Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|--| | Product Status | Active | | Core Processor | S08 | | Core Size | 8-Bit | | Speed | 40MHz | | Connectivity | I²C, SCI, SPI | | Peripherals | LVD, POR, PWM, WDT | | Number of I/O | 39 | | Program Memory Size | 60KB (60K x 8) | | Program Memory Type | FLASH | | EEPROM Size | - | | RAM Size | 4K x 8 | | Voltage - Supply (Vcc/Vdd) | 1.8V ~ 3.6V | | Data Converters | A/D 8x10b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 48-VFQFN Exposed Pad | | Supplier Device Package | 48-QFN (7x7) | | Purchase URL | https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s08gt60acfde | | | | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong | Section Number | | ımber Title | Page | |----------------|----------|--|------| | | 10.5.1 | Counter | 159 | | | 10.5.2 | Channel Mode Selection | 160 | | | | 10.5.2.1 Input Capture Mode | 160 | | | | 10.5.2.2 Output Compare Mode | 160 | | | | 10.5.2.3 Edge-Aligned PWM Mode | 160 | | | | Center-Aligned PWM Mode | | | 10.6 | ΓPM Int | errupts | 163 | | | | Clearing Timer Interrupt Flags | | | | | Timer Overflow Interrupt Description | | | | | Channel Event Interrupt Description | | | | | PWM End-of-Duty-Cycle Events | | | 10.7 | | gisters and Control Bits | | | | | Timer x Status and Control Register (TPMxSC) | | | | | Timer x Counter Registers (TPMxCNTH:TPMxCNTL) | | | | | Timer x Counter Modulo Registers (TPMxMODH:TPMxMODL) | | | | | Timer x Channel n Status and Control Register (TPMxCnSC) | | | | 10.7.5 | Timer x Channel Value Registers (TPMxCnVH:TPMxCnVL) | 169 | | | | Chapter 11 | | | 11 1 T | Introduc | Serial Communications Interface (S08SCIV1) | 171 | | 11.1 1 | | Features | | | | | Modes of Operation | | | | | Block Diagram | | | 11 2 I | | Definition | | | 11.2 1 | | SCI Baud Rate Registers (SCIxBDH, SCIxBHL) | | | | 11.2.1 | | | | | | SCI Control Register 2 (SCIxC2) | | | | | SCI Status Register 1 (SCIxS1) | | | | | SCI Status Register 2 (SCIxS2) | | | | | SCI Control Register 3 (SCIxC3) | | | | 11.2.7 | | | | 11 3 F | | nal Description | | | 11.0 | | Baud Rate Generation | | | | | Transmitter Functional Description | | | | | 11.3.2.1 Send Break and Queued Idle | | | | 11.3.3 | | | | | | 11.3.3.1 Data Sampling Technique | | | | | 11.3.3.2 Receiver Wakeup Operation | | | | 11.3.4 | Interrupts and Status Flags | | | | 11.3.5 | | | | | | 11.3.5.1 8- and 9-Bit Data Modes | | | | | 11.3.5.2 Stop Mode Operation | | | | | 11.3.5.3 Loop Mode | | **Chapter 4 Memory** # 4.4.3 Program and Erase Command Execution The steps for executing any of the commands are listed below. The FCDIV register must be initialized and any error flags cleared before beginning command execution. The command execution steps are: 1. Write a data value to an address in the flash array. The address and data information from this write is latched into the flash interface. This write is a required first step in any command sequence. For erase and blank check commands, the value of the data is not important. For page erase commands, the address may be any address in the 512-byte page of flash to be erased. For mass erase and blank check commands, the address can be any address in the flash memory. Whole pages of 512 bytes are the smallest blocks of flash that may be erased. In the 60K version, there are two instances where the size of a block that is accessible to the user is less than 512 bytes: the first page following RAM, and the first page following the high page registers. These pages are overlapped by the RAM and high page registers, respectively. ### NOTE Do not program any byte in the flash more than once after a successful erase operation. Reprogramming bits in a byte which is already programmed is not allowed without first erasing the page in which the byte resides or mass erasing the entire flash memory. Programming without first erasing may disturb data stored in the flash. - 2. Write the command code for the desired command to FCMD. The five valid commands are blank check (0x05), byte program (0x20), burst program (0x25), page erase (0x40), and mass erase (0x41). The command code is latched into the command buffer. - 3. Write a 1 to the FCBEF bit in FSTAT to clear FCBEF and launch the command (including its address and data information). A partial command sequence can be aborted manually by writing a 0 to FCBEF any time after the write to the memory array and before writing the 1 that clears FCBEF and launches the complete command. Aborting a command in this way sets the FACCERR access error flag which must be cleared before starting a new command. A strictly monitored procedure must be adhered to, or the command will not be accepted. This minimizes the possibility of any unintended change to the flash memory contents. The command complete flag (FCCF) indicates when a command is complete. The command sequence must be completed by clearing FCBEF to launch the command. Figure 4-2 is a flowchart for executing all of the commands except for burst programming. The FCDIV register must be initialized before using any flash commands. This must be done only once following a reset. Table 5-3. SRS Field Descriptions (continued) | Field | Description | |----------|--| | 2
ICG | Internal Clock Generation Module Reset — Reset was caused by an ICG module reset. O Reset not caused by ICG module. 1 Reset caused by ICG module. | | 1
LVD | Low Voltage Detect — If the LVD reset is enabled (LVDE = LVDRE = 1) and the supply drops below the LVD trip voltage, an LVD reset occurs. The LVD function is disabled when the MCU enters stop. To maintain LVD operation in stop, the LVDSE bit must be set. O Reset not caused by LVD trip or POR. Reset caused by LVD trip or POR. | # 5.8.3 System Background Debug Force Reset Register (SBDFR) This register contains a single write-only control bit. A serial background command such as WRITE_BYTE must be used to write to SBDFR. Attempts to write this register from a user program are ignored. Reads always return 0x00. ¹ BDFR is writable only through serial background debug commands, not from user programs. Figure 5-4. System Background Debug Force Reset Register (SBDFR) **Table 5-4. SBDFR Field Descriptions** | Field | Description | |-----------|--| | 0
BDFR | Background Debug Force Reset — A serial background mode command such as WRITE_BYTE allows an external debug host to force a target system reset. Writing 1 to this bit forces an MCU reset. This bit cannot be written from a user program. | ### **Chapter 6 Parallel Input/Output** Port A can be configured to be keyboard interrupt input pins. Refer to Chapter 9, "Keyboard Interrupt (S08KBIV1)," for more information about using port A pins as keyboard interrupts pins. #### 6.3.2 Port B and Analog to Digital Converter Inputs Figure 6-3. Port B Pin Names Port B is an 8-bit port shared among the ATD inputs and general-purpose I/O. Any pin enabled as an ATD input will be forced to act as an input. Port B pins are available as general-purpose I/O pins controlled by the port B data (PTBD), data direction (PTBDD), pullup enable (PTBPE), and slew rate control (PTBSE) registers. Refer to Section 6.4, "Parallel I/O Controls." for more information about general-purpose I/O control. When the ATD module is enabled, analog pin enables are used to specify which pins on port B will be used as ATD inputs. Refer to Chapter 14, "Analog-to-Digital Converter (S08ATDV3)," for more information about using port B pins as ATD pins. #### 6.3.3 Port C and SCI2, IIC, and High-Current Drivers | Port C | | Bit 7 | 6 | 5 | 3 | 3 | 2 | 1 | Bit 0 | |--------|----------|-------|------|------|------|---------------|---------------|---------------|---------------| | | MCU Pin: | PTC7 | PTC6 | PTC5 | PTC4 | PTC3/
SCL1 | PTC2/
SDA1 | PTC1/
RxD2 | PTC0/
TxD2 | Figure 6-4. Port C Pin Names Port C is an 8-bit port which is shared among the SCI2 and IIC1 modules, and general-purpose I/O. When SCI2 or IIC1 modules are enabled, the pin direction will be controlled by the module or function. Port C has high current output drivers. Port C pins are available as general-purpose I/O pins controlled by the port C data (PTCD), data direction (PTCDD), pullup enable (PTCPE), and slew rate control (PTCSE) registers. Refer to Section 6.4, "Parallel I/O Controls," for more information about general-purpose I/O control. When the SCI2 module is enabled, PTC0 serves as the SCI2 module's transmit pin (TxD2) and PTC1 serves as the receive pin (RxD2). Refer to Chapter 11, "Serial Communications Interface (S08SCIV1)," for more information about using PTC0 and PTC1 as SCI pins When the IIC module is enabled, PTC2 serves as the IIC modules's serial data input/output pin (SDA1) and PTC3 serves as the clock pin (SCL1). Refer to Chapter 13, "Inter-Integrated Circuit (S08IICV1)," for more information about using PTC2 and PTC3 as IIC pins. ## 6.6.2 Port B Registers (PTBD, PTBPE, PTBSE, and PTBDD) Port B includes eight general-purpose I/O pins that share with the ATD function. Port B pins used as general-purpose I/O pins are controlled by the port B data (PTBD), data direction (PTBDD), pullup enable (PTBPE), and slew rate control (PTBSE) registers. If the ATD takes control of a port B pin, the corresponding PTBDD, PTBSE, and PTBPE bits are ignored. When a port B pin is being used as an ATD pin, reads of PTBD will return a 0 of the corresponding pin, provided PTBDD is 0. Figure 6-13. Port B Data Register (PTBD) **Table 6-5. PTBD Field Descriptions** | Field | Description | |-----------|---| | PTBD[7:0] | Port B Data Register Bits — For port B pins that are inputs, reads return the logic level on the pin. For port B pins that are configured as outputs, reads return the last value written to this register. Writes are latched into all bits of this register. For port B pins that are configured as outputs, the logic level is driven out the corresponding MCU pin. Reset forces PTBD to all 0s, but these 0s are not driven out on the corresponding pins because reset also configures all port pins as high-impedance inputs with pullups disabled. | Figure 6-14. Pullup Enable for Port B (PTBPE) ### **Table 6-6. PTBPE Field Descriptions** | Field | Description | |------------|---| | PTBPE[7:0] | Pullup Enable for Port B Bits — For port B pins that are inputs, these read/write control bits determine whether internal pullup devices are enabled. For port B pins that are configured as outputs, these bits are ignored and the internal pullup devices are disabled. 0 Internal pullup device disabled. 1 Internal pullup device enabled. | # **Chapter 7 Internal Clock Generator (S08ICGV2)** The MC9S08GBxxA/GTxxA microcontroller provides one internal clock generation (ICG) module to create the system bus frequency. All functions described in this section are available on the MC9S08GBxxA/GTxxA microcontroller. The EXTAL and XTAL pins share port G bits 2 and 1, respectively. Analog supply lines V_{DDA} and V_{SSA} are internally derived from the MCU's V_{DD} and V_{SS} pins. Electrical parametric data for the ICG may be found in Appendix A, "Electrical Characteristics." Figure 7-1. System Clock Distribution Diagram ### **NOTE** Freescale Semiconductor recommends that flash location \$FFBE be reserved to store a nonvolatile version of ICGTRM. This will allow debugger and programmer vendors to perform a manual trim operation and store the resultant ICGTRM value for users to access at a later time. # 7.1.2 Modes of Operation This is a high-level description only. Detailed descriptions of operating modes are contained in Section 7.3, "Functional Description." - Mode 1 Off - The output clock, ICGOUT, is static. This mode may be entered when the STOP instruction is executed. - Mode 2 Self-clocked (SCM) - Default mode of operation that is entered out of reset. The ICG's FLL is open loop and the digitally controlled oscillator (DCO) is free running at a frequency set by the filter bits. - Mode 3 FLL engaged internal (FEI) - In this mode, the ICG's FLL is used to create frequencies that are programmable multiples of the internal reference clock. - FLL engaged internal unlocked is a transition state which occurs while the FLL is attempting to lock. The FLL DCO frequency is off target and the FLL is adjusting the DCO to match the target frequency. - FLL engaged internal locked is a state which occurs when the FLL detects that the DCO is locked to a multiple of the internal reference. - Mode 4 FLL bypassed external (FBE) - In this mode, the ICG is configured to bypass the FLL and use an external clock as the clock source. - Mode 5 FLL engaged external (FEE) - The ICG's FLL is used to generate frequencies that are programmable multiples of the external clock reference. - FLL engaged external unlocked is a transition state which occurs while the FLL is attempting to lock. The FLL DCO frequency is off target and the FLL is adjusting the DCO to match the target frequency. - FLL engaged external locked is a state which occurs when the FLL detects that the DCO is locked to a multiple of the internal reference. ## 7.2 Oscillator Pins The oscillator pins are used to provide an external clock source for the MCU. # 7.2.1 EXTAL— External Reference Clock / Oscillator Input If upon the first write to ICGC1, either FEE mode or FBE mode is selected, this pin functions as either the external clock input or the input of the oscillator circuit as determined by REFS. If upon the first write to ICGC1, either FEI mode or SCM mode is selected, this pin is not used by the ICG. # 7.2.2 XTAL— Oscillator Output If upon the first write to ICGC1, either FEE mode or FBE mode is selected, this pin functions as the output of the oscillator circuit. If upon the first write to ICGC1, either FEI mode or SCM mode is selected, this ### Internal Clock Generator (S08ICGV2) pin is not used by the ICG. The oscillator is capable of being configured to provide a higher amplitude output for improved noise immunity. This mode of operation is selected by HGO = 1. ## 7.2.3 External Clock Connections If an external clock is used, then the pins are connected as shown in Figure 7-4. Figure 7-4. External Clock Connections # 7.2.4 External Crystal/Resonator Connections If an external crystal/resonator frequency reference is used, then the pins are connected as shown in Figure 7-5. Recommended component values are listed in Appendix A, "Electrical Characteristics." Figure 7-5. External Frequency Reference Connection register (TPMxCnVH:TPMxCnVL). The polarity of this PWM signal is determined by the setting in the ELSnA control bit. Duty cycle cases of 0 percent and 100 percent are possible. As Figure 10-3 shows, the output compare value in the TPM channel registers determines the pulse width (duty cycle) of the PWM signal. The time between the modulus overflow and the output compare is the pulse width. If ELSnA = 0, the counter overflow forces the PWM signal high and the output compare forces the PWM signal low. If ELSnA = 1, the counter overflow forces the PWM signal low and the output compare forces the PWM signal high. Figure 10-3. PWM Period and Pulse Width (ELSnA = 0) When the channel value register is set to \$0000, the duty cycle is 0 percent. By setting the timer channel value register (TPMxCnVH:TPMxCnVL) to a value greater than the modulus setting, 100 percent duty cycle can be achieved. This implies that the modulus setting must be less than \$FFFF to get 100 percent duty cycle. Because the HCS08 is a family of 8-bit MCUs, the settings in the timer channel registers are buffered to ensure coherent 16-bit updates and to avoid unexpected PWM pulse widths. Writes to either register, TPMxCnVH or TPMxCnVL, write to buffer registers. In edge-PWM mode, values are transferred to the corresponding timer channel registers only after both 8-bit bytes of a 16-bit register have been written and the value in the TPMxCNTH:TPMxCNTL counter is \$0000. (The new duty cycle does not take effect until the next full period.) # 10.5.3 Center-Aligned PWM Mode This type of PWM output uses the up-/down-counting mode of the timer counter (CPWMS = 1). The output compare value in TPMxCnVH:TPMxCnVL determines the pulse width (duty cycle) of the PWM signal and the period is determined by the value in TPMxMODH:TPMxMODL. TPMxMODH:TPMxMODL should be kept in the range of \$0001 to \$7FFF because values outside this range can produce ambiguous results. ELSnA will determine the polarity of the CPWM output. Eqn. 10-1 period = 2 x (TPMxMODH:TPMxMODL); for TPMxMODH:TPMxMODL = \$0001-\$7FFF Eqn. 10-2 If the channel value register TPMxCnVH:TPMxCnVL is zero or negative (bit 15 set), the duty cycle will be 0 percent. If TPMxCnVH:TPMxCnVL is a positive value (bit 15 clear) and is greater than the (nonzero) modulus setting, the duty cycle will be 100 percent because the duty cycle compare will never occur. This implies the usable range of periods set by the modulus register is \$0001 through \$7FFE (\$7FFF if MC9S08GB60A Data Sheet, Rev. 2 # **Chapter 11 Serial Communications Interface (S08SCIV1)** ## 11.1 Introduction The MC9S08GBxxA/GTxxA includes two independent serial communications interface (SCI) modules — sometimes called universal asynchronous receiver/transmitters (UARTs). Typically, these systems are used to connect to the RS232 serial input/output (I/O) port of a personal computer or workstation, and they can also be used to communicate with other embedded controllers. A flexible, 13-bit, modulo-based baud rate generator supports a broad range of standard baud rates beyond 115.2 kbaud. Transmit and receive within the same SCI use a common baud rate, and each SCI module has a separate baud rate generator. This SCI system offers many advanced features not commonly found on other asynchronous serial I/O peripherals on other embedded controllers. The receiver employs an advanced data sampling technique that ensures reliable communication and noise detection. Hardware parity, receiver wakeup, and double buffering on transmit and receive are also included. | Field | Description | |------------|---| | 7
SPRF | SPI Read Buffer Full Flag — SPRF is set at the completion of an SPI transfer to indicate that received data may be read from the SPI data register (SPI1D). SPRF is cleared by reading SPRF while it is set, then reading the SPI data register. 0 No data available in the receive data buffer 1 Data available in the receive data buffer | | 5
SPTEF | SPI Transmit Buffer Empty Flag — This bit is set when there is room in the transmit data buffer. It is cleared by reading SPI1S with SPTEF set, followed by writing a data value to the transmit buffer at SPI1D. SPI1S must be read with SPTEF = 1 before writing data to SPI1D or the SPI1D write will be ignored. SPTEF generates an SPTEF CPU interrupt request if the SPTIE bit in the SPI1C1 is also set. SPTEF is automatically set when a data byte transfers from the transmit buffer into the transmit shift register. For an idle SPI (no data in the transmit buffer or the shift register and no transfer in progress), data written to SPI1D is transferred to the shifter almost immediately so SPTEF is set within two bus cycles allowing a second 8-bit data value to be queued into the transmit buffer. After completion of the transfer of the value in the shift register, the queued value from the transmit buffer will automatically move to the shifter and SPTEF will be set to indicate there is room for new data in the transmit buffer. If no new data is waiting in the transmit buffer, SPTEF simply remains set and no data moves from the buffer to the shifter. O SPI transmit buffer not empty 1 SPI transmit buffer empty | | 4
MODF | Master Mode Fault Flag — MODF is set if the SPI is configured as a master and the slave select input goes low, indicating some other SPI device is also configured as a master. The SS pin acts as a mode fault error input only when MSTR = 1, MODFEN = 1, and SSOE = 0; otherwise, MODF will never be set. MODF is cleared by reading MODF while it is 1, then writing to SPI control register 1 (SPI1C1). 0 No mode fault error 1 Mode fault error detected | # 12.4.5 SPI Data Register (SPI1D) Figure 12-9. SPI Data Register (SPI1D) Reads of this register return the data read from the receive data buffer. Writes to this register write data to the transmit data buffer. When the SPI is configured as a master, writing data to the transmit data buffer initiates an SPI transfer. Data should not be written to the transmit data buffer unless the SPI transmit buffer empty flag (SPTEF) is set, indicating there is room in the transmit buffer to queue a new transmit byte. Data may be read from SPI1D any time after SPRF is set and before another transfer is finished. Failure to read the data out of the receive data buffer before a new transfer ends causes a receive overrun condition and the data from the new transfer is lost. Freescale Semiconductor MC9S08GB60A Data Sheet, Rev. 2 ### Serial Peripheral Interface (S08SPIV3) in LSBFE. Both variations of SPSCK polarity are shown, but only one of these waveforms applies for a specific transfer, depending on the value in CPOL. The SAMPLE IN waveform applies to the MOSI input of a slave or the MISO input of a master. The MOSI waveform applies to the MOSI output pin from a master and the MISO waveform applies to the MISO output from a slave. The SS OUT waveform applies to the slave select output from a master (provided MODFEN and SSOE = 1). The master \overline{SS} output goes to active low at the start of the first bit time of the transfer and goes back high one-half SPSCK cycle after the end of the eighth bit time of the transfer. The \overline{SS} IN waveform applies to the slave select input of a slave. Figure 12-11. SPI Clock Formats (CPHA = 0) When CPHA = 0, the slave begins to drive its MISO output with the first data bit value (MSB or LSB depending on LSBFE) when SS goes to active low. The first SPSCK edge causes both the master and the slave to sample the data bit values on their MISO and MOSI inputs, respectively. At the second SPSCK edge, the SPI shifter shifts one bit position which shifts in the bit value that was just sampled and shifts the second data bit value out the other end of the shifter to the MOSI and MISO outputs of the master and slave, respectively. When CPHA = 0, the slave's \overline{SS} input must go to its inactive high level between transfers. MC9S08GB60A Data Sheet, Rev. 2 202 Freescale Semiconductor ## 12.5.2 SPI Interrupts There are three flag bits, two interrupt mask bits, and one interrupt vector associated with the SPI system. The SPI interrupt enable mask (SPIE) enables interrupts from the SPI receiver full flag (SPRF) and mode fault flag (MODF). The SPI transmit interrupt enable mask (SPTIE) enables interrupts from the SPI transmit buffer empty flag (SPTEF). When one of the flag bits is set, and the associated interrupt mask bit is set, a hardware interrupt request is sent to the CPU. If the interrupt mask bits are cleared, software can poll the associated flag bits instead of using interrupts. The SPI interrupt service routine (ISR) should check the flag bits to determine what event caused the interrupt. The service routine should also clear the flag bit(s) before returning from the ISR (usually near the beginning of the ISR). ### 12.5.3 Mode Fault Detection A mode fault occurs and the mode fault flag (MODF) becomes set when a master SPI device detects an error on the \overline{SS} pin (provided the \overline{SS} pin is configured as the mode fault input signal). The \overline{SS} pin is configured to be the mode fault input signal when MSTR = 1, mode fault enable is set (MODFEN = 1), and slave select output enable is clear (SSOE = 0). The mode fault detection feature can be used in a system where more than one SPI device might become a master at the same time. The error is detected when a master's \overline{SS} pin is low, indicating that some other SPI device is trying to address this master as if it were a slave. This could indicate a harmful output driver conflict, so the mode fault logic is designed to disable all SPI output drivers when such an error is detected. When a mode fault is detected, MODF is set and MSTR is cleared to change the SPI configuration back to slave mode. The output drivers on the SPSCK, MOSI, and MISO (if not bidirectional mode) are disabled. MODF is cleared by reading it while it is set, then writing to the SPI control register 1 (SPI1C1). User software should verify the error condition has been corrected before changing the SPI back to master mode. ### 13.1.1 Features The IIC includes these distinctive features: - Compatible with IIC bus standard - Multi-master operation - Software programmable for one of 64 different serial clock frequencies - Software selectable acknowledge bit - Interrupt driven byte-by-byte data transfer - Arbitration lost interrupt with automatic mode switching from master to slave - Calling address identification interrupt - START and STOP signal generation/detection - Repeated START signal generation - Acknowledge bit generation/detection - Bus busy detection # 13.1.2 Modes of Operation The IIC functions the same in normal and monitor modes. A brief description of the IIC in the various MCU modes is given here. - Run mode This is the basic mode of operation. To conserve power in this mode, disable the module. - Wait mode The module will continue to operate while the MCU is in wait mode and can provide a wake-up interrupt. - Stop mode The IIC is inactive in stop3 mode for reduced power consumption. The STOP instruction does not affect IIC register states. Stop2 and stop1 will reset the register contents. Table 13-3. IIC Divider and Hold Values | ICR
(hex) | SCL Divider | SDA Hold
Value | |--------------|-------------|-------------------| | 00 | 20 | 7 | | 01 | 22 | 7 | | 02 | 24 | 8 | | 03 | 26 | 8 | | 04 | 28 | 9 | | 05 | 30 | 9 | | 06 | 34 | 10 | | 07 | 40 | 10 | | 08 | 28 | 7 | | 09 | 32 | 7 | | 0A | 36 | 9 | | 0B | 40 | 9 | | 0C | 44 | 11 | | 0D | 48 | 11 | | 0E | 56 | 13 | | 0F | 68 | 13 | | 10 | 48 | 9 | | 11 | 56 | 9 | | 12 | 64 | 13 | | 13 | 72 | 13 | | 14 | 80 | 17 | | 15 | 88 | 17 | | 16 | 104 | 21 | | 17 | 128 | 21 | | 18 | 80 | 9 | | 19 | 96 | 9 | | 1A | 112 | 17 | | 1B | 128 | 17 | | 1C | 144 | 25 | | 1D | 160 | 25 | | 1E | 192 | 33 | | 1F | 240 | 33 | | ICR
(hex) | SCL Divider | SDA Hold
Value | |--------------|-------------|-------------------| | 20 | 160 | 17 | | 21 | 192 | 17 | | 22 | 224 | 33 | | 23 | 256 | 33 | | 24 | 288 | 49 | | 25 | 320 | 49 | | 26 | 384 | 65 | | 27 | 480 | 65 | | 28 | 320 | 33 | | 29 | 384 | 33 | | 2A | 448 | 65 | | 2B | 512 | 65 | | 2C | 576 | 97 | | 2D | 640 | 97 | | 2E | 768 | 129 | | 2F | 960 | 129 | | 30 | 640 | 65 | | 31 | 768 | 65 | | 32 | 896 | 129 | | 33 | 1024 | 129 | | 34 | 1152 | 193 | | 35 | 1280 | 193 | | 36 | 1536 | 257 | | 37 | 1920 | 257 | | 38 | 1280 | 129 | | 39 | 1536 | 129 | | 3A | 1792 | 257 | | 3B | 2048 | 257 | | 3C | 2304 | 385 | | 3D | 2560 | 385 | | 3E | 3072 | 513 | | 3F | 3840 | 513 | | Name | Function | |---------------------|--| | AD7–AD0 | Channel input pins | | V _{REFH} | High reference voltage for ATD converter | | V _{REFL} | Low reference voltage for ATD converter | | V_{DDAD} | ATD power supply voltage | | V _{SSAD} | ATD ground supply voltage | **Table 14-1. Signal Properties** ## 14.2.1.1 Channel Input Pins — AD1P7-AD1P0 The channel pins are used as the analog input pins of the ATD. Each pin is connected to an analog switch which serves as the signal gate into the sample submodule. # 14.2.1.2 ATD Reference Pins — V_{RFFH}, V_{RFFI} These pins serve as the source for the high and low reference potentials for the converter. Separation from the power supply pins accommodates the filtering necessary to achieve the accuracy of which the system is capable. # 14.2.1.3 ATD Supply Pins — V_{DDAD}, V_{SSAD} These two pins are used to supply power and ground to the analog section of the ATD. Dedicated power is required to isolate the sensitive analog circuitry from the normal levels of noise present on digital power supplies. ### NOTE V_{DDAD1} and V_{DD} must be at the same potential. Likewise, V_{SSAD1} and V_{SS} must be at the same potential. # 14.3 Functional Description The ATD uses a successive approximation register (SAR) architecture. The ATD contains all the necessary elements to perform a single analog-to-digital conversion. A write to the ATD1SC register initiates a new conversion. A write to the ATD1C register will interrupt the current conversion but it will not initiate a new conversion. A write to the ATD1PE register will also abort the current conversion but will not initiate a new conversion. If a conversion is already running when a write to the ATD1SC register is made, it will be aborted and a new one will be started. ## 14.3.1 Mode Control The ATD has a mode control unit to communicate with the sample and hold (S/H) machine and the SAR machine when necessary to collect samples and perform conversions. The mode control unit signals the S/H machine to begin collecting a sample and for the SAR machine to begin receiving a sample. At the end of the sample period, the S/H machine signals the SAR machine to begin the analog-to-digital conversion process. The conversion process is terminated when the SAR machine signals the end of MC9S08GB60A Data Sheet, Rev. 2 **Table 14-6. ATD1SC Field Descriptions** | Field | Description | | | | | |--------------|---|--|--|--|--| | 7
CCF | Conversion Complete Flag — The CCF is a read-only bit which is set each time a conversion is complete. The CCF bit is cleared whenever the ATD1SC register is written. It is also cleared whenever the result registers, ATD1RH or ATD1RL, are read. 0 Current conversion is not complete. 1 Current conversion is complete. | | | | | | 6
ATDIE | ATD Interrupt Enabled — When this bit is set, an interrupt is generated upon completion of an ATD conversion. At this time, the result registers contain the result data generated by the conversion. The interrupt will remain pending as long as the conversion complete flag CCF is set. If the ATDIE bit is cleared, then the CCF bit must be polled to determine when the conversion is complete. Note that system reset clears pending interrupts. O ATD interrupt disabled. ATD interrupt enabled. | | | | | | 5
ATDCO | ATD Continuous Conversion — When this bit is set, the ATD will convert samples continuously and update the result registers at the end of each conversion. When this bit is cleared, only one conversion is completed between writes to the ATD1SC register. O Single conversion mode. 1 Continuous conversion mode. | | | | | | 4:0
ATDCH | Analog Input Channel Select — This field of bits selects the analog input channel whose signal is sampled and converted to digital codes. Table 14-7 lists the coding used to select the various analog input channels. | | | | | Table 14-7. Analog Input Channel Select Coding | ATDCH | Analog Input Channel | | |-------|--|--| | 00 | AD0 | | | 01 | AD1 | | | 02 | AD2 | | | 03 | AD3 | | | 04 | AD4 | | | 05 | AD5 | | | 06 | AD6 | | | 07 | AD7 | | | 08–1D | Reserved (default to V _{REFL}) | | | 1E | V _{REFH} | | | 1F | V _{REFL} | | # 14.6.3 ATD Result Data (ATD1RH, ATD1RL) For left-justified mode, result data bits 9–2 map onto bits 7–0 of ATD1RH, result data bits 1 and 0 map onto ATD1RL bits 7 and 6, where bit 7 of ATD1RH is the most significant bit (MSB). **Appendix A Electrical Characteristics** | © FREESCALE SEMICONDUCTOR, INC.
ALL RIGHTS RESERVED. | MECHANICA | L OUTLINE | PRINT VERSION NO | OT TO SCALE | |---|-------------|--------------|------------------|-------------| | TITLE: 64LD LQFP, | | DOCUMENT NO |): 98ASS23234W | REV: D | | 10 X 10 X 1.4 P | CASE NUMBER | R: 840F-02 | 06 APR 2005 | | | O.5 PITCH, CASE OUTLINE | | STANDARD: JE | IDEC MS-026 BCD | | | © FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. | MECHANICAL OUTLINE | | PRINT VERSION NOT TO SCALE | | |--|--------------------|--------------|----------------------------|-------------| | TITLE: | PITCH | DOCUMENT NO |): 98ASB42839B | REV: B | | 44LD QFP,
10X10X2.0 PKG, 0.8 | | CASE NUMBER | R: 824A-01 | 06 APR 2005 | | 10/(10/(2.0 11(0, 0.0 | | STANDARD: NO | N-JEDEC | |