
Freescale Semiconductor - MC9S08GT32ACFDER Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor S08

Core Size 8-Bit

Speed 40MHz

Connectivity I²C, SCI, SPI

Peripherals LVD, POR, PWM, WDT

Number of I/O 39

Program Memory Size 32KB (32K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 2K x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 3.6V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 48-VFQFN Exposed Pad

Supplier Device Package 48-QFN-EP (7x7)

Purchase URL https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s08gt32acfder

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/mc9s08gt32acfder-4419521
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

MC9S08GB60A Data Sheet

Covers: MC9S08GB60A
MC9S08GB32A
MC9S08GT60A
MC9S08GT32A

MC9S08GB60A
Rev. 2

07/2008

Chapter 2 Pins and Connections

MC9S08GB60A Data Sheet, Rev. 2

30 Freescale Semiconductor

debug connector so a development system can directly reset the MCU system. If desired, a manual external
reset can be added by supplying a simple switch to ground (pull reset pin low to force a reset).

Whenever any reset is initiated (whether from an external signal or from an internal system), the reset pin
is driven low for approximately 34 cycles of fSelf_reset, released, and sampled again approximately 38
cycles of fSelf_reset later. If reset was caused by an internal source such as low-voltage reset or watchdog
timeout, the circuitry expects the reset pin sample to return a logic 1. The reset circuitry decodes the cause
of reset and records it by setting a corresponding bit in the system control reset status register (SRS).

In EMC-sensitive applications, an external RC filter is recommended on the reset pin. See Figure 2-4 for
an example.

2.3.4 Background / Mode Select (PTG0/BKGD/MS)

The background/mode select (BKGD/MS) shares its function with an I/O port pin. While in reset, the pin
functions as a mode select pin. Immediately after reset rises the pin functions as the background pin and
can be used for background debug communication. While functioning as a background/mode select pin,
the pin includes an internal pullup device, input hysteresis, a standard output driver, and no output slew
rate control. When used as an I/O port (PTG0) the pin is limited to output only.

If nothing is connected to this pin, the MCU will enter normal operating mode at the rising edge of reset.
If a debug system is connected to the 6-pin standard background debug header, it can hold BKGD/MS low
during the rising edge of reset which forces the MCU to active background mode.

The BKGD pin is used primarily for background debug controller (BDC) communications using a custom
protocol that uses 16 clock cycles of the target MCU’s BDC clock per bit time. The target MCU’s BDC
clock could be as fast as the bus clock rate, so there should never be any significant capacitance connected
to the BKGD/MS pin that could interfere with background serial communications.

Although the BKGD pin is a pseudo open-drain pin, the background debug communication protocol
provides brief, actively driven, high speedup pulses to ensure fast rise times. Small capacitances from
cables and the absolute value of the internal pullup device play almost no role in determining rise and fall
times on the BKGD pin.

2.3.5 General-Purpose I/O and Peripheral Ports

The remaining 55 pins are shared among general-purpose I/O and on-chip peripheral functions such as
timers and serial I/O systems. (17 of these pins are not bonded out on the 48-pin package, 20 of these pins
are not bonded out on the 44-pin package and 22 of hese pins are not bonded out on the 42-pin package.)
Immediately after reset, all 55 of these pins are configured as high-impedance general-purpose inputs with
internal pullup devices disabled.

NOTE
To prevent extra current drain from floating input pins, the reset
initialization routine in the application program should either enable
on-chip pullup devices or change the direction of unused pins to outputs so
the pins do not float.

Chapter 5 Resets, Interrupts, and System Configuration

MC9S08GB60A Data Sheet, Rev. 2

66 Freescale Semiconductor

• Illegal opcode detect
• Background debug forced reset
• The reset pin (RESET)
• Clock generator loss of lock and loss of clock reset

Each of these sources, with the exception of the background debug forced reset, has an associated bit in
the system reset status register. Whenever the MCU enters reset, the internal clock generator (ICG) module
switches to self-clocked mode with the frequency of fSelf_reset selected. The reset pin is driven low for 34
internal bus cycles where the internal bus frequency is half the ICG frequency. After the 34 cycles are
completed, the pin is released and will be pulled up by the internal pullup resistor, unless it is held low
externally. After the pin is released, it is sampled after another 38 cycles to determine whether the reset pin
is the cause of the MCU reset.

5.4 Computer Operating Properly (COP) Watchdog
The COP watchdog is intended to force a system reset when the application software fails to execute as
expected. To prevent a system reset from the COP timer (when it is enabled), application software must
reset the COP timer periodically. If the application program gets lost and fails to reset the COP before it
times out, a system reset is generated to force the system back to a known starting point. The COP
watchdog is enabled by the COPE bit in SOPT (see Section 5.8.4, “System Options Register (SOPT)” for
additional information). The COP timer is reset by writing any value to the address of SRS. This write does
not affect the data in the read-only SRS. Instead, the act of writing to this address is decoded and sends a
reset signal to the COP timer.

After any reset, the COP timer is enabled. This provides a reliable way to detect code that is not executing
as intended. If the COP watchdog is not used in an application, it can be disabled by clearing the COPE
bit in the write-once SOPT register. Also, the COPT bit can be used to choose one of two timeout periods
(218 or 213 cycles of the bus rate clock). Even if the application will use the reset default settings in COPE
and COPT, the user should still write to write-once SOPT during reset initialization to lock in the settings.
That way, they cannot be changed accidentally if the application program gets lost.

The write to SRS that services (clears) the COP timer should not be placed in an interrupt service routine
(ISR) because the ISR could continue to be executed periodically even if the main application program
fails.

When the MCU is in active background mode, the COP timer is temporarily disabled.

5.5 Interrupts
Interrupts provide a way to save the current CPU status and registers, execute an interrupt service routine
(ISR), and then restore the CPU status so processing resumes where it left off before the interrupt. Other
than the software interrupt (SWI), which is a program instruction, interrupts are caused by hardware events
such as an edge on the IRQ pin or a timer-overflow event. The debug module can also generate an SWI
under certain circumstances.

If an event occurs in an enabled interrupt source, an associated read-only status flag will become set. The
CPU will not respond until and unless the local interrupt enable is set to 1 to enable the interrupt. The I bit

Chapter 6 Parallel Input/Output

MC9S08GB60A Data Sheet, Rev. 2

84 Freescale Semiconductor

Port A can be configured to be keyboard interrupt input pins. Refer to Chapter 9, “Keyboard Interrupt
(S08KBIV1),” for more information about using port A pins as keyboard interrupts pins.

6.3.2 Port B and Analog to Digital Converter Inputs
j

Figure 6-3. Port B Pin Names

Port B is an 8-bit port shared among the ATD inputs and general-purpose I/O. Any pin enabled as an ATD
input will be forced to act as an input.

Port B pins are available as general-purpose I/O pins controlled by the port B data (PTBD), data direction
(PTBDD), pullup enable (PTBPE), and slew rate control (PTBSE) registers. Refer to Section 6.4, “Parallel
I/O Controls,” for more information about general-purpose I/O control.

When the ATD module is enabled, analog pin enables are used to specify which pins on port B will be used
as ATD inputs. Refer to Chapter 14, “Analog-to-Digital Converter (S08ATDV3),” for more information
about using port B pins as ATD pins.

6.3.3 Port C and SCI2, IIC, and High-Current Drivers

Figure 6-4. Port C Pin Names

Port C is an 8-bit port which is shared among the SCI2 and IIC1 modules, and general-purpose I/O. When
SCI2 or IIC1 modules are enabled, the pin direction will be controlled by the module or function. Port C
has high current output drivers.

Port C pins are available as general-purpose I/O pins controlled by the port C data (PTCD), data direction
(PTCDD), pullup enable (PTCPE), and slew rate control (PTCSE) registers. Refer to Section 6.4, “Parallel
I/O Controls,” for more information about general-purpose I/O control.

When the SCI2 module is enabled, PTC0 serves as the SCI2 module’s transmit pin (TxD2) and PTC1
serves as the receive pin (RxD2). Refer to Chapter 11, “Serial Communications Interface (S08SCIV1),”
for more information about using PTC0 and PTC1 as SCI pins

When the IIC module is enabled, PTC2 serves as the IIC modules’s serial data input/output pin (SDA1)
and PTC3 serves as the clock pin (SCL1). Refer to Chapter 13, “Inter-Integrated Circuit (S08IICV1),” for
more information about using PTC2 and PTC3 as IIC pins.

Port B Bit 7 6 5 4 3 2 1 Bit 0

MCU Pin:
PTB7/
AD1P7

PTB6/
AD1P6

PTB5/
AD1P5

PTB4/
AD1P4

PTB3/
AD1P3

PTB2/
AD1P2

PTB1/
AD1P1

PTB0/
AD1P0

Port C Bit 7 6 5 3 3 2 1 Bit 0

MCU Pin: PTC7 PTC6 PTC5 PTC4
PTC3/
SCL1

PTC2/
SDA1

PTC1/
RxD2

PTC0/
TxD2

Chapter 6 Parallel Input/Output

MC9S08GB60A Data Sheet, Rev. 2

88 Freescale Semiconductor

6.5 Stop Modes
Depending on the stop mode, I/O functions differently as the result of executing a STOP instruction. An
explanation of I/O behavior for the various stop modes follows:

• When the MCU enters stop1 mode, all internal registers including general-purpose I/O control and
data registers are powered down. All of the general-purpose I/O pins assume their reset state:
output buffers and pullups turned off. Upon exit from stop1, all I/O must be initialized as if the
MCU had been reset.

• When the MCU enters stop2 mode, the internal registers are powered down as in stop1 but the I/O
pin states are latched and held. For example, a port pin that is an output driving low continues to
function as an output driving low even though its associated data direction and output data registers
are powered down internally. Upon exit from stop2, the pins continue to hold their states until a 1
is written to the PPDACK bit. To avoid discontinuity in the pin state following exit from stop2, the
user must restore the port control and data registers to the values they held before entering stop2.
These values can be stored in RAM before entering stop2 because the RAM is maintained during
stop2.

• In stop3 mode, all I/O is maintained because internal logic circuity stays powered up. Upon
recovery, normal I/O function is available to the user.

6.6 Parallel I/O Registers and Control Bits
This section provides information about all registers and control bits associated with the parallel I/O ports.

Refer to tables in Chapter 4, “Memory” for the absolute address assignments for all parallel I/O registers.
This section refers to registers and control bits only by their names. A Freescale-provided equate or header
file normally is used to translate these names into the appropriate absolute addresses.

6.6.1 Port A Registers (PTAD, PTAPE, PTASE, and PTADD)

Port A includes eight pins shared between general-purpose I/O and the KBI module. Port A pins used as
general-purpose I/O pins are controlled by the port A data (PTAD), data direction (PTADD), pullup enable
(PTAPE), and slew rate control (PTASE) registers.

If the KBI takes control of a port A pin, the corresponding PTASE bit is ignored since the pin functions as
an input. As long as PTADD is 0, the PTAPE controls the pullup enable for the KBI function. Reads of
PTAD will return the logic value of the corresponding pin, provided PTADD is 0.

MC9S08GB60A Data Sheet, Rev. 2

Freescale Semiconductor 103

Chapter 7
Internal Clock Generator (S08ICGV2)
The MC9S08GBxxA/GTxxA microcontroller provides one internal clock generation (ICG) module to
create the system bus frequency. All functions described in this section are available on the
MC9S08GBxxA/GTxxA microcontroller. The EXTAL and XTAL pins share port G bits 2 and 1,
respectively. Analog supply lines VDDA and VSSA are internally derived from the MCU’s VDD and VSS
pins. Electrical parametric data for the ICG may be found in Appendix A, “Electrical Characteristics.”

Figure 7-1. System Clock Distribution Diagram

NOTE
Freescale Semiconductor recommends that flash location $FFBE be
reserved to store a nonvolatile version of ICGTRM. This will allow
debugger and programmer vendors to perform a manual trim operation and
store the resultant ICGTRM value for users to access at a later time.

ATD has min and max
frequency requirements. See
Chapter 1, “Device Overview” and
Appendix A, “Electrical Characteristics.

Flash has frequency
requirements for program
and erase operation.
See Appendix A, “Electrical
Characteristics.

* ICGLCLK is the alternate BDC clock source for the MC9S08GBxxA/GTxxA.

TPM1 TPM2 IIC1 SCI1 SCI2 SPI1

BDCCPU ATD1 RAM FLASH

ICG

ICGOUT ÷2

FFE

SYSTEM

LOGIC

BUSCLK

ICGLCLK*

CONTROL

FIXED FREQ CLOCK (XCLK)

ICGERCLK
RTI

÷2

Internal Clock Generator (S08ICGV2)

MC9S08GB60A Data Sheet, Rev. 2

Freescale Semiconductor 119

Figure 7-8 shows flow charts for three conditions requiring ICG initialization.

Figure 7-8. ICG Initialization for FEE in Example #1

7.4.3 Example #2: External Crystal = 4 MHz, Bus Frequency = 20 MHz

In this example, the FLL will be used (in FEE mode) to multiply the external 4 MHz oscillator up to
40-MHz to achieve 20 MHz bus frequency.

After the MCU is released from reset, the ICG is in self-clocked mode (SCM) and supplies approximately
8 MHz on ICGOUT which corresponds to a 4 MHz bus frequency (fBus).

During reset initialization software, the clock scheme will be set to FLL engaged, external (FEE). So

fICGOUT = fext * P * N / R ; P = 1, fext = 4.00 MHz Eqn. 7-3

Solving for N / R gives:

N / R = 40 MHz /(4 MHz * 1) = 10 ; We can choose N = 10 and R = 1 Eqn. 7-4

The values needed in each register to set up the desired operation are:

ICGC1 = $78 (%01111000)

Bit 7 HGO 0 Configures oscillator for low-power operation
Bit 6 RANGE 1 Configures oscillator for high-frequency range; FLL prescale factor is 1
Bit 5 REFS 1 Requests an oscillator
Bits 4:3 CLKS 11 FLL engaged, external reference clock mode
Bit 2 OSCSTEN 0 Disables the oscillator in stop modes
Bit 1 LOCD 0 Loss-of-clock detection enabled
Bit 0 0 Unimplemented or reserved, always reads zero

RECOVERY FROM

CONTINUE

RECOVERY FROM STOP3

CHECK

LOCK = 1?

NO

YES

FLL LOCK STATUS.

INITIALIZE ICG
ICG1 = $38
ICG2 = $00

RECOVERY FROM STOP3
OSCSTEN = 1 OSCSTEN = 0

CONTINUE

CHECK

LOCK = 1?

NO

YES

FLL LOCK STATUS.

CONTINUE

CHECK

LOCK = 1?

NO

YES

FLL LOCK STATUS.

NOTE: THIS WILL REQUIRE THE OSCILLATOR TO START AND
STABILIZE. ACTUAL TIME IS DEPENDENT ON CRYSTAL /RESONATOR
AND EXTERNAL CIRCUITRY.

QUICK RECOVERY FROM STOP MINIMUM CURRENT DRAW IN STOP
RESET, STIO1, STOP2

Internal Clock Generator (S08ICGV2)

MC9S08GB60A Data Sheet, Rev. 2

128 Freescale Semiconductor

7.5.6 ICG Trim Register (ICGTRM)

 7 6 5 4 3 2 1 0

R
FLT

W

Reset 1 1 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 7-17. ICG Upper Filter Register (ICGFLTL)

Table 7-11. ICGFLTL Field Descriptions

Field Description

7:0
FLT

Filter Value — The FLT bits indicate the current filter value, which controls the DCO frequency. The FLT bits are
read only except when the CLKS bits are programmed to self-clocked mode (CLKS = 00). In self-clocked mode,
any write to ICGFLTU updates the current 12-bit filter value. Writes to the ICGFLTU register will not affect FLT if
a previous latch sequence is not complete.

 7 6 5 4 3 2 1 0

R
TRIM

W

POR: 1 0 0 0 0 0 0 0

Reset: u u u u u u u u

= Unimplemented or Reserved u = Unaffected by MCU reset

Figure 7-18. ICG Trim Register (ICGTRM)

Table 7-12. ICGTRM Field Descriptions

Field Description

7:0
TRIM

ICG Trim Setting — The TRIM bits control the internal reference generator frequency. They allow a ± 25%
adjustment of the nominal (POR) period. The bit’s effect on period is binary weighted (i.e., bit 1 will adjust twice
as much as changing bit 0). Increasing the binary value in TRIM will increase the period and decreasing the value
will decrease the period.

Chapter 8 Central Processor Unit (S08CPUV2)

MC9S08GB60A Data Sheet, Rev. 2

Freescale Semiconductor 145

ROR opr8a
RORA
RORX
ROR oprx8,X
ROR ,X
ROR oprx8,SP

Rotate Right through
Carry – –

DIR
INH
INH
IX1
IX
SP1

36
46
56
66
76

9E66

dd

ff

ff

5
1
1
5
4
6

RSP Reset Stack Pointer SP ← 0xFF
(High Byte Not Affected) – – – – – – INH 9C 1

RTI Return from Interrupt

SP ← (SP) + 0x0001; Pull (CCR)
SP ← (SP) + 0x0001; Pull (A)
SP ← (SP) + 0x0001; Pull (X)

SP ← (SP) + 0x0001; Pull (PCH)
SP ← (SP) + 0x0001; Pull (PCL)

INH 80 9

RTS Return from Subroutine SP ← SP + 0x0001; Pull (PCH)
SP ← SP + 0x0001; Pull (PCL) – – – – – – INH 81 6

SBC #opr8i
SBC opr8a
SBC opr16a
SBC oprx16,X
SBC oprx8,X
SBC ,X
SBC oprx16,SP
SBC oprx8,SP

Subtract with Carry A ← (A) – (M) – (C) – –

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A2
B2
C2
D2
E2
F2

9ED2
9EE2

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
3
5
4

SEC Set Carry Bit C ← 1 – – – – – 1 INH 99 1

SEI Set Interrupt Mask Bit I ← 1 – – 1 – – – INH 9B 1

STA opr8a
STA opr16a
STA oprx16,X
STA oprx8,X
STA ,X
STA oprx16,SP
STA oprx8,SP

Store Accumulator in
Memory M ← (A) 0 – – –

DIR
EXT
IX2
IX1
IX
SP2
SP1

B7
C7
D7
E7
F7

9ED7
9EE7

dd
hh ll
ee ff
ff

ee ff
ff

3
4
4
3
2
5
4

STHX opr8a
STHX opr16a
STHX oprx8,SP

Store H:X (Index Reg.) (M:M + 0x0001) ← (H:X) 0 – – –
DIR
EXT
SP1

35
96

9EFF

dd
hh ll
ff

4
5
5

STOP

Enable Interrupts:
Stop Processing
Refer to MCU
Documentation

I bit ← 0; Stop Processing – – 0 – – – INH 8E 2+

STX opr8a
STX opr16a
STX oprx16,X
STX oprx8,X
STX ,X
STX oprx16,SP
STX oprx8,SP

Store X (Low 8 Bits of
Index Register)
in Memory

M ← (X) 0 – – –

DIR
EXT
IX2
IX1
IX
SP2
SP1

BF
CF
DF
EF
FF

9EDF
9EEF

dd
hh ll
ee ff
ff

ee ff
ff

3
4
4
3
2
5
4

SUB #opr8i
SUB opr8a
SUB opr16a
SUB oprx16,X
SUB oprx8,X
SUB ,X
SUB oprx16,SP
SUB oprx8,SP

Subtract A ← (A) – (M) – –

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A0
B0
C0
D0
E0
F0

9ED0
9EE0

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
3
5
4

SWI Software Interrupt

PC ← (PC) + 0x0001
Push (PCL); SP ← (SP) – 0x0001
Push (PCH); SP ← (SP) – 0x0001

Push (X); SP ← (SP) – 0x0001
Push (A); SP ← (SP) – 0x0001

Push (CCR); SP ← (SP) – 0x0001
I ← 1;

PCH ← Interrupt Vector High Byte
PCL ← Interrupt Vector Low Byte

– – 1 – – – INH 83 11

Table 8-2. HCS08 Instruction Set Summary (Sheet 6 of 7)

Source
Form

Operation Description

Effect
on CCR

A
d

d
re

ss
M

o
d

e

O
p

co
d

e

O
p

er
an

d

B
u

s
C

yc
le

s1

V H I N Z C

b0b7

C

MC9S08GB60A Data Sheet, Rev. 2

Freescale Semiconductor 149

Chapter 9
Keyboard Interrupt (S08KBIV1)

9.1 Introduction
The MC9S08GBxxA/GTxxA has one KBI module with eight keyboard interrupt inputs that share port A
pins. See Chapter 2, “Pins and Connections” for more information about the logic and hardware aspects
of these pins.

9.1.1 Port A and Keyboard Interrupt Pins

Figure 9-1. Port A Pin Names

The following paragraphs discuss controlling the keyboard interrupt pins.

Port A is an 8-bit port which is shared among the KBI keyboard interrupt inputs and general-purpose I/O.
The eight KBIPEn control bits in the KBIPE register allow selection of any combination of port A pins to
be assigned as KBI inputs. Any pins which are enabled as KBI inputs will be forced to act as inputs and
the remaining port A pins are available as general-purpose I/O pins controlled by the port A data (PTAD),
data direction (PTADD), and pullup enable (PTAPE) registers.

KBI inputs can be configured for edge-only sensitivity or edge-and-level sensitivity. Bits 3 through 0 of
port A are falling-edge/low-level sensitive while bits 7 through 4 can be configured for
rising-edge/high-level or for falling-edge/low-level sensitivity.

The eight PTAPEn control bits in the PTAPE register allow you to select whether an internal pullup device
is enabled on each port A pin that is configured as an input. When any of bits 7 through 4 of port A are
enabled as KBI inputs and are configured to detect rising edges/high levels, the pullup enable bits enable
pulldown rather than pullup devices.

An enabled keyboard interrupt can be used to wake the MCU from wait or standby (stop3).

9.2 Features
The keyboard interrupt (KBI) module features include:

• Keyboard interrupts selectable on eight port pins:
— Four falling-edge/low-level sensitive
— Four falling-edge/low-level or rising-edge/high-level sensitive
— Choice of edge-only or edge-and-level sensitivity
— Common interrupt flag and interrupt enable control
— Capable of waking up the MCU from stop3 or wait mode

MCU Pin:
PTA7/

KBI1P7
PTA6/

KBI1P6
PTA5/

KBI1P5
PTA4/

KBI1P4
PTA3/

KBI1P3
PTA2/

KBI1P2
PTA1/

KBI1P1
PTA0/

KBI1P0

Timer/PWM (TPM)

MC9S08GB60A Data Sheet, Rev. 2

Freescale Semiconductor 159

associated TPM act as center-aligned PWM channels. When CPWMS = 0, each channel can
independently be configured to operate in input capture, output compare, or buffered edge-aligned PWM
mode.

The following sections describe the main 16-bit counter and each of the timer operating modes (input
capture, output compare, edge-aligned PWM, and center-aligned PWM). Because details of pin operation
and interrupt activity depend on the operating mode, these topics are covered in the associated mode
sections.

10.5.1 Counter

All timer functions are based on the main 16-bit counter (TPMxCNTH:TPMxCNTL). This section
discusses selection of the clock source, up-counting vs. up-/down-counting, end-of-count overflow, and
manual counter reset.

After any MCU reset, CLKSB:CLKSA = 0:0 so no clock source is selected and the TPM is inactive.
Normally, CLKSB:CLKSA would be set to 0:1 so the bus clock drives the timer counter. The clock source
for each of the TPM can be independently selected to be off, the bus clock (BUSCLK), the fixed system
clock (XCLK), or an external input through the TPMxCH0 pin. The maximum frequency allowed for the
external clock option is one-fourth the bus rate. Refer to Section 10.7.1, “Timer x Status and Control
Register (TPMxSC),” and Table 10-2 for more information about clock source selection.

When the microcontroller is in active background mode, the TPM temporarily suspends all counting until
the microcontroller returns to normal user operating mode. During stop mode, all TPM clocks are stopped;
therefore, the TPM is effectively disabled until clocks resume. During wait mode, the TPM continues to
operate normally.

The main 16-bit counter has two counting modes. When center-aligned PWM is selected (CPWMS = 1),
the counter operates in up-/down-counting mode. Otherwise, the counter operates as a simple up-counter.
As an up-counter, the main 16-bit counter counts from $0000 through its terminal count and then continues
with $0000. The terminal count is $FFFF or a modulus value in TPMxMODH:TPMxMODL.

When center-aligned PWM operation is specified, the counter counts upward from $0000 through its
terminal count and then counts downward to $0000 where it returns to up-counting. Both $0000 and the
terminal count value (value in TPMxMODH:TPMxMODL) are normal length counts (one timer clock
period long).

An interrupt flag and enable are associated with the main 16-bit counter. The timer overflow flag (TOF) is
a software-accessible indication that the timer counter has overflowed. The enable signal selects between
software polling (TOIE = 0) where no hardware interrupt is generated, or interrupt-driven operation
(TOIE = 1) where a static hardware interrupt is automatically generated whenever the TOF flag is 1.

The conditions that cause TOF to become set depend on the counting mode (up or up/down). In
up-counting mode, the main 16-bit counter counts from $0000 through $FFFF and overflows to $0000 on
the next counting clock. TOF becomes set at the transition from $FFFF to $0000. When a modulus limit
is set, TOF becomes set at the transition from the value set in the modulus register to $0000. When the
main 16-bit counter is operating in up-/down-counting mode, the TOF flag gets set as the counter changes
direction at the transition from the value set in the modulus register and the next lower count value. This
corresponds to the end of a PWM period. (The $0000 count value corresponds to the center of a period.)

Timer/PWM (TPM)

MC9S08GB60A Data Sheet, Rev. 2

166 Freescale Semiconductor

10.7.2 Timer x Counter Registers (TPMxCNTH:TPMxCNTL)

The two read-only TPM counter registers contain the high and low bytes of the value in the TPM counter.
Reading either byte (TPMxCNTH or TPMxCNTL) latches the contents of both bytes into a buffer where
they remain latched until the other byte is read. This allows coherent 16-bit reads in either order. The
coherency mechanism is automatically restarted by an MCU reset, a write of any value to TPMxCNTH or
TPMxCNTL, or any write to the timer status/control register (TPMxSC).

Reset clears the TPM counter registers.

Table 10-2. TPM Clock Source Selection

CLKSB:CLKSA TPM Clock Source to Prescaler Input

0:0 No clock selected (TPM disabled)

0:1 Bus rate clock (BUSCLK)

1:0 Fixed system clock (XCLK)

1:1 External source (TPMx Ext Clk)1,2

1. The maximum frequency that is allowed as an external clock is one-fourth of the bus frequency.
2. When the TPMxCH0 pin is selected as the TPM clock source, the corresponding ELS0B:ELS0A control bits should be set to

0:0 so channel 0 does not try to use the same pin for a conflicting function.

Table 10-3. Prescale Divisor Selection

PS2:PS1:PS0 TPM Clock Source Divided-By

0:0:0 1

0:0:1 2

0:1:0 4

0:1:1 8

1:0:0 16

1:0:1 32

1:1:0 64

1:1:1 128

 7 6 5 4 3 2 1 0

R Bit 15 14 13 12 11 10 9 Bit 8

W Any write to TPMxCNTH clears the 16-bit counter.

Reset 0 0 0 0 0 0 0 0

Figure 10-6. Timer x Counter Register High (TPMxCNTH)

 7 6 5 4 3 2 1 0

R Bit 7 6 5 4 3 2 1 Bit 0

W Any write to TPMxCNTL clears the 16-bit counter.

Reset 0 0 0 0 0 0 0 0

Figure 10-7. Timer x Counter Register Low (TPMxCNTL)

Timer/PWM (TPM)

MC9S08GB60A Data Sheet, Rev. 2

168 Freescale Semiconductor

10.7.4 Timer x Channel n Status and Control Register (TPMxCnSC)

TPMxCnSC contains the channel interrupt status flag and control bits that are used to configure the
interrupt enable, channel configuration, and pin function.

 7 6 5 4 3 2 1 0

R
CHnF CHnIE MSnB MSnA ELSnB ELSnA

0 0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 10-10. Timer x Channel n Status and Control Register (TPMxCnSC)

Table 10-4. TPMxCnSC Register Field Descriptions

Field Description

7
CHnF

Channel n Flag — When channel n is configured for input capture, this flag bit is set when an active edge occurs
on the channel n pin. When channel n is an output compare or edge-aligned PWM channel, CHnF is set when
the value in the TPM counter registers matches the value in the TPM channel n value registers. This flag is
seldom used with center-aligned PWMs because it is set every time the counter matches the channel value
register, which correspond to both edges of the active duty cycle period.
A corresponding interrupt is requested when CHnF is set and interrupts are enabled (CHnIE = 1). Clear CHnF
by reading TPMxCnSC while CHnF is set and then writing a 0 to CHnF. If another interrupt request occurs before
the clearing sequence is complete, the sequence is reset so CHnF would remain set after the clear sequence
was completed for the earlier CHnF. This is done so a CHnF interrupt request cannot be lost by clearing a
previous CHnF. Reset clears CHnF. Writing a 1 to CHnF has no effect.
0 No input capture or output compare event occurred on channel n
1 Input capture or output compare event occurred on channel n

6
CHnIE

Channel n Interrupt Enable — This read/write bit enables interrupts from channel n. Reset clears CHnIE.
0 Channel n interrupt requests disabled (use software polling)
1 Channel n interrupt requests enabled

5
MSnB

Mode Select B for TPM Channel n — When CPWMS = 0, MSnB = 1 configures TPM channel n for
edge-aligned PWM mode. For a summary of channel mode and setup controls, refer to Table 10-5.

4
MSnA

Mode Select A for TPM Channel n — When CPWMS = 0 and MSnB = 0, MSnA configures TPM channel n for
input capture mode or output compare mode. Refer to Table 10-5 for a summary of channel mode and setup
controls.

3:2
ELSn[B:A]

Edge/Level Select Bits — Depending on the operating mode for the timer channel as set by
CPWMS:MSnB:MSnA and shown in Table 10-5, these bits select the polarity of the input edge that triggers an
input capture event, select the level that will be driven in response to an output compare match, or select the
polarity of the PWM output.
Setting ELSnB:ELSnA to 0:0 configures the related timer pin as a general-purpose I/O pin unrelated to any timer
channel functions. This function is typically used to temporarily disable an input capture channel or to make the
timer pin available as a general-purpose I/O pin when the associated timer channel is set up as a software timer
that does not require the use of a pin. This is also the setting required for channel 0 when the TPMxCH0 pin is
used as an external clock input.

Chapter 11 Serial Communications Interface (S08SCIV1)

MC9S08GB60A Data Sheet, Rev. 2

172 Freescale Semiconductor

Figure 11-1. Block Diagram Highlighting the SCI Modules

PTD3/TPM2CH0
PTD4/TPM2CH1
PTD5/TPM2CH2
PTD6/TPM2CH3

PTC1/RxD2
PTC0/TxD2

VSS

VDD

PTE3/MISO1
PTE2/SS1

PTA7/KBI1P7–

PTE0/TxD1
PTE1/RxD1

PTD2/TPM1CH2
PTD1/TPM1CH1
PTD0/TPM1CH0

PTC7
PTC6
PTC5
PTC4
PTC3/SCL1
PTC2/SDA1

PO
R

T
A

PO
R

T
C

PO
R

T
D

P
O

R
T

E

8-BIT KEYBOARD
INTERRUPT MODULE

IIC MODULE

SERIAL PERIPHERAL
 INTERFACE MODULE

USER FLASH

USER RAM
(Gx60A = 4096 BYTES)

DEBUG
MODULE

(Gx60A = 61,268 BYTES)

HCS08 CORE

Note: Not all pins are bonded out in all packages. See Table 2-2 for complete details.

3-CHANNEL TIMER/PWM
MODULE

PTB7/AD1P7–

PO
R

T
B

PTE5/SPSCK1
PTE4/MOSI1

PTE6
PTE7

INTERFACE MODULE

HCS08 SYSTEM CONTROL

RESETS AND INTERRUPTS
MODES OF OPERATION
POWER MANAGEMENT

VOLTAGE
REGULATOR

RTI

SERIAL COMMUNICATIONS

COP

IRQ LVD

LOW-POWER OSCILLATOR

INTERNAL CLOCK
GENERATOR

 RESET ANALOG-TO-DIGITAL
CONVERTER (10-BIT)

INTERFACE MODULE
SERIAL COMMUNICATIONS

5-CHANNEL TIMER/PWM
MODULE

P
O

R
T

F
PTF7–PTF0

PTD7/TPM2CH4

8

PTA0/KBI1P0

8

PTB0/AD1P0

8

PTG3
PTG2/EXTAL

PTG0/BKGD/MS
PTG1/XTAL

P
O

R
T

G

PTG7–PTG4

(Gx32A = 32,768 BYTES)

(Gx32A = 2048 BYTES)

CPU

(DBG)

(KBI1)

(ATD1)

(IIC1)

(SCI2)

(TPM2)

(TPM1)

(SPI1)

(SCI1)

(ICG)

8

8

SCL1
SDA1
SCL1
SCL1

5

3

SPSCK1
MOSI1
MISO1
SS1
RxD1
TxD1

VSSAD

VDDAD

VREFH
VREFL

EXTAL
XTAL
BKGD

BDC

4

IRQ

= Not connected in 48-, 44-, and 42-pin packages

= Not connected in 44- and 42-pin packages

= Not connected in 42-pin packages

Block Diagram Symbol Key:

Serial Peripheral Interface (S08SPIV3)

MC9S08GB60A Data Sheet, Rev. 2

196 Freescale Semiconductor

NOTE

Ensure that the SPI should not be disabled (SPE=0) at the same time as a bit change to the CPHA bit. These
changes should be performed as separate operations or unexpected behavior may occur.

12.4.2 SPI Control Register 2 (SPI1C2)

This read/write register is used to control optional features of the SPI system. Bits 7, 6, 5, and 2 are not
implemented and always read 0.

4
MSTR

Master/Slave Mode Select
0 SPI module configured as a slave SPI device
1 SPI module configured as a master SPI device

3
CPOL

Clock Polarity — This bit effectively places an inverter in series with the clock signal from a master SPI or to a
slave SPI device. Refer to Section 12.5.1, “SPI Clock Formats” for more details.
0 Active-high SPI clock (idles low)
1 Active-low SPI clock (idles high)

2
CPHA

Clock Phase — This bit selects one of two clock formats for different kinds of synchronous serial peripheral
devices. Refer to Section 12.5.1, “SPI Clock Formats” for more details.
0 First edge on SPSCK occurs at the middle of the first cycle of an 8-cycle data transfer
1 First edge on SPSCK occurs at the start of the first cycle of an 8-cycle data transfer

1
SSOE

Slave Select Output Enable — This bit is used in combination with the mode fault enable (MODFEN) bit in
SPCR2 and the master/slave (MSTR) control bit to determine the function of the SS pin as shown in Table 12-2.

0
LSBFE

LSB First (Shifter Direction)
0 SPI serial data transfers start with most significant bit
1 SPI serial data transfers start with least significant bit

Table 12-2. SS Pin Function

MODFEN SSOE Master Mode Slave Mode

0 0 General-purpose I/O (not SPI) Slave select input

0 1 General-purpose I/O (not SPI) Slave select input

1 0 SS input for mode fault Slave select input

1 1 Automatic SS output Slave select input

 7 6 5 4 3 2 1 0

R 0 0 0
MODFEN BIDIROE

0
SPISWAI SPC0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 12-6. SPI Control Register 2 (SPI1C2)

Table 12-1. SPI1C1 Field Descriptions (continued)

Field Description

Serial Peripheral Interface (S08SPIV3)

MC9S08GB60A Data Sheet, Rev. 2

202 Freescale Semiconductor

in LSBFE. Both variations of SPSCK polarity are shown, but only one of these waveforms applies for a
specific transfer, depending on the value in CPOL. The SAMPLE IN waveform applies to the MOSI input
of a slave or the MISO input of a master. The MOSI waveform applies to the MOSI output pin from a
master and the MISO waveform applies to the MISO output from a slave. The SS OUT waveform applies
to the slave select output from a master (provided MODFEN and SSOE = 1). The master SS output goes
to active low at the start of the first bit time of the transfer and goes back high one-half SPSCK cycle after
the end of the eighth bit time of the transfer. The SS IN waveform applies to the slave select input of a
slave.

Figure 12-11. SPI Clock Formats (CPHA = 0)

When CPHA = 0, the slave begins to drive its MISO output with the first data bit value (MSB or LSB
depending on LSBFE) when SS goes to active low. The first SPSCK edge causes both the master and the
slave to sample the data bit values on their MISO and MOSI inputs, respectively. At the second SPSCK
edge, the SPI shifter shifts one bit position which shifts in the bit value that was just sampled and shifts the
second data bit value out the other end of the shifter to the MOSI and MISO outputs of the master and
slave, respectively. When CPHA = 0, the slave’s SS input must go to its inactive high level between
transfers.

BIT TIME #
(REFERENCE)

MSB FIRST
LSB FIRST

SPSCK
(CPOL = 0)

SPSCK
(CPOL = 1)

SAMPLE IN
(MISO OR MOSI)

MOSI
(MASTER OUT)

MISO
(SLAVE OUT)

SS OUT
(MASTER)

SS IN
(SLAVE)

BIT 7
BIT 0

BIT 6
BIT 1

BIT 2
BIT 5

BIT 1
BIT 6

BIT 0
BIT 7

1 2 6 7 8...

...

...

Inter-Integrated Circuit (S08IICV1)

MC9S08GB60A Data Sheet, Rev. 2

216 Freescale Semiconductor

13.4.1.1 START Signal

When the bus is free; i.e., no master device is engaging the bus (both SCL and SDA lines are at logical
high), a master may initiate communication by sending a START signal. As shown in Figure 13-8, a
START signal is defined as a high-to-low transition of SDA while SCL is high. This signal denotes the
beginning of a new data transfer (each data transfer may contain several bytes of data) and brings all slaves
out of their idle states.

13.4.1.2 Slave Address Transmission

The first byte of data transferred immediately after the START signal is the slave address transmitted by
the master. This is a seven-bit calling address followed by a R/W bit. The R/W bit tells the slave the desired
direction of data transfer.

1 = Read transfer, the slave transmits data to the master.
0 = Write transfer, the master transmits data to the slave.

Only the slave with a calling address that matches the one transmitted by the master will respond by
sending back an acknowledge bit. This is done by pulling the SDA low at the 9th clock (see Figure 13-8).

No two slaves in the system may have the same address. If the IIC module is the master, it must not
transmit an address that is equal to its own slave address. The IIC cannot be master and slave at the same
time. However, if arbitration is lost during an address cycle, the IIC will revert to slave mode and operate
correctly even if it is being addressed by another master.

13.4.1.3 Data Transfer

Before successful slave addressing is achieved, the data transfer can proceed byte-by-byte in a direction
specified by the R/W bit sent by the calling master.

All transfers that come after an address cycle are referred to as data transfers, even if they carry sub-address
information for the slave device

Each data byte is 8 bits long. Data may be changed only while SCL is low and must be held stable while
SCL is high as shown in Figure 13-8. There is one clock pulse on SCL for each data bit, the MSB being
transferred first. Each data byte is followed by a 9th (acknowledge) bit, which is signalled from the
receiving device. An acknowledge is signalled by pulling the SDA low at the ninth clock. In summary, one
complete data transfer needs nine clock pulses.

If the slave receiver does not acknowledge the master in the 9th bit time, the SDA line must be left high
by the slave. The master interprets the failed acknowledge as an unsuccessful data transfer.

If the master receiver does not acknowledge the slave transmitter after a data byte transmission, the slave
interprets this as an end of data transfer and releases the SDA line.

In either case, the data transfer is aborted and the master does one of two things:
• Relinquishes the bus by generating a STOP signal.
• Commences a new calling by generating a repeated START signal.

Inter-Integrated Circuit (S08IICV1)

MC9S08GB60A Data Sheet, Rev. 2

220 Freescale Semiconductor

13.7 Initialization/Application Information

Figure 13-10. IIC Module Quick Start

Module Initialization (Slave)
1. Write: IICA

— to set the slave address
2. Write: IICC

— to enable IIC and interrupts
3. Initialize RAM variables (IICEN = 1 and IICIE = 1) for transmit data
4. Initialize RAM variables used to achieve the routine shown in Figure 13-11

Module Initialization (Master)
1. Write: IICF

— to set the IIC baud rate (example provided in this chapter)
2. Write: IICC

— to enable IIC and interrupts
3. Initialize RAM variables (IICEN = 1 and IICIE = 1) for transmit data
4. Initialize RAM variables used to achieve the routine shown in Figure 13-11
5. Write: IICC

— to enable TX
6. Write: IICC

— to enable MST (master mode)
7. Write: IICD

— with the address of the target slave. (The LSB of this byte will determine whether the communication is
master receive or transmit.)

Module Use
The routine shown in Figure 13-11 can handle both master and slave IIC operations. For slave operation, an
incoming IIC message that contains the proper address will begin IIC communication. For master operation,
communication must be initiated by writing to the IICD register.

0

IICF

IICA

Baud rate = BUSCLK / (2 x MULT x (SCL DIVIDER))

TX TXAK RSTA 0 0IICC IICEN IICIE MST

Module configuration

ARBL 0 SRW IICIF RXAKIICS TCF IAAS BUSY

Module status flags

Register Model

ADDR

Address to which the module will respond when addressed as a slave (in slave mode)

MULT ICR

IICD DATA

Data register; Write to transmit IIC data read to read IIC data

Development Support

MC9S08GB60A Data Sheet, Rev. 2

248 Freescale Semiconductor

The SYNC command is unlike other BDC commands because the host does not necessarily know the
correct communications speed to use for BDC communications until after it has analyzed the response to
the SYNC command.

To issue a SYNC command, the host:
• Drives the BKGD pin low for at least 128 cycles of the slowest possible BDC clock (The slowest

clock is normally the reference oscillator/64 or the self-clocked rate/64.)
• Drives BKGD high for a brief speedup pulse to get a fast rise time (This speedup pulse is typically

one cycle of the fastest clock in the system.)
• Removes all drive to the BKGD pin so it reverts to high impedance
• Monitors the BKGD pin for the sync response pulse

The target, upon detecting the SYNC request from the host (which is a much longer low time than would
ever occur during normal BDC communications):

• Waits for BKGD to return to a logic high
• Delays 16 cycles to allow the host to stop driving the high speedup pulse
• Drives BKGD low for 128 BDC clock cycles
• Drives a 1-cycle high speedup pulse to force a fast rise time on BKGD
• Removes all drive to the BKGD pin so it reverts to high impedance

The host measures the low time of this 128-cycle sync response pulse and determines the correct speed for
subsequent BDC communications. Typically, the host can determine the correct communication speed
within a few percent of the actual target speed and the communication protocol can easily tolerate speed
errors of several percent.

15.2.4 BDC Hardware Breakpoint

The BDC includes one relatively simple hardware breakpoint that compares the CPU address bus to a
16-bit match value in the BDCBKPT register. This breakpoint can generate a forced breakpoint or a tagged
breakpoint. A forced breakpoint causes the CPU to enter active background mode at the first instruction
boundary following any access to the breakpoint address. The tagged breakpoint causes the instruction
opcode at the breakpoint address to be tagged so that the CPU will enter active background mode rather
than executing that instruction if and when it reaches the end of the instruction queue. This implies that
tagged breakpoints can only be placed at the address of an instruction opcode while forced breakpoints can
be set at any address.

The breakpoint enable (BKPTEN) control bit in the BDC status and control register (BDCSCR) is used to
enable the breakpoint logic (BKPTEN = 1). When BKPTEN = 0, its default value after reset, the
breakpoint logic is disabled and no BDC breakpoints are requested regardless of the values in other BDC
breakpoint registers and control bits. The force/tag select (FTS) control bit in BDCSCR is used to select
forced (FTS = 1) or tagged (FTS = 0) type breakpoints.

The on-chip debug module (DBG) includes circuitry for two additional hardware breakpoints that are more
flexible than the simple breakpoint in the BDC module.

Development Support

MC9S08GB60A Data Sheet, Rev. 2

250 Freescale Semiconductor

the host must perform ((8 – CNT) – 1) dummy reads of the FIFO to advance it to the first significant entry
in the FIFO.

In most trigger modes, the information stored in the FIFO consists of 16-bit change-of-flow addresses. In
these cases, read DBGFH then DBGFL to get one coherent word of information out of the FIFO. Reading
DBGFL (the low-order byte of the FIFO data port) causes the FIFO to shift so the next word of information
is available at the FIFO data port. In the event-only trigger modes (see Section 15.3.5, “Trigger Modes”),
8-bit data information is stored into the FIFO. In these cases, the high-order half of the FIFO (DBGFH) is
not used and data is read out of the FIFO by simply reading DBGFL. Each time DBGFL is read, the FIFO
is shifted so the next data value is available through the FIFO data port at DBGFL.

In trigger modes where the FIFO is storing change-of-flow addresses, there is a delay between CPU
addresses and the input side of the FIFO. Because of this delay, if the trigger event itself is a
change-of-flow address or a change-of-flow address appears during the next two bus cycles after a trigger
event starts the FIFO, it will not be saved into the FIFO. In the case of an end-trace, if the trigger event is
a change-of-flow, it will be saved as the last change-of-flow entry for that debug run.

The FIFO can also be used to generate a profile of executed instruction addresses when the debugger is
not armed. When ARM = 0, reading DBGFL causes the address of the most-recently fetched opcode to be
saved in the FIFO. To use the profiling feature, a host debugger would read addresses out of the FIFO by
reading DBGFH then DBGFL at regular periodic intervals. The first eight values would be discarded
because they correspond to the eight DBGFL reads needed to initially fill the FIFO. Additional periodic
reads of DBGFH and DBGFL return delayed information about executed instructions so the host debugger
can develop a profile of executed instruction addresses.

15.3.3 Change-of-Flow Information

To minimize the amount of information stored in the FIFO, only information related to instructions that
cause a change to the normal sequential execution of instructions is stored. With knowledge of the source
and object code program stored in the target system, an external debugger system can reconstruct the path
of execution through many instructions from the change-of-flow information stored in the FIFO.

For conditional branch instructions where the branch is taken (branch condition was true), the source
address is stored (the address of the conditional branch opcode). Because BRA and BRN instructions are
not conditional, these events do not cause change-of-flow information to be stored in the FIFO.

Indirect JMP and JSR instructions use the current contents of the H:X index register pair to determine the
destination address, so the debug system stores the run-time destination address for any indirect JMP or
JSR. For interrupts, RTI, or RTS, the destination address is stored in the FIFO as change-of-flow
information.

15.3.4 Tag vs. Force Breakpoints and Triggers

Tagging is a term that refers to identifying an instruction opcode as it is fetched into the instruction queue,
but not taking any other action until and unless that instruction is actually executed by the CPU. This
distinction is important because any change-of-flow from a jump, branch, subroutine call, or interrupt
causes some instructions that have been fetched into the instruction queue to be thrown away without being
executed.

