

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Obsolete                                                    |
|----------------------------|-------------------------------------------------------------|
| Core Processor             | S08                                                         |
| Core Size                  | 8-Bit                                                       |
| Speed                      | 40MHz                                                       |
| Connectivity               | I <sup>2</sup> C, SCI, SPI                                  |
| Peripherals                | LVD, POR, PWM, WDT                                          |
| Number of I/O              | 33                                                          |
| Program Memory Size        | 60KB (60K × 8)                                              |
| Program Memory Type        | FLASH                                                       |
| EEPROM Size                | -                                                           |
| RAM Size                   | 4K x 8                                                      |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 3.6V                                                 |
| Data Converters            | A/D 8x10b                                                   |
| Oscillator Type            | Internal                                                    |
| Operating Temperature      | -40°C ~ 85°C (TA)                                           |
| Mounting Type              | Through Hole                                                |
| Package / Case             | 42-SDIP (0.600", 15.24mm)                                   |
| Supplier Device Package    | 42-PDIP                                                     |
| Purchase URL               | https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s08gt60acbe |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong





**Chapter 2 Pins and Connections** 



Figure 2-5. Basic System Connections



### 4.2 Register Addresses and Bit Assignments

The registers in the MC9S08GBxxA/GTxxA are divided into these three groups:

- Direct-page registers are located in the first 128 locations in the memory map, so they are accessible with efficient direct addressing mode instructions.
- High-page registers are used much less often, so they are located above 0x1800 in the memory map. This leaves more room in the direct page for more frequently used registers and variables.
- The nonvolatile register area consists of a block of 16 locations in flash memory at 0xFFB0–0xFFBF.

Nonvolatile register locations include:

- Three values which are loaded into working registers at reset
- An 8-byte backdoor comparison key which optionally allows a user to gain controlled access to secure memory

Because the nonvolatile register locations are flash memory, they must be erased and programmed like other flash memory locations.

Direct-page registers can be accessed with efficient direct addressing mode instructions. Bit manipulation instructions can be used to access any bit in any direct-page register. Table 4-2 is a summary of all user-accessible direct-page registers and control bits.

The direct page registers in Table 4-2 can use the more efficient direct addressing mode which only requires the lower byte of the address. Because of this, the lower byte of the address in column one is shown in bold text. In Table 4-3 and Table 4-4 the whole address in column one is shown in bold. In Table 4-2, Table 4-3, and Table 4-4, the register names in column two are shown in bold to set them apart from the bit names to the right. Cells that are not associated with named bits are shaded. A shaded cell with a 0 indicates this unused bit always reads as a 0. Shaded cells with dashes indicate unused or reserved bit locations that could read as 1s or 0s.



in the CCR is 0 to allow interrupts. The global interrupt mask (I bit) in the CCR is initially set after reset which masks (prevents) all maskable interrupt sources. The user program initializes the stack pointer and performs other system setup before clearing the I bit to allow the CPU to respond to interrupts.

When the CPU receives a qualified interrupt request, it completes the current instruction before responding to the interrupt. The interrupt sequence follows the same cycle-by-cycle sequence as the SWI instruction and consists of:

- Saving the CPU registers on the stack
- Setting the I bit in the CCR to mask further interrupts
- Fetching the interrupt vector for the highest-priority interrupt that is currently pending
- Filling the instruction queue with the first three bytes of program information starting from the address fetched from the interrupt vector locations

While the CPU is responding to the interrupt, the I bit is automatically set to avoid the possibility of another interrupt interrupting the ISR itself (this is called nesting of interrupts). Normally, the I bit is restored to 0 when the CCR is restored from the value stacked on entry to the ISR. In rare cases, the I bit may be cleared inside an ISR (after clearing the status flag that generated the interrupt) so that other interrupts can be serviced without waiting for the first service routine to finish. This practice is not recommended for anyone other than the most experienced programmers because it can lead to subtle program errors that are difficult to debug.

The interrupt service routine ends with a return-from-interrupt (RTI) instruction which restores the CCR, A, X, and PC registers to their pre-interrupt values by reading the previously saved information off the stack.

### NOTE

For compatibility with the M68HC08, the H register is not automatically saved and restored. It is good programming practice to push H onto the stack at the start of the interrupt service routine (ISR) and restore it just before the RTI that is used to return from the ISR.

When two or more interrupts are pending when the I bit is cleared, the highest priority source is serviced first (see Table 5-1).

### 5.5.1 Interrupt Stack Frame

Figure 5-1 shows the contents and organization of a stack frame. Before the interrupt, the stack pointer (SP) points at the next available byte location on the stack. The current values of CPU registers are stored on the stack starting with the low-order byte of the program counter (PCL) and ending with the CCR. After stacking, the SP points at the next available location on the stack which is the address that is one less than the address where the CCR was saved. The PC value that is stacked is the address of the instruction in the main program that would have executed next if the interrupt had not occurred.



Chapter 5 Resets, Interrupts, and System Configuration

### 5.8.8 System Power Management Status and Control 2 Register (SPMSC2)

ī.

This register is used to report the status of the low voltage warning function, and to configure the stop mode behavior of the MCU.

|                     | 7                | 6            | 5               | 4  | 3             | 2          | 1   | 0    |  |
|---------------------|------------------|--------------|-----------------|----|---------------|------------|-----|------|--|
| R                   | LVWF             | 0            |                 |    | PPDF          | 0          |     | PPDC |  |
| W                   |                  | LVWACK       | LVDV            |    |               | PPDACK     | PDC |      |  |
| Power-on<br>reset:  | 0 <sup>(1)</sup> | 0            | 0               | 0  | 0             | 0          | 0   | 0    |  |
| LVD reset:          | 0 <sup>(1)</sup> | 0            | U               | U  | 0             | 0          | 0   | 0    |  |
| Any other<br>reset: | 0 <sup>(1)</sup> | 0            | U               | U  | 0             | 0          | 0   | 0    |  |
|                     |                  | = Unimplemer | nted or Reserve | ed | U = Unaffecte | d by reset |     |      |  |

<sup>1</sup> LVWF will be set in the case when  $V_{Supply}$  transitions below the trip point or after reset and  $V_{Supply}$  is already below  $V_{LVW}$ .

### Figure 5-10. System Power Management Status and Control 2 Register (SPMSC2)

| Table 5-11. | SPMSC2 Field | Descriptions |
|-------------|--------------|--------------|
|-------------|--------------|--------------|

| Field       | Description                                                                                                                                                                                                                                                                    |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7<br>LVWF   | <ul> <li>Low-Voltage Warning Flag — The LVWF bit indicates the low voltage warning status.</li> <li>0 Low voltage warning not present.</li> <li>1 Low voltage warning is present or was present.</li> </ul>                                                                    |
| 6<br>LVWACK | <b>Low-Voltage Warning Acknowledge</b> — The LVWACK bit is the low-voltage warning acknowledge. Writing a 1 to LVWACK clears LVWF to 0 if a low voltage warning is not present.                                                                                                |
| 5<br>LVDV   | <ul> <li>Low-Voltage Detect Voltage Select — The LVDV bit selects the LVD trip point voltage (V<sub>LVD</sub>).</li> <li>0 Low trip point selected (V<sub>LVD</sub> = V<sub>LVDL</sub>).</li> <li>1 High trip point selected (V<sub>LVD</sub> = V<sub>LVDH</sub>).</li> </ul>  |
| 4<br>LVWV   | <ul> <li>Low-Voltage Warning Voltage Select — The LVWV bit selects the LVW trip point voltage (V<sub>LVW</sub>).</li> <li>0 Low trip point selected (V<sub>LVW</sub> = V<sub>LVWL</sub>).</li> <li>1 High trip point selected (V<sub>LVW</sub> = V<sub>LVWH</sub>).</li> </ul> |
| 3<br>PPDF   | <ul> <li>Partial Power Down Flag — The PPDF bit indicates that the MCU has exited the stop2 mode.</li> <li>0 Not stop2 mode recovery.</li> <li>1 Stop2 mode recovery.</li> </ul>                                                                                               |
| 2<br>PPDACK | Partial Power Down Acknowledge — Writing a 1 to PPDACK clears the PPDF bit.                                                                                                                                                                                                    |
| 1<br>PDC    | <ul> <li>Power Down Control — The write-once PDC bit controls entry into the power down (stop2 and stop1) modes.</li> <li>0 Power down modes are disabled.</li> <li>1 Power down modes are enabled.</li> </ul>                                                                 |
| 0<br>PPDC   | <ul> <li>Partial Power Down Control — The write-once PPDC bit controls which power down mode, stop1 or stop2, is selected.</li> <li>0 Stop1, full power down, mode enabled if PDC set.</li> <li>1 Stop2, partial power down, mode enabled if PDC set.</li> </ul>               |



**Chapter 6 Parallel Input/Output** 

Port A can be configured to be keyboard interrupt input pins. Refer to Chapter 9, "Keyboard Interrupt (S08KBIV1)," for more information about using port A pins as keyboard interrupts pins.

### 6.3.2 Port B and Analog to Digital Converter Inputs

| Port B                       |          | Bit 7          | 6              | 5              | 4              | 3              | 2              | 1              | Bit 0          |  |  |  |
|------------------------------|----------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--|--|--|
|                              | MCU Pin: | PTB7/<br>AD1P7 | PTB6/<br>AD1P6 | PTB5/<br>AD1P5 | PTB4/<br>AD1P4 | PTB3/<br>AD1P3 | PTB2/<br>AD1P2 | PTB1/<br>AD1P1 | PTB0/<br>AD1P0 |  |  |  |
| Figure 6-3. Port B Pin Names |          |                |                |                |                |                |                |                |                |  |  |  |

Port B is an 8-bit port shared among the ATD inputs and general-purpose I/O. Any pin enabled as an ATD input will be forced to act as an input.

Port B pins are available as general-purpose I/O pins controlled by the port B data (PTBD), data direction (PTBDD), pullup enable (PTBPE), and slew rate control (PTBSE) registers. Refer to Section 6.4, "Parallel I/O Controls," for more information about general-purpose I/O control.

When the ATD module is enabled, analog pin enables are used to specify which pins on port B will be used as ATD inputs. Refer to Chapter 14, "Analog-to-Digital Converter (S08ATDV3)," for more information about using port B pins as ATD pins.

### 6.3.3 Port C and SCI2, IIC, and High-Current Drivers

| Port C |          | Bit 7 | 6    | 5    | 3    | 3             | 2             | 1             | Bit 0         |
|--------|----------|-------|------|------|------|---------------|---------------|---------------|---------------|
|        | MCU Pin: | PTC7  | PTC6 | PTC5 | PTC4 | PTC3/<br>SCL1 | PTC2/<br>SDA1 | PTC1/<br>RxD2 | PTC0/<br>TxD2 |

### Figure 6-4. Port C Pin Names

Port C is an 8-bit port which is shared among the SCI2 and IIC1 modules, and general-purpose I/O. When SCI2 or IIC1 modules are enabled, the pin direction will be controlled by the module or function. Port C has high current output drivers.

Port C pins are available as general-purpose I/O pins controlled by the port C data (PTCD), data direction (PTCDD), pullup enable (PTCPE), and slew rate control (PTCSE) registers. Refer to Section 6.4, "Parallel I/O Controls," for more information about general-purpose I/O control.

When the SCI2 module is enabled, PTC0 serves as the SCI2 module's transmit pin (TxD2) and PTC1 serves as the receive pin (RxD2). Refer to Chapter 11, "Serial Communications Interface (S08SCIV1)," for more information about using PTC0 and PTC1 as SCI pins

When the IIC module is enabled, PTC2 serves as the IIC modules's serial data input/output pin (SDA1) and PTC3 serves as the clock pin (SCL1). Refer to Chapter 13, "Inter-Integrated Circuit (S08IICV1)," for more information about using PTC2 and PTC3 as IIC pins.



#### Internal Clock Generator (S08ICGV2)



Figure 7-10. ICG Initialization and Stop Recovery for Example #3

### 7.4.5 Example #4: Internal Clock Generator Trim

The internally generated clock source is guaranteed to have a period  $\pm 25\%$  of the nominal value. In some case this may be sufficient accuracy. For other applications that require a tight frequency tolerance, a trimming procedure is provided that will allow a very accurate source. This section outlines one example of trimming the internal oscillator. Many other possible trimming procedures are valid and can be used.



### 7.5.4 ICG Status Register 2 (ICGS2)



#### Figure 7-15. ICG Status Register 2 (ICGS2)

#### Table 7-9. ICGS2 Field Descriptions

| Field     | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0<br>DCOS | <ul> <li>DCO Clock Stable — The DCOS bit is set when the DCO clock (ICG2DCLK) is stable, meaning the count error has not changed by more than n<sub>unlock</sub> for two consecutive samples and the DCO clock is not static. This bit is used when exiting off state if CLKS = X1 to determine when to switch to the requested clock mode. It is also used in self-clocked mode to determine when to start monitoring the DCO clock. This bit is cleared upon entering the off state.</li> <li>0 DCO clock is unstable.</li> <li>1 DCO clock is stable.</li> </ul> |

### 7.5.5 ICG Filter Registers (ICGFLTU, ICGFLTL)

The filter registers show the filter value (FLT).



Figure 7-16. ICG Upper Filter Register (ICGFLTU)

### Table 7-10. ICGFLTU Field Descriptions

| Field      | Description                                                                                                                                                                                                                                                                                                                                                                                        |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3:0<br>FLT | <b>Filter Value</b> — The FLT bits indicate the current filter value, which controls the DCO frequency. The FLT bits are read only except when the CLKS bits are programmed to self-clocked mode (CLKS = 00). In self-clocked mode, any write to ICGFLTU updates the current 12-bit filter value. Writes to the ICGFLTU register will not affect FLT if a previous latch sequence is not complete. |

Chapter 8 Central Processor Unit (S08CPUV2)

- IX = 16-bit indexed no offset
- IX+ = 16-bit indexed no offset, post increment (CBEQ and MOV only)
- IX1 = 16-bit indexed with 8-bit offset from H:X
- IX1+ = 16-bit indexed with 8-bit offset, post increment (CBEQ only)
- IX2 = 16-bit indexed with 16-bit offset from H:X
- REL = 8-bit relative offset
- SP1 = Stack pointer with 8-bit offset
- SP2 = Stack pointer with 16-bit offset

### Table 8-2. HCS08 Instruction Set Summary (Sheet 1 of 7)

| Source                                                                                                               | Oneration                                                  | Description                                                          |    | c  | Eff<br>on ( | iec<br>CC | t<br>R |    | ess<br>de                                           | ode                                              | and                                             | ycles <sup>1</sup>              |
|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------|----|----|-------------|-----------|--------|----|-----------------------------------------------------|--------------------------------------------------|-------------------------------------------------|---------------------------------|
| Form                                                                                                                 | Operation                                                  | Description                                                          | v  | н  | I           | N         | z      | с  | Addr<br>Mo                                          | Opc                                              | Oper                                            | Bus C                           |
| ADC #opr8i<br>ADC opr8a<br>ADC opr16a<br>ADC oprx16,X<br>ADC oprx8,X<br>ADC oprx8,X<br>ADC oprx16,SP<br>ADC oprx8,SP | Add with Carry                                             | A ← (A) + (M) + (C)                                                  | \$ | \$ | _           | ¢         | \$     | \$ | IMM<br>DIR<br>EXT<br>IX2<br>IX1<br>IX<br>SP2<br>SP1 | A9<br>B9<br>C9<br>D9<br>E9<br>F9<br>9ED9<br>9EE9 | ii<br>dd<br>hh II<br>ee ff<br>ff<br>ee ff<br>ff | 2<br>3<br>4<br>3<br>3<br>5<br>4 |
| ADD #opr8i<br>ADD opr8a<br>ADD opr16a<br>ADD oprx16,X<br>ADD oprx8,X<br>ADD ,X<br>ADD oprx16,SP<br>ADD oprx8,SP      | Add without Carry                                          | A ← (A) + (M)                                                        | \$ | \$ | _           | ¢         | €      | \$ | IMM<br>DIR<br>EXT<br>IX2<br>IX1<br>IX<br>SP2<br>SP1 | AB<br>BB<br>CB<br>DB<br>EB<br>FB<br>9EDB<br>9EEB | ii<br>dd<br>hh II<br>ee ff<br>ff<br>ee ff<br>ff | 23443354                        |
| AIS #opr8i                                                                                                           | Add Immediate Value<br>(Signed) to Stack Pointer           | $SP \leftarrow (SP) + (M)$<br>M is sign extended to a 16-bit value   | -  | -  | -           | -         | -      | -  | IMM                                                 | A7                                               | ii                                              | 2                               |
| AIX #opr8i                                                                                                           | Add Immediate Value<br>(Signed) to Index<br>Register (H:X) | $H:X \leftarrow (H:X) + (M)$<br>M is sign extended to a 16-bit value | -  | -  | -           | -         | -      | -  | ІММ                                                 | AF                                               | ii                                              | 2                               |
| AND #opr8i<br>AND opr8a<br>AND opr16a<br>AND oprx16,X<br>AND oprx8,X<br>AND ,X<br>AND oprx8,SP                       | Logical AND                                                | A ← (A) & (M)                                                        | 0  | _  | _           | 1         | \$     | _  | IMM<br>DIR<br>EXT<br>IX2<br>IX1<br>IX<br>SP2<br>SP1 | A4<br>B4<br>C4<br>D4<br>E4<br>F4<br>9ED4<br>9EE4 | ii<br>dd<br>hh II<br>ee ff<br>ff<br>ee ff<br>ff | 2<br>3<br>4<br>3<br>3<br>5<br>4 |
| ASL opr8a<br>ASLA<br>ASLX<br>ASL oprx8,X<br>ASL ,X<br>ASL oprx8,SP                                                   | Arithmetic Shift Left<br>(Same as LSL)                     | C - 0 b7 b0                                                          | ¢  | _  | _           | ¢         | ¢      | ¢  | DIR<br>INH<br>INH<br>IX1<br>IX<br>SP1               | 38<br>48<br>58<br>68<br>78<br>9E68               | dd<br>ff<br>ff                                  | 5<br>1<br>5<br>4<br>6           |
| ASR opr8a<br>ASRA<br>ASRX<br>ASR oprx8,X<br>ASR ,X<br>ASR oprx8,SP                                                   | Arithmetic Shift Right                                     |                                                                      | \$ | _  | _           | \$        | \$     | \$ | DIR<br>INH<br>INH<br>IX1<br>IX<br>SP1               | 37<br>47<br>57<br>67<br>77<br>9E67               | dd<br>ff<br>ff                                  | 5<br>1<br>5<br>4<br>6           |
| BCC rel                                                                                                              | Branch if Carry Bit Clear                                  | Branch if $(C) = 0$                                                  | -  | -  | -           | -         | -      | -  | REL                                                 | 24                                               | rr                                              | 3                               |



| Source                                                                                                          |                                                                 | <b>B</b>                                                                                                                                                                                                                         |   | c | Eff | iec<br>CC | t<br>R |   | ess<br>de                                           | ode                                              | and                                             | rcles <sup>1</sup>              |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|-----|-----------|--------|---|-----------------------------------------------------|--------------------------------------------------|-------------------------------------------------|---------------------------------|
| Form                                                                                                            | Operation                                                       | Description                                                                                                                                                                                                                      | v | н | I   | N         | z      | С | Addr<br>Moo                                         | Opco                                             | Opera                                           | Bus Cy                          |
| CPX #opr8i<br>CPX opr8a<br>CPX opr16a<br>CPX oprx16,X<br>CPX oprx8,X<br>CPX ,X<br>CPX oprx16,SP<br>CPX oprx8,SP | Compare X (Index<br>Register Low) with<br>Memory                | (X) – (M)<br>(CCR Updated But Operands Not<br>Changed)                                                                                                                                                                           | ¢ | _ | _   | ¢         | \$     | ¢ | IMM<br>DIR<br>EXT<br>IX2<br>IX1<br>IX<br>SP2<br>SP1 | A3<br>B3<br>C3<br>D3<br>E3<br>F3<br>9ED3<br>9EE3 | ii<br>dd<br>hh II<br>ee ff<br>ff<br>ee ff       | 2<br>3<br>4<br>3<br>3<br>5<br>4 |
| DAA                                                                                                             | Decimal Adjust<br>Accumulator After ADD or<br>ADC of BCD Values | (A) <sub>10</sub>                                                                                                                                                                                                                | U | _ | -   | ¢         | ¢      | ¢ | INH                                                 | 72                                               |                                                 | 1                               |
| DBNZ opr8a,rel<br>DBNZA rel<br>DBNZX rel<br>DBNZ oprx8,X,rel<br>DBNZ ,X,rel<br>DBNZ oprx8,SP,rel                | Decrement and Branch if<br>Not Zero                             | Decrement A, X, or M<br>Branch if (result) ≠ 0<br>DBNZX Affects X Not H                                                                                                                                                          | _ | _ | _   | _         | _      | _ | DIR<br>INH<br>INH<br>IX1<br>IX<br>SP1               | 3B<br>4B<br>5B<br>6B<br>7B<br>9E6B               | dd rr<br>rr<br>ff rr<br>ff rr<br>ff rr          | 7<br>4<br>7<br>6<br>8           |
| DEC opr8a<br>DECA<br>DECX<br>DEC oprx8,X<br>DEC ,X<br>DEC oprx8,SP                                              | Decrement                                                       | $\begin{array}{l} M \leftarrow (M) - 0x01 \\ A \leftarrow (A) - 0x01 \\ X \leftarrow (X) - 0x01 \\ M \leftarrow (M) - 0x01 \end{array}$         | ¢ | _ | _   | \$        | €      | _ | DIR<br>INH<br>INH<br>IX1<br>IX<br>SP1               | 3A<br>4A<br>5A<br>6A<br>7A<br>9E6A               | dd<br>ff<br>ff                                  | 511546                          |
| DIV                                                                                                             | Divide                                                          | A ← (H:A)÷(X)<br>H ← Remainder                                                                                                                                                                                                   | - | - | -   | _         | ¢      | ¢ | INH                                                 | 52                                               |                                                 | 6                               |
| EOR #opr8i<br>EOR opr8a<br>EOR opr16a<br>EOR oprx16,X<br>EOR oprx8,X<br>EOR ,X<br>EOR oprx16,SP<br>EOR oprx8,SP | Exclusive OR<br>Memory with<br>Accumulator                      | $A \leftarrow (A \oplus M)$                                                                                                                                                                                                      | 0 | _ | _   | 1         | \$     | _ | IMM<br>DIR<br>EXT<br>IX2<br>IX1<br>IX<br>SP2<br>SP1 | A8<br>B8<br>C8<br>D8<br>E8<br>F8<br>9ED8<br>9EE8 | ii<br>dd<br>hh II<br>ee ff<br>ff<br>ee ff       | 2<br>3<br>4<br>3<br>3<br>5<br>4 |
| INC opr8a<br>INCA<br>INCX<br>INC oprx8,X<br>INC ,X<br>INC oprx8,SP                                              | Increment                                                       | $\begin{array}{l} M \gets (M) + 0x01 \\ A \gets (A) + 0x01 \\ X \gets (X) + 0x01 \\ M \gets (M) + 0x01 \end{array}$                                            | ¢ | _ | _   | ¢         | \$     | _ | DIR<br>INH<br>INH<br>IX1<br>IX<br>SP1               | 3C<br>4C<br>5C<br>6C<br>7C<br>9E6C               | dd<br>ff<br>ff                                  | 5<br>1<br>1<br>5<br>4<br>6      |
| JMP opr8a<br>JMP opr16a<br>JMP oprx16,X<br>JMP oprx8,X<br>JMP ,X                                                | Jump                                                            | $PC \leftarrow Jump Address$                                                                                                                                                                                                     | _ | _ | _   | _         | _      | _ | DIR<br>EXT<br>IX2<br>IX1<br>IX                      | BC<br>CC<br>DC<br>EC<br>FC                       | dd<br>hh II<br>ee ff<br>ff                      | 3<br>4<br>4<br>3<br>3           |
| JSR opr8a<br>JSR opr16a<br>JSR oprx16,X<br>JSR oprx8,X<br>JSR ,X                                                | Jump to Subroutine                                              | $\begin{array}{l} PC \leftarrow (PC) + n \ (n = 1, 2, \text{ or } 3) \\ Push \ (PCL); \ SP \leftarrow (SP) - 0 \\ x0001 \\ Push \ (PCH); \ SP \leftarrow (SP) - 0 \\ x0001 \\ PC \leftarrow Unconditional \ Address \end{array}$ | - | _ | -   | _         | _      | _ | DIR<br>EXT<br>IX2<br>IX1<br>IX                      | BD<br>CD<br>DD<br>ED<br>FD                       | dd<br>hh II<br>ee ff<br>ff                      | 56655                           |
| LDA #opr8i<br>LDA opr8a<br>LDA opr16a<br>LDA oprx16,X<br>LDA oprx8,X<br>LDA ,X<br>LDA oprx16,SP<br>LDA oprx8,SP | Load Accumulator from<br>Memory                                 | A ← (M)                                                                                                                                                                                                                          | 0 | _ | _   | ¢         | ¢      | _ | IMM<br>DIR<br>EXT<br>IX2<br>IX1<br>IX<br>SP2<br>SP1 | A6<br>B6<br>C6<br>D6<br>E6<br>F6<br>9ED6<br>9EE6 | ii<br>dd<br>hh II<br>ee ff<br>ff<br>ee ff<br>ff | 23443354                        |
| LDHX #opr16i<br>LDHX opr8a<br>LDHX opr16a<br>LDHX ,X<br>LDHX oprx16,X<br>LDHX oprx8,X<br>LDHX oprx8,SP          | Load Index Register (H:X)<br>from Memory                        | H:X ← (M:M + 0x0001)                                                                                                                                                                                                             | 0 | _ | _   | ¢         | ¢      | _ | IMM<br>DIR<br>EXT<br>IX<br>IX2<br>IX1<br>SP1        | 45<br>55<br>32<br>9EAE<br>9EBE<br>9ECE<br>9EFE   | jj kł<br>dd<br>hh ll<br>ee ff<br>ff             | 34<br>5<br>5<br>6<br>5<br>5     |

| Table 8-2. HCS08 Instruct | on Set Summar | y (Sheet 4 of 7) |
|---------------------------|---------------|------------------|
|---------------------------|---------------|------------------|



| Contract                                                                                                                                | Dit Moni        | nulation       | Branch       | 1             | Baa                  | d Modify W    | (rito         |                                 | Control Berister/Memory |                               |                                |                               |              |              |              |             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------|--------------|---------------|----------------------|---------------|---------------|---------------------------------|-------------------------|-------------------------------|--------------------------------|-------------------------------|--------------|--------------|--------------|-------------|
| Bits To         Difference         Bits To         Difference         Bits To         Difference         Bits To                                                                                                                                                     | Bit-Iviani      | pulation       | Branch       |               | Rea                  | a-woany-w     |               |                                 | Col                     |                               |                                | <b>DA A</b>                   | Register     | /wemory      | 50 0         |             |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BRSETO          | BSET0          | BRA          | NEG           | A0 1<br>NEGA         | NEGX          | NEG           | 1 NEG                           | RTI                     | BGE                           | SUB                            | SUB                           | SUB          | SUB          |              | SUB         |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 DIR           | 2 DIR          | Z REL        | 2 DIR         |                      |               | 2 171         |                                 |                         | Z REL                         | 2 11/11/1                      | 2 DIR                         | 3 EAT        | 3 1/2        | 2 1/1        | I IX        |
| Diff         Diff <th< td=""><td>BRCLR0</td><td>BCLR0</td><td></td><td></td><td>CBEQA</td><td>CBEQX</td><td></td><td>CBEQ</td><td></td><td>BLT</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                    | BRCLR0          | BCLR0          |              |               | CBEQA                | CBEQX         |               | CBEQ                            |                         | BLT                           |                                |                               |              |              |              |             |
| BARGETI         LE         BH1         Jult         Jult <th< td=""><td>00 F</td><td>2 DIN</td><td>2 11</td><td>3 DIN</td><td>40 5</td><td>5 1101101</td><td>60 1</td><td>2 1/1</td><td>00 E.</td><td>2 NLL</td><td>2 11/11/1</td><td></td><td></td><td>5 1/2</td><td>E0 0</td><td>F0 0</td></th<>                        | 00 F            | 2 DIN          | 2 11         | 3 DIN         | 40 5                 | 5 1101101     | 60 1          | 2 1/1                           | 00 E.                   | 2 NLL                         | 2 11/11/1                      |                               |              | 5 1/2        | E0 0         | F0 0        |
| A         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B                                                                                                                                                                                                                                                                                                                                                                                                | BRSET1          | BSET1          | BHI          |               | 42 5<br>MUL<br>1 INH | DIV           | NSA<br>1 INH  |                                 | BGND                    | BGT                           | SBC IMM                        | SBC                           | SBC SBC      | SBC 3        | SBC          | SBC         |
| BRCET1       BCR1       BSCR1       BCOM3       COMA       BCOM3                                                                                                                                                                                                                                                                                                             | 02 5            | 12 5           | 22 2         | 32 5          | 42 1                 | 52 1          | 62 5          | 72 /                            | 92 11                   | 02 2                          | A2 2                           | E DIII                        | C2 4         | D2 /         | E2 2         | F2 2        |
| 04         5         14         5         24         3         34         5         14         1         14         5         74         4         1         14         2         24         2         24         2         18         3         108         2         18         1         18         1         18         1         184         1         184         1         184         1         184         1         184         1         184         1         184         1         184         1         184         1         184         2         186         2         18         3         165         16         5         5         5         5         6         7         6         7         6         7         6         7         6         7         6         7         6         7         6         7         6         7         6         7         6         7         6         7         6         7         6         7         6         7         6         7         6         7         6         7         7         7         7         7         7         7         7         7 <td>BRCLR1<br/>3 DIR</td> <td>BCLR1<br/>2 DIR</td> <td>BLS<br/>2 REL</td> <td>COM<br/>2 DIR</td> <td>COMA<br/>1 INH</td> <td>COMX<br/>1 INH</td> <td>COM<br/>2 IX1</td> <td></td> <td>SWI<br/>1 INH</td> <td>BLE<br/>2 REL</td> <td>CPX<br/>2 IMM</td> <td>CPX<br/>2 DIR</td> <td>CPX<br/>3 EXT</td> <td>CPX<br/>3 IX2</td> <td>CPX<br/>2 IX1</td> <td>CPX<br/>1 IX</td> | BRCLR1<br>3 DIR | BCLR1<br>2 DIR | BLS<br>2 REL | COM<br>2 DIR  | COMA<br>1 INH        | COMX<br>1 INH | COM<br>2 IX1  |                                 | SWI<br>1 INH            | BLE<br>2 REL                  | CPX<br>2 IMM                   | CPX<br>2 DIR                  | CPX<br>3 EXT | CPX<br>3 IX2 | CPX<br>2 IX1 | CPX<br>1 IX |
| BRSET2         BSET2         BSET2         BSET2         BSET2         BSET2         BSET3         BSET3         BSET4         LSR         LSR         LSR         LSR         TN         TN         TN         2         AND                                                                                                                                                                                                                                                                                                | 04 5            | 14 5           | 24 3         | 34 5          | 44 1                 | 54 1          | 64 5          | 74 4                            | 84 1                    | 94 2                          | A4 2                           | B4 3                          | C4 4         | D4 4         | E4 3         | F4 3        |
| 05       5       15       5       25       5       15       5       25       5       15       5       25       3       3       4       45       3       75       5       8       75       5       8       75       5       8       75       75       75       75       75       75       75       75       75       75       75       75       75       75       75       75       75       75       75       75       75       75       75       75       75       75       75       75       77       75       77       75       77       75       77       75       77       75       77       75       77       75       77       75       77       75       77       75       77       74       75       77       74       75       77       74       75       77       74       75       77       74       75       77       74       75       77       74       75       77       75       77       75       77       75       77       75       77       75       77       75       77       75       77       75       77       <                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BRSET2<br>3 DIR | BSET2<br>2 DIR | BCC<br>2 REL | LSR<br>2 DIR  | LSRA<br>1 INH        | LSRX<br>1 INH | LSR<br>2 IX1  | LSR<br>1 IX                     | TAP<br>1 INH            | TXS<br>1 INH                  | AND<br>2 IMM                   | AND<br>2 DIR                  | AND<br>3 EXT | AND<br>3 IX2 | AND<br>2 IX1 | AND<br>1 IX |
| BRCLR2         BCLR2         BCLR2         BCLR2         BCLR3         BCR4         2         DIR 3         MM 3         DIR 2         DIR 3         C T A         DIR 3         C T A         DIR 3         C T A         DIR 3                                                                                                                                                                                                                                    | 05 5            | 15 5           | 25 3         | 35 4          | 45 3                 | 55 4          | 65 3          | 75 5                            | 85 1                    | 95 2                          | A5 2                           | B5 3                          | C5 4         | D5 4         | E5 3         | F5 3        |
| 06       5       16       5       26       3       36       5       46       1       66       5       76       4       86       3       96       5       A6       2       DE       3       DE       2       DE       1       INH       1       INH       2       INH       3       EXT       2       INH       1       DA       I       DA       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BRCLR2<br>3 DIR | BCLR2<br>2 DIR | BCS<br>2 REL | STHX<br>2 DIR | LDHX<br>3 IMM        | LDHX<br>2 DIR | CPHX<br>3 IMM | CPHX<br>2 DIR                   | TPA<br>1 INH            | TSX<br>1 INH                  | BIT<br>2 IMM                   | BIT<br>2 DIR                  | BIT<br>3 EXT | BIT<br>3 IX2 | BIT<br>2 IX1 | BIT<br>1 IX |
| BRSET3         BSET3         BNE         RNCR         RORA         RORA         RORA         RORA         RORA         RORA         RORA         RORA         RORA         STAX         LDA                                                                                                                                                                                                                                                                                              | 06 5            | 16 5           | 26 3         | 36 5          | 46 1                 | 56 1          | 66 5          | 76 4                            | 86 3                    | 96 5                          | A6 2                           | B6 3                          | C6 4         | D6 4         | E6 3         | F6 3        |
| 07       5       17       5       27       3       37       5       47       1       57       1       A7       2       B7       1       A7       2       B7       3       C7       4       D7       4       B7       2       B7       3       C7       4       D7       4       B7       A3       S7A                                                                                                                                                                                                                                                                                                                                                                                                                            | BRSET3<br>3 DIR | BSET3<br>2 DIR | BNE<br>2 REL | ROR<br>2 DIR  | RORA<br>1 INH        | RORX<br>1 INH | ROR<br>2 IX1  | ROR<br>1 IX                     | PULA<br>1 INH           | STHX<br>3 EXT                 | LDA<br>2 IMM                   | LDA<br>2 DIR                  | LDA<br>3 EXT | LDA<br>3 IX2 | LDA<br>2 IX1 | LDA<br>1 IX |
| BRCLR3         BCLR3         BEQ         ASR         ASRA         ASRA <t< td=""><td>07 5</td><td>17 5</td><td>27 3</td><td>37 5</td><td>47 1</td><td>57 1</td><td>67 5</td><td>77 4</td><td>87 2</td><td>97 1</td><td>A7 2</td><td>B7 3</td><td>C7 4</td><td>D7 4</td><td>E7 3</td><td>F7 2</td></t<>                                 | 07 5            | 17 5           | 27 3         | 37 5          | 47 1                 | 57 1          | 67 5          | 77 4                            | 87 2                    | 97 1                          | A7 2                           | B7 3                          | C7 4         | D7 4         | E7 3         | F7 2        |
| 3         0 III         2         0 III         2         0 III         2         0 III         2         0 III         3         EX1         3         1X2         2         1X1         1         1XI         1         1XIII         1XIIII         1XIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BRCLR3          | BCLR3          | BEQ          | ASR           | ASRA                 | ASRX          | ASR           | ASR                             | PSHA                    | TAX                           | AIS                            | STA                           | STA          | STA          | STA          | STA         |
| UB       OB       OB<       OB       OB       OB       OB <t< td=""><td>3 DIR</td><td>2 DIR</td><td>2 REL</td><td>2 DIR</td><td>1 INH</td><td>I INH</td><td>2 1X1</td><td>1 IX</td><td>1 INH</td><td>1 INH</td><td>2 11/11/1</td><td>2 DIR</td><td>3 EXT</td><td>3 IX2</td><td>2 1X1</td><td></td></t<>                                                                                                                                                                                                             | 3 DIR           | 2 DIR          | 2 REL        | 2 DIR         | 1 INH                | I INH         | 2 1X1         | 1 IX                            | 1 INH                   | 1 INH                         | 2 11/11/1                      | 2 DIR                         | 3 EXT        | 3 IX2        | 2 1X1        |             |
| Differ         2         Di                                                                                                                                                                                                                                                                            | BBSET4          | BSET4          | BHCC         | 38 S          |                      |               | ° I SI        | <sup>78</sup> I SI <sup>4</sup> |                         | °°CI C                        | <sup>A6</sup> FOR <sup>2</sup> | <sup>B</sup> FOR <sup>3</sup> | FOR          | FOR          | FOR          | FOR         |
| 09       5       19       5       29       3       39       5       49       1       59       1       69       5       79       4       89       2       99       1       A9       2       B3       3       C9       4       D9       4       D0       4       D0       A       D2       D1       D1 <thd1< th=""> <thd1< th=""> <thd1< th=""></thd1<></thd1<></thd1<>                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3 DIR           | 2 DIR          | 2 BEL        | 2 DIB         | 1 INH                | 1 INH         | 2 IX1         | 1 IX                            | 1 INH                   | 1 INH                         | 2 IMM                          | 2 DIR                         | 3 EXT        | 3 IX2        | 2 IX1        |             |
| BRCLR4         BCLR4         BCLR4         BHCS         ROL         ROLA         ROLX         ROL         ROL         PSHX         SEC         ADC                                                                                                                                                                                                                                                                                                   | 09 5            | 19 5           | 29 3         | 39 5          | 49 1                 | 59 1          | 69 5          | 79 4                            | 89 2                    | 99 1                          | A9 2                           | B9 3                          | C9 4         | D9 4         | E9 3         | F9 3        |
| 3       DIR       2       DIR       2       DIR       1       INH       1       INH       2       IX1       1       IX       1       INH       2       DIR       3       EXT       3       IX2       2       IX1       1       IXH       1       INH       1       INH       2       IXI       1       IXH       1       INH       1       INH       2       IXI       1       IXH       1       INH       2       IXH       1       IXH       2       IXH       1       IXH       1       INH       1       IXH       2       IXH       1       IXH       1       IXH       2       IXH       1       IXH                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BRCLR4          | BCLR4          | BHCS         | ROL           | ROLA                 | ROLX          | ROL           | ROL                             | PSHX                    | SEC                           | ADC                            | ADC                           | ADC          | ADC          | ADC          | ADC         |
| 0A       5       1A       5       2A       3       3A       5       4A       1       5A       1       6A       5       7A       4       8A       3       9A       1       AA       2       BA       3       CA       4       DA       4       EA       3       FA       3       DIR       2       DIR       2       REL       2       RI       1       INH       1       INH       2       IXI       1       IXI       1       INH       1       INH       1       INH       1       INH       1       INH       1       INH       2       INH       1       IXI       2       IXI       1       IXI       1       INH       1       INH       2       INH       1       INH       2       IXI       <                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 DIR           | 2 DIR          | 2 REL        | 2 DIR         | 1 INH                | 1 INH         | 2 IX1         | 1 IX                            | 1 INH                   | 1 INH                         | 2 IMM                          | 2 DIR                         | 3 EXT        | 3 IX2        | 2 IX1        | 1 IX        |
| BRSE15       BPL       DEC       DECA       DECX       DEC       DEC       DEC       PULH       CLI       ORA                                                                                                                                                                                                                                                                                                                                                                                                  | 0A 5            | 1A 5           | 2A3          | 3A5           | 4A 1                 | 5A 1          | 6A5           | 7A4                             | 8A3                     | 9A 1                          | AA 2                           | BA 3                          | CA 4         | DA 4         | EA 3         | FA 3        |
| 3       0 Hr       2       0 Hr       2       0 Hr       1       1 Hr       2       1 Hr       2       1 Hr       2       1 Hr       2       1 Hr       1       1 Hr                                                                                                                                                                                                                                                                                                                                                                                                                     | BRSET5          | BSET5          | BPL          | DEC           | DECA                 | DECX          | DEC           | DEC                             | PULH                    | CLI                           | ORA                            | ORA                           | ORA          | ORA          | ORA          | ORA         |
| 0B       5       1B       5       2B       3       3B       7       4B       4       5B       4       6B       7       7B       6       8B       2       9B       1       ABD       2       BAD       ADD       ADD       ADD       ADD       3       DBXZ       DBXZ       DBXZ       DBXZ       DBXZ       DBXZ       2       IX1       2       IX1       1       INH       1       INH       1       INH       2       IMM       2       IM       2       IX1       1       INH                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3 DIR           | 2 DIR          | 2 REL        | 2 DIR         | I INH                | I INH         | 2 1X1         |                                 | I INH                   |                               | 2 11/11/1                      | 2 DIR                         | 3 EXI        | 3 IX2        | 2 1X1        |             |
| DIFICION       DINUEL       DINUEL       DINUEL       DINUEL       DINUEL       DINUEL       PERINEL                                                                                                                                                                                                                                 |                 |                | 2B 3         |               |                      |               |               |                                 |                         | 9B 1                          |                                | BB 3                          |              |              | EB 3         |             |
| O       Diff       2       Diff       2 <thd< td=""><td>3 DIR</td><td>2 DIR</td><td>2 BEI</td><td>3 DIR</td><td>2 INH</td><td></td><td>3 1X1</td><td>2 1</td><td>1 INH</td><td></td><td>2 IMM</td><td>2 DIB</td><td>3 EXT</td><td>3 122</td><td>2 IX1</td><td></td></thd<>                                                                                                                                                                                               | 3 DIR           | 2 DIR          | 2 BEI        | 3 DIR         | 2 INH                |               | 3 1X1         | 2 1                             | 1 INH                   |                               | 2 IMM                          | 2 DIB                         | 3 EXT        | 3 122        | 2 IX1        |             |
| BRSET6       BSE16       BSE17       BSE17 <t< td=""><td>0C 5</td><td>10 5</td><td>20 3</td><td>3C 5</td><td>4C 1</td><td>5C 1</td><td>6C 5</td><td>7C 4</td><td>8C 1</td><td>9C 1</td><td>2 10101</td><td>BC 3</td><td></td><td></td><td>EC 3</td><td>FC 3</td></t<>                                                                                | 0C 5            | 10 5           | 20 3         | 3C 5          | 4C 1                 | 5C 1          | 6C 5          | 7C 4                            | 8C 1                    | 9C 1                          | 2 10101                        | BC 3                          |              |              | EC 3         | FC 3        |
| 3       DIR       2       DIR       2       DIR       1       INH       1       INH       2       IX1       1       INH       1       INH <td< td=""><td>BRSET6</td><td>BSET6</td><td>BMC</td><td>INC</td><td>INCA</td><td>INCX</td><td>INC</td><td></td><td>CLRH</td><td><sup>°</sup>RSP <sup>'</sup></td><td></td><td>JMP</td><td>JMP</td><td>JMP</td><td>JMP</td><td>JMP</td></td<>                                                                                                                                                                                                               | BRSET6          | BSET6          | BMC          | INC           | INCA                 | INCX          | INC           |                                 | CLRH                    | <sup>°</sup> RSP <sup>'</sup> |                                | JMP                           | JMP          | JMP          | JMP          | JMP         |
| 0D       5       1D       5       2D       3       3D       4       4D       1       5D       1       6D       4       7D       3       TST       TST <td>3 DIR</td> <td>2 DIR</td> <td>2 REL</td> <td>2 DIR</td> <td>1 INH</td> <td>1 INH</td> <td>2 IX1</td> <td>1 IX</td> <td>1 INH</td> <td>1 INH</td> <td></td> <td>2 DIR</td> <td>3 EXT</td> <td>3 IX2</td> <td>2 IX1</td> <td>1 IX</td>                                                                                                                                                                   | 3 DIR           | 2 DIR          | 2 REL        | 2 DIR         | 1 INH                | 1 INH         | 2 IX1         | 1 IX                            | 1 INH                   | 1 INH                         |                                | 2 DIR                         | 3 EXT        | 3 IX2        | 2 IX1        | 1 IX        |
| BRCLR6         BMS         TST         TSTA         TSTX         TST         TS                                                                                                                                                                                                                                                                                              | 0D 5            | 1D 5           | 2D 3         | 3D 4          | 4D 1                 | 5D 1          | 6D 4          | 7D 3                            |                         | 9D 1                          | AD 5                           | BD 5                          | CD 6         | DD 6         | ED 5         | FD 5        |
| 3       DIR       2       REL       2       DIR       1       INH       1       INH       2       IX1       1       IX       1       INH       2       REL       2       DIR       3       EXT       3       IX2       2       IX1       1       IX       1       INH       2       REL       1       INH       2       REL       1       INH       2       IX1       1       IX       1       INH       2       REL       2       DIR       3       EXT       3       IX2       2       IX1       1       IX         0E       5       1E       5       2E       3       3E       6       4E       5       5E       6       6E       4       7E       5       8E       2+       9E       AE       2       BE       3       CE       4       DE       4       EE       3       FE       3       ILDX       LDX       1       ILDX       LDX       LDX       1       ILDX       LDX       LDX                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BRCLR6          | BCLR6          | BMS          | TST           | TSTA                 | TSTX          | TST           | TST                             |                         | NOP                           | BSR                            | JSR                           | JSR          | JSR          | JSR          | JSR         |
| 0E       5       1E       5       2E       3       3E       6       4E       5       5E       5       6E       4       7E       5       8E       2+       9E       AE       2       BE       3       CE       4       DE       4       EE       3       FE       3         3       DIR       2       DIR       3       EXT       3       DD       2       DIX+       3       IMOV       MOV       STOP       Page 2       LDX                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3 DIR           | 2 DIR          | 2 REL        | 2 DIR         | 1 INH                | 1 INH         | 2 IX1         | 1 IX                            |                         | 1 INH                         | 2 REL                          | 2 DIR                         | 3 EXT        | 3 IX2        | 2 IX1        | 1 IX        |
| BHSE1/     BIL     CPHX     MOV     MOV     MOV     MOV     STOP     Page 2     LDX     LDX <t< td=""><td>0E 5</td><td>1E 5</td><td>2E 3</td><td>3E 6</td><td>4E 5</td><td>5E 5</td><td>6E 4</td><td>7E 5</td><td>8E 2+</td><td>9E</td><td>AE 2</td><td>BE 3</td><td>CE 4</td><td>DE 4</td><td>EE 3</td><td>FE 3</td></t<>                                                                                                                                                                                                                                                                           | 0E 5            | 1E 5           | 2E 3         | 3E 6          | 4E 5                 | 5E 5          | 6E 4          | 7E 5                            | 8E 2+                   | 9E                            | AE 2                           | BE 3                          | CE 4         | DE 4         | EE 3         | FE 3        |
| 3     011     2     011     2     011     2     011     2     011     3     EXT     3     1X2     2     1X1     1     1X       0F     5     1F     5     2F     3     3     5     4F     1     5F     1     6F     5     7F     4     8F     2+     9F     1     AF     2     BF     3     CF     4     EF     3     FF     2       BRCLR7     BCLR7     BIH     CLR     CLRA     CLRX     CLR     CLR     WAIT     TXA     AIX     STX     STX <t< td=""><td>BRSET7</td><td>BSET7</td><td>BIL</td><td>CPHX</td><td>MON</td><td>MOV</td><td>MOV</td><td>MOV</td><td>SIOP</td><td>Page 2</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                              | BRSET7          | BSET7          | BIL          | CPHX          | MON                  | MOV           | MOV           | MOV                             | SIOP                    | Page 2                        |                                |                               |              |              |              |             |
| UF 5 IF 5 ZF 3 JF 5 4F 1 5F 1 6F 5 7F 4 8F 2+ 9F 1 AF 2 BF 3 CF 4 DF 4 EF 3 FF 2<br>BRCLR7 BCLR7 BIH CLR CLR CLRA CLRX CLR CLR WAIT TXA AIX STX STX STX STX STX STX STX 1 TX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3 DIR           |                | Z KEL        | J EXI         | 3 UU                 |               | J IIVID       | 2 IX+D                          |                         | 0.5 1                         |                                |                               | J EXI        | 3 IX2        |              |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |                | 2F 3         |               |                      |               |               |                                 | 8F 2+<br>₩ΔΙΤ           | 9F 1<br>TY∆                   |                                | STY 3                         | STY 4        | UF 4         | l= sta       | rr sty 2    |
| ט ארוב אבני ארבי ארבי אריין א                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3 DIR           | 2 DIR          | 2 REL        | 2 DIR         | 1 INH                | 1 INH         | 2 IX1         | 1 IX                            | 1 INH                   | 1 INH                         | 2 IMM                          | 2 DIR                         | 3 EXT        | 3 IX2        | 2 IX1        | 1 IX        |

#### Table 8-3, Opcode Map (Sheet 1 of 2)

| Inherent   |
|------------|
| Immediate  |
| Direct     |
| Extended   |
| DIR to DIR |
| IX+ to DIR |
|            |

REL IX IX1 IX2 IMD DIX+

Relative Indexed, No Offset Indexed, 8-Bit Offset Indexed, 16-Bit Offset IMM to DIR DIR to IX+

SP1 SP2 IX+

Stack Pointer, 8-Bit Offset Stack Pointer, 16-Bit Offset Indexed, No Offset with Post Increment Indexed, 1-Byte Offset with Post Increment IX1+

Opcode in Hexadecimal F0 3 SUB Instruction Mnemonic 1 IX Addressing Mode Number of Bytes



## 11.2 Register Definition

The SCI has eight 8-bit registers to control baud rate, select SCI options, report SCI status, and for transmit/receive data.

Refer to the direct-page register summary in the Memory chapter of this data sheet for the absolute address assignments for all SCI registers. This section refers to registers and control bits only by their names. A Freescale-provided equate or header file is used to translate these names into the appropriate absolute addresses.

## 11.2.1 SCI Baud Rate Registers (SCIxBDH, SCIxBHL)

This pair of registers controls the prescale divisor for SCI baud rate generation. To update the 13-bit baud rate setting [SBR12:SBR0], first write to SCIxBDH to buffer the high half of the new value and then write to SCIxBDL. The working value in SCIxBDH does not change until SCIxBDL is written.

SCIxBDL is reset to a non-zero value, so after reset the baud rate generator remains disabled until the first time the receiver or transmitter is enabled (RE or TE bits in SCIxC2 are written to 1).



### Figure 11-4. SCI Baud Rate Register (SCIxBDH)

Table 11-1. SCIxBDH Register Field Descriptions

| Field     | Description                                                                                                 |
|-----------|-------------------------------------------------------------------------------------------------------------|
| 4:0       | Baud Rate Modulo Divisor — These 13 bits are referred to collectively as BR, and they set the modulo divide |
| SBR[12:8] | rate for the SCI baud rate generator. When BR = 0, the SCI baud rate generator is disabled to reduce supply |
|           | current. When BR = 1 to 8191, the SCI baud rate = BUSCLK/(16×BR). See also BR bits in Table 11-2.           |

|       | 7    | 6     | 5     | 4    | 3     | 2     | 1    | 0     |
|-------|------|-------|-------|------|-------|-------|------|-------|
| R     | SBR7 | SBR6  | SBR5  | SBR4 | SBR3  | SBR2  | SBR1 | SBR0  |
| W     | 02   | 02.10 | 02.10 | 02   | 02.10 | 01.11 | 02   | 02.10 |
| Reset | 0    | 0     | 0     | 0    | 0     | 1     | 0    | 0     |

### Figure 11-5. SCI Baud Rate Register (SCIxBDL)

### Table 11-2. SCIxBDL Register Field Descriptions

| Field           | Description                                                                                                                                                                                                                                                                                                                                 |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:0<br>SBR[7:0] | <b>Baud Rate Modulo Divisor</b> — These 13 bits are referred to collectively as BR, and they set the modulo divide rate for the SCI baud rate generator. When BR = 0, the SCI baud rate generator is disabled to reduce supply current. When BR = 1 to 8191, the SCI baud rate = BUSCLK/( $16 \times BR$ ). See also BR bits in Table 11-1. |



| Table 11-4. SCIxC2 | Register Field | Descriptions | (continued) |
|--------------------|----------------|--------------|-------------|
|--------------------|----------------|--------------|-------------|

| Field    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1<br>RWU | <ul> <li>Receiver Wakeup Control — This bit can be written to 1 to place the SCI receiver in a standby state where it waits for automatic hardware detection of a selected wakeup condition. The wakeup condition is either an idle line between messages (WAKE = 0, idle-line wakeup), or a logic 1 in the most significant data bit in a character (WAKE = 1, address-mark wakeup). Application software sets RWU and (normally) a selected hardware condition automatically clears RWU. Refer to Section 11.3.3.2, "Receiver Wakeup Operation," for more details.</li> <li>0 Normal SCI receiver operation.</li> <li>1 SCI receiver in standby waiting for wakeup condition.</li> </ul> |
| 0<br>SBK | <ul> <li>Send Break — Writing a 1 and then a 0 to SBK queues a break character in the transmit data stream. Additional break characters of 10 or 11 bit times of logic 0 are queued as long as SBK = 1. Depending on the timing of the set and clear of SBK relative to the information currently being transmitted, a second break character may be queued before software clears SBK. Refer to Section 11.3.2.1, "Send Break and Queued Idle," for more details.</li> <li>0 Normal transmitter operation.</li> <li>1 Queue break character(s) to be sent.</li> </ul>                                                                                                                     |

## 11.2.4 SCI Status Register 1 (SCIxS1)

This register has eight read-only status flags. Writes have no effect. Special software sequences (which do not involve writing to this register) are used to clear these status flags.



Figure 11-8. SCI Status Register 1 (SCIxS1)

| Table 11-5. SCIxS | 1 Register Field | Descriptions |
|-------------------|------------------|--------------|
|-------------------|------------------|--------------|

| Field     | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7<br>TDRE | <b>Transmit Data Register Empty Flag</b> — TDRE is set immediately after reset and when a transmit data value transfers from the transmit data buffer to the transmit shifter, leaving room for a new character in the buffer. To clear TDRE, read SCIxS1 with TDRE = 1 and then write to the SCI data register (SCIxD).<br>0 Transmit data register (buffer) full.<br>1 Transmit data register (buffer) empty.                                                                                                                                                                                                        |
| 6<br>TC   | <ul> <li>Transmission Complete Flag — TC is set immediately after reset and when TDRE = 1 and no data, preamble, or break character is being transmitted.</li> <li>0 Transmitter active (sending data, a preamble, or a break).</li> <li>1 Transmitter idle (transmission activity complete).</li> <li>TC is cleared automatically by reading SCIxS1 with TC = 1 and then doing one of the following three things:</li> <li>Write to the SCI data register (SCIxD) to transmit new data</li> <li>Queue a preamble by changing TE from 0 to 1</li> <li>Queue a break character by writing 1 to SBK in SCIxC2</li> </ul> |



## 11.3 Functional Description

The SCI allows full-duplex, asynchronous, NRZ serial communication among the MCU and remote devices, including other MCUs. The SCI comprises a baud rate generator, transmitter, and receiver block. The transmitter and receiver operate independently, although they use the same baud rate generator. During normal operation, the MCU monitors the status of the SCI, writes the data to be transmitted, and processes received data. The following describes each of the blocks of the SCI.

### 11.3.1 Baud Rate Generation

As shown in Figure 11-12, the clock source for the SCI baud rate generator is the bus-rate clock.



Figure 11-12. SCI Baud Rate Generation

SCI communications require the transmitter and receiver (which typically derive baud rates from independent clock sources) to use the same baud rate. Allowed tolerance on this baud frequency depends on the details of how the receiver synchronizes to the leading edge of the start bit and how bit sampling is performed.

The MCU resynchronizes to bit boundaries on every high-to-low transition, but in the worst case, there are no such transitions in the full 10- or 11-bit time character frame so any mismatch in baud rate is accumulated for the whole character time. For a Freescale Semiconductor SCI system whose bus frequency is driven by a crystal, the allowed baud rate mismatch is about  $\pm 4.5$  percent for 8-bit data format and about  $\pm 4$  percent for 9-bit data format. Although baud rate modulo divider settings do not always produce baud rates that exactly match standard rates, it is normally possible to get within a few percent, which is acceptable for reliable communications.

## 11.3.2 Transmitter Functional Description

This section describes the overall block diagram for the SCI transmitter (Figure 11-2), as well as specialized functions for sending break and idle characters.

The transmitter is enabled by setting the TE bit in SCIxC2. This queues a preamble character that is one full character frame of the idle state. The transmitter then remains idle until data is available in the transmit data buffer. Programs store data into the transmit data buffer by writing to the SCI data register (SCIxD).

The central element of the SCI transmitter is the transmit shift register that is either 10 or 11 bits long depending on the setting in the M control bit. For the remainder of this section, we will assume M = 0, selecting the normal 8-bit data mode. In 8-bit data mode, the shift register holds a start bit, eight data bits, and a stop bit. When the transmit shift register is available for a new SCI character, the value waiting in



# Chapter 13 Inter-Integrated Circuit (S08IICV1)

## 13.1 Introduction

The MC9S08GBxxA/GTxxA series of microcontrollers provides one inter-integrated circuit (IIC) module for communication with other integrated circuits. The two pins associated with this module, SDA1 and SCL1 share port C pins 2 and 3, respectively. All functionality as described in this section is available on MC9S08GBxxA/GTxxA. When the IIC is enabled, the direction of pins is controlled by module configuration. If the IIC is disabled, both pins can be used as general-purpose I/O.



Development Support

## 15.4.3.9 Debug Status Register (DBGS)

This is a read-only status register.



### Figure 15-9. Debug Status Register (DBGS)

### Table 15-6. DBGS Register Field Descriptions

| Field           | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7<br>AF         | <ul> <li>Trigger Match A Flag — AF is cleared at the start of a debug run and indicates whether a trigger match A condition was met since arming.</li> <li>0 Comparator A has not matched</li> <li>1 Comparator A match</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6<br>BF         | <ul> <li>Trigger Match B Flag — BF is cleared at the start of a debug run and indicates whether a trigger match B condition was met since arming.</li> <li>0 Comparator B has not matched</li> <li>1 Comparator B match</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5<br>ARMF       | <ul> <li>Arm Flag — While DBGEN = 1, this status bit is a read-only image of ARM in DBGC. This bit is set by writing 1 to the ARM control bit in DBGC (while DBGEN = 1) and is automatically cleared at the end of a debug run. A debug run is completed when the FIFO is full (begin trace) or when a trigger event is detected (end trace). A debug run can also be ended manually by writing 0 to ARM or DBGEN in DBGC.</li> <li>0 Debugger not armed</li> <li>1 Debugger armed</li> </ul>                                                                                                                                                                                                                                                                    |
| 3:0<br>CNT[3:0] | FIFO Valid Count — These bits are cleared at the start of a debug run and indicate the number of words of valid data in the FIFO at the end of a debug run. The value in CNT does not decrement as data is read out of the FIFO. The external debug host is responsible for keeping track of the count as information is read out of the FIFO. 0000 Number of valid words in FIFO = No valid data 0001 Number of valid words in FIFO = 1 0010 Number of valid words in FIFO = 2 0011 Number of valid words in FIFO = 3 0100 Number of valid words in FIFO = 4 0101 Number of valid words in FIFO = 5 0110 Number of valid words in FIFO = 5 0110 Number of valid words in FIFO = 7 1000 Number of valid words in FIFO = 7 1000 Number of valid words in FIFO = 8 |



## **B.7** System Device Identification Register

The system device identification register (SDIR) is a 16-bit value that contains a 12-bit part identification number and a 4-bit mask revision number. Both the GB60 series and the GB60A series have the same part identification number, \$002.

The mask revision number for the last production version of the GB60 series is \$4. The first mask revision number for the GB60A series is \$8.



# Appendix C Ordering Information and Mechanical Drawings

## C.1 Ordering Information

This section contains ordering numbers for MC9S08GB60A, MC9S08GB32A, MC9S08GT60A, and MC9S08GT32A devices. See below for an example of the device numbering system.

| Device Number | Flash Memory | RAM                                          | ТРМ                                          | Available<br>Package Type                    |        |
|---------------|--------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|--------|
| MC9S08GB60A   | 60K          | 4K                                           | One 3-channel and one 5-channel 16-bit timer | 64 LQFP                                      |        |
| MC9S08GB32A   | 32K          | 2К                                           | One 3-channel and one 5-channel 16-bit timer | 64 LQFP                                      |        |
| MC9S08GT60A   | eok          |                                              | 1K                                           | One 3-channel and one 2-channel 16-bit timer | 48 QFN |
| MC3308CT00A   | UUIX         | 410                                          | Two 2-channel/16-bit timers                  | 44 QFP<br>42 SDIP                            |        |
|               |              | One 3-channel and one 2-channel 16-bit timer | 48 QFN                                       |                                              |        |
| MC3G06G13ZA   |              |                                              | Two 2-channel/16-bit timers                  | 44 QFP<br>42 SDIP                            |        |

### Table C-1. Device Numbering System



Table C-2. Package Information

| Pin Count | Туре                               | Designator | Document No. |
|-----------|------------------------------------|------------|--------------|
| 64        | LQFP — Low Quad Flat Package       | FU         | 98ASS23234W  |
| 48        | QFN — Quad Flat Package, No Leads  | FD         | 98ARH99048A  |
| 44        | QFP — Quad Flat Package            | FB         | 98ASB42839B  |
| 42        | SDIP — Skinny Dual In-Line Package | В          | 98ASB42767B  |



NOTES:

- 1. DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- 3. DATUMS A, B AND D TO BE DETERMINED AT DATUM PLANE H.

/4, dimensions to be determined at seating plane c.

5. THIS DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE UPPER LIMIT BY MORE THAN 0.08 mm AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD SHALL NOT BE LESS THAN 0.07 mm.

6. THIS DIMENSION DOES NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 mm PER SIDE. THIS DIMENSION IS MAXIMUM PLASTIC BODY SIZE DIMENSION INCLUDING MOLD MISMATCH.

 $\triangle$ 

/8`

EXACT SHAPE OF EACH CORNER IS OPTIONAL.

 $_{\rm L}$  THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.1 mm AND 0.25 mm FROM THE LEAD TIP.

| © FREESCALE SEMICONDUCTOR, INC.<br>ALL RIGHTS RESERVED. | MECHANICAL OUTLINE |              | PRINT VERSION NO | DT TO SCALE |
|---------------------------------------------------------|--------------------|--------------|------------------|-------------|
| TITLE: 64LD LQFP,                                       |                    | DOCUMENT NO  | ): 98ASS23234₩   | REV: D      |
| 10 X 10 X 1.4 PKG,<br>0.5 PITCH, CASE OUTLINE           |                    | CASE NUMBER  | 2:840F-02        | 06 APR 2005 |
|                                                         |                    | STANDARD: JE | DEC MS-026 BCD   |             |









DETAIL M PREFERED PIN 1 BACKSIDE IDENTIFIER



|      | · ·  |       | -   |    |
|------|------|-------|-----|----|
| VIEW | ROTA | TED 9 | 90. | CW |

| © FREESCALE SEMICONDUCTOR, INC.<br>ALL RIGHTS RESERVED. | MECHANICAL OUTLINE       |                               | PRINT VERSION NOT TO SCALE |   |
|---------------------------------------------------------|--------------------------|-------------------------------|----------------------------|---|
| TITLE: THERMALLY ENHANCED                               | DOCUMENT NO: 98ARH99048A |                               | REV: E                     |   |
| FLAT NON-LEADED PACKA                                   | CASE NUMBER: 1314-04     |                               | 20 APR 2005                |   |
| 48 IERMINAL, 0.5 PIICH (7                               | / X / X 1)               | STANDARD: JEDEC-MO-220 VKKD-2 |                            | 2 |