referred to as data transfers, even if they carry sub-address 
information for the slave device

Each data byte is 8 bits long. Data may be changed only while SCL is low and must be held stable while 
SCL is high as shown in Figure 13-8. There is one clock pulse on SCL for each data bit, the MSB being 
transferred first. Each data byte is followed by a 9th (acknowledge) bit, which is signalled from the 
receiving device. An acknowledge is signalled by pulling the SDA low at the ninth clock. In summary, one 
complete data transfer needs nine clock pulses.

If the slave receiver does not acknowledge the master in the 9th bit time, the SDA line must be left high 
by the slave. The master interprets the failed acknowledge as an unsuccessful data transfer.

If the master receiver does not acknowledge the slave transmitter after a data byte transmission, the slave 
interprets this as an end of data transfer and releases the SDA line. 

In either case, the data transfer is aborted and the master does one of two things:
• Relinquishes the bus by generating a STOP signal.
• Commences a new calling by generating a repeated START signal.
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13.7 Initialization/Application Information

Figure 13-10. IIC Module Quick Start

Module Initialization (Slave)
1. Write: IICA

— to set the slave address
2. Write: IICC

— to enable IIC and interrupts
3. Initialize RAM variables (IICEN = 1 and IICIE = 1) for transmit data
4. Initialize RAM variables used to achieve the routine shown in Figure 13-11

Module Initialization (Master)
1. Write: IICF

— to set the IIC baud rate (example provided in this chapter)
2. Write: IICC

— to enable IIC and interrupts
3. Initialize RAM variables (IICEN = 1 and IICIE = 1) for transmit data
4. Initialize RAM variables used to achieve the routine shown in Figure 13-11
5. Write: IICC

— to enable TX
6. Write: IICC 

— to enable MST (master mode)
7. Write: IICD 

— with the address of the target slave. (The LSB of this byte will determine whether the communication is 
master receive or transmit.)

Module Use
The routine shown in Figure 13-11 can handle both master and slave IIC operations. For slave operation, an 
incoming IIC message that contains the proper address will begin IIC communication. For master operation, 
communication must be initiated by writing to the IICD register.

0

IICF

IICA

Baud rate = BUSCLK / (2 x MULT x (SCL DIVIDER))

TX TXAK RSTA 0 0IICC IICEN IICIE MST

Module configuration

ARBL 0 SRW IICIF RXAKIICS TCF IAAS BUSY

Module status flags

Register Model

ADDR

Address to which the module will respond when addressed as a slave (in slave mode)

MULT ICR

IICD DATA

Data register; Write to transmit IIC data read to read IIC data
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The SYNC command is unlike other BDC commands because the host does not necessarily know the 
correct communications speed to use for BDC communications until after it has analyzed the response to 
the SYNC command. 

To issue a SYNC command, the host:
• Drives the BKGD pin low for at least 128 cycles of the slowest possible BDC clock (The slowest 

clock is normally the reference oscillator/64 or the self-clocked rate/64.)
• Drives BKGD high for a brief speedup pulse to get a fast rise time (This speedup pulse is typically 

one cycle of the fastest clock in the system.)
• Removes all drive to the BKGD pin so it reverts to high impedance
• Monitors the BKGD pin for the sync response pulse

The target, upon detecting the SYNC request from the host (which is a much longer low time than would 
ever occur during normal BDC communications):

• Waits for BKGD to return to a logic high
• Delays 16 cycles to allow the host to stop driving the high speedup pulse
• Drives BKGD low for 128 BDC clock cycles
• Drives a 1-cycle high speedup pulse to force a fast rise time on BKGD
• Removes all drive to the BKGD pin so it reverts to high impedance

The host measures the low time of this 128-cycle sync response pulse and determines the correct speed for 
subsequent BDC communications. Typically, the host can determine the correct communication speed 
within a few percent of the actual target speed and the communication protocol can easily tolerate speed 
errors of several percent.

15.2.4 BDC Hardware Breakpoint

The BDC includes one relatively simple hardware breakpoint that compares the CPU address bus to a 
16-bit match value in the BDCBKPT register. This breakpoint can generate a forced breakpoint or a tagged 
breakpoint. A forced breakpoint causes the CPU to enter active background mode at the first instruction 
boundary following any access to the breakpoint address. The tagged breakpoint causes the instruction 
opcode at the breakpoint address to be tagged so that the CPU will enter active background mode rather 
than executing that instruction if and when it reaches the end of the instruction queue. This implies that 
tagged breakpoints can only be placed at the address of an instruction opcode while forced breakpoints can 
be set at any address.

The breakpoint enable (BKPTEN) control bit in the BDC status and control register (BDCSCR) is used to 
enable the breakpoint logic (BKPTEN = 1). When BKPTEN = 0, its default value after reset, the 
breakpoint logic is disabled and no BDC breakpoints are requested regardless of the values in other BDC 
breakpoint registers and control bits. The force/tag select (FTS) control bit in BDCSCR is used to select 
forced (FTS = 1) or tagged (FTS = 0) type breakpoints.

The on-chip debug module (DBG) includes circuitry for two additional hardware breakpoints that are more 
flexible than the simple breakpoint in the BDC module.
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the host must perform ((8 – CNT) – 1) dummy reads of the FIFO to advance it to the first significant entry 
in the FIFO.

In most trigger modes, the information stored in the FIFO consists of 16-bit change-of-flow addresses. In 
these cases, read DBGFH then DBGFL to get one coherent word of information out of the FIFO. Reading 
DBGFL (the low-order byte of the FIFO data port) causes the FIFO to shift so the next word of information 
is available at the FIFO data port. In the event-only trigger modes (see Section 15.3.5, “Trigger Modes”), 
8-bit data information is stored into the FIFO. In these cases, the high-order half of the FIFO (DBGFH) is 
not used and data is read out of the FIFO by simply reading DBGFL. Each time DBGFL is read, the FIFO 
is shifted so the next data value is available through the FIFO data port at DBGFL.

In trigger modes where the FIFO is storing change-of-flow addresses, there is a delay between CPU 
addresses and the input side of the FIFO. Because of this delay, if the trigger event itself is a 
change-of-flow address or a change-of-flow address appears during the next two bus cycles after a trigger 
event starts the FIFO, it will not be saved into the FIFO. In the case of an end-trace, if the trigger event is 
a change-of-flow, it will be saved as the last change-of-flow entry for that debug run.

The FIFO can also be used to generate a profile of executed instruction addresses when the debugger is 
not armed. When ARM = 0, reading DBGFL causes the address of the most-recently fetched opcode to be 
saved in the FIFO. To use the profiling feature, a host debugger would read addresses out of the FIFO by 
reading DBGFH then DBGFL at regular periodic intervals. The first eight values would be discarded 
because they correspond to the eight DBGFL reads needed to initially fill the FIFO. Additional periodic 
reads of DBGFH and DBGFL return delayed information about executed instructions so the host debugger 
can develop a profile of executed instruction addresses.

15.3.3 Change-of-Flow Information

To minimize the amount of information stored in the FIFO, only information related to instructions that 
cause a change to the normal sequential execution of instructions is stored. With knowledge of the source 
and object code program stored in the target system, an external debugger system can reconstruct the path 
of execution through many instructions from the change-of-flow information stored in the FIFO.

For conditional branch instructions where the branch is taken (branch condition was true), the source 
address is stored (the address of the conditional branch opcode). Because BRA and BRN instructions are 
not conditional, these events do not cause change-of-flow information to be stored in the FIFO.

Indirect JMP and JSR instructions use the current contents of the H:X index register pair to determine the 
destination address, so the debug system stores the run-time destination address for any indirect JMP or 
JSR. For interrupts, RTI, or RTS, the destination address is stored in the FIFO as change-of-flow 
information.

15.3.4 Tag vs. Force Breakpoints and Triggers

Tagging is a term that refers to identifying an instruction opcode as it is fetched into the instruction queue, 
but not taking any other action until and unless that instruction is actually executed by the CPU. This 
distinction is important because any change-of-flow from a jump, branch, subroutine call, or interrupt 
causes some instructions that have been fetched into the instruction queue to be thrown away without being 
executed.


