E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e500mc
Number of Cores/Bus Width	4 Core, 32-Bit
Speed	1.0GHz
Co-Processors/DSP	-
RAM Controllers	DDR3, DDR3L
Graphics Acceleration	Νο
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (5)
SATA	SATA 3Gbps (2)
USB	USB 2.0 + PHY (2)
Voltage - I/O	1.0V, 1.35V, 1.5V, 1.8V, 2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	-
Supplier Device Package	780-FCPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/p2040nsn1klb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Assignments and Reset States

. ⁄1	15	16	17	18	19	20	21	22	23	24	25	26	27	28	
	SD_ RX [11]	SGND [14]	AVDD_ SRDS2	SV _{DD} [13]	SD_ RX [12]	SGND [13]	SD RX [13]	SV _{DD} [12]	GND [168]	EC1_ GTX_ CLK125	EC1_ RX_ DV	EC1_ TXD3	EC1_ RXD1		A
	SD_ RX [11]	SV _{DD} [07]	AGND_ SRDS2	SGND [08]	SD_ RX [12]	SV _{DD} [06]	SD_ RX [13]	SGND [07]	GND [167]	EC1_ TX_ D0	GND [166]	EC1_ RXD3	EC1_ RXD2	EC1_ RXD0	В
>	KGND [09]	SD_ <u>TX</u> [11]	SV _{DD} [05]	SD_ TX [12]	XV _{DD} [09]	SD_ TX [13]	XGND [08]	NC [34]	GND [165]	EC1_ RX_ CLK	EC1_ TXD1	LV _{DD} [5]	EC1_ TX_ EN	EC1_ TXD2	С
>	(V _{DD} [06]	SD_ TX [11]	SGND [04]	SD TX [12]	XGND [05]	SD_ TX [13]	XV _{DD} [05]	NC [31]	GND [164]	EC2_ GTX_ CLK125	EC2_ RX_ DV	EC1_ GTX_ CLK	GND [163]	EC2_ RXD3	D
	NC [22]	NC [21]	SD_ REF_ CLK2	NC [20]	NC [19]	NC [18]	SD_ IMP_ CAL_TX	XV _{DD} [04]	RSRV	GND [162]	EC2_ RXD1	LV _{DD} [4]	EC2_ RXD2	EC2_ GTX_CLK	E
F	RSRV	NC [11]	SD_ REF CLK2	NC [10]	NC [09]	NC [08]	XGND [03]	GND [161]	EMI1_ MDC	RSRV	EC2_ RX_ CLK	EC2_ RX_ D0	GND [160]	EC2_ TX_ EN	F
	V _{DD} CA_PL [75]	GND [156]	V _{DD} _ CA_PL [74]	GND [155]	V _{DD} _ CA_PL [73]	LV _{DD} [3]	GND [154]	GND [153]	SPI_ MISO	EMI1_ MDIO	EC2_ TX_ D0	EC2_ TX_ D2	EC2_ TX_ D1	EC2_ TX_ D3	G
(V _{DD} CA_PL [69]	GND [147]	V _{DD} _ CA_PL [68]	GND [146]	V _{DD} _ CA_PL [67]	LV _{DD} [2]	GND [145]	SPI_ CLK	SPI_ CS1	SPI_ CS3	GND [144]	SPI_ CS0	SPI_ CS3	SPI_ MISI	н
(V _{DD} _ CA_PL [63]	GND [138]	V _{DD} _ CA_PL [62]	GND [137]	V _{DD} _ CA_PL [61]	LV _{DD} [1]	GND [136]	USB2_ AGND6	USB2_ VDD_ 3P3	USB2_ AGND5	USB2_ VBUS_ CLMP	USB2_ AGND4	USB2_ UID	USB2_ AGND6	J
C	VDD_ CA_PL [57]	GND [130]	V _{DD} _ CA_PL [56]	GND [129]	V _{DD} _ CA_PL [55]	CV _{DD} [2]	GND [128]	USB2_ VDD_ 1P0	RSRV	RSRV	USB2_ AGND3	USB2_ UDP	USB1_ AGND5	USB1_ UDP	К
C	/DD_ A_PL [51]	GND [123]	V _{DD} CA_PL [50]	GND [122]	V _{DD} _ CA_PL [49]	VDD_LP	TMP_ DETECT	USB1_ VDD_ 1P0	RSRV	RSRV	USB2_ AGND2	USB2_ UDM	USB1_ AGND4	USB1_ UDM	L
C	/DD_ CA_PL [45]	GND [115]	V _{DD} CA_PL [44]	GND [114]	V _{DD} CA_PL [43]	CV _{DD} [1]	NC [M21]	USB1_ AGND3	USB1_ VDD_ 3P3	USB1_ AGND2	USB1_ VBUS_ CLMP	USB2_ AGND1	USB1_ UID	USB1_ AGND1	М
C	/DD_ CA_PL [39]	GND [109]	V _{DD} CA_PL [38]	GND [108]	V _{DD} CA_PL [37]	OV _{DD} [6]	GND [107]	SDHC_ CMD	SDHC_ DAT [0]	SDHC_ CLK	GND [106]	SDHC_ DAT [1]	SDHC_ DAT [2]	SDHC_ DAT [3]	Ν
C	V _{DD} _ CA_PL [33]	GND [100]	V _{DD} CA_PL [32]	GND [099]	V _{DD} _ CA_PL [31]	OV _{DD} [5]	GND [098]	USB_ CLKIN	UART2_ CTS	UART1_ RTS	UART2_ RTS	UART2_ SOUT	UART2_ SIN	RTC	P

Figure 4. 780 BGA Ball Map Diagram (Detail View B)

Pin Assignments and Reset States

Table 1. Pin List by Bus (continued)

Signal	Signal Description	Package Pin Number	Pin Type	Power Supply	Note
GND132	Ground	K12		—	—
GND131	Ground	K14		—	—
GND130	Ground	K16		_	—
GND129	Ground	K18		_	—
GND128	Ground	K21		—	—
GND127	Ground	L8		_	
GND126	Ground	L10		—	—
GND125	Ground	L12	_	_	
GND124	Ground	L14		—	—
GND123	Ground	L16		—	—
GND122	Ground	L18	_	_	_
GND121	Ground	M2		—	—
GND120	Ground	M5		—	—
GND119	Ground	M8	_	—	—
GND118	Ground	M10		—	—
GND117	Ground	M12	—		—
GND116	Ground	M14	_	—	—
GND115	Ground	M16	—		—
GND114	Ground	M18	—		—
GND113	Ground	N8	—		—
GND112	Ground	N10	—		—
GND111	Ground	N12	—	_	—
GND110	Ground	N14	—		—
GND109	Ground	N16	—		—
GND108	Ground	N18			
GND107	Ground	N21	_		—
GND106	Ground	N25	_		—
GND105	Ground	P5			
GND104	Ground	P8	_		—
GND103	Ground	P10	_		—
GND102	Ground	P12	—	_	—
GND101	Ground	P14	_	_	—
GND100	Ground	P16	—	—	—
GND099	Ground	P18	_		_

2.6.3 Real Time Clock Timing

The real time clock timing (RTC) input is sampled by the platform clock. The output of the sampling latch is then used as an input to the counters of the MPIC and the time base unit of the e500mc; there is no need for jitter specification. The minimum pulse width of the RTC signal must be greater than $16 \times$ the period of the platform clock. That is, minimum clock high time is $8 \times$ (platform clock), and minimum clock low time is $8 \times$ (platform clock). There is no minimum RTC frequency; RTC may be grounded if not needed.

2.6.4 dTSEC Gigabit Ethernet Reference Clock Timing

This table provides the dTSEC gigabit reference clocks DC electrical characteristics.

Table 15. EC_GTX_CLK125 DC Timing Specifications

Parameter	Symbol	Min	Мах	Unit	Note
High-level input voltage	V _{IH}	2	—	V	1
Low-level input voltage	V _{IL}	—	0.7	V	1
Input current ($LV_{IN} = 0 V \text{ or } LV_{IN} = LV_{DD}$)	I _{IN}		±40	μÂ	2

Note:

1. The max V_{IH} , and min V_{IL} values are based on the respective min and max LVIN values found in Table 3.

2. The symbol LV_{IN} , in this case, represents the LV_{IN} symbol referenced in Table 3.

This table provides the dTSEC gigabit reference clocks AC timing specifications.

Table 16.	EC	GTX	CLK125	AC Timina	Specifications
		MIX		AC I IIIIIII	opcomoutions

Parameter/Condition	Symbol	Min	Typical	Мах	Unit	Note
EC_GTX_CLK125 frequency	t _{G125}	_	125	_	MHz	_
EC_GTX_CLK125 cycle time	t _{G125}		8		ns	
EC_GTX_CLK125 rise and fall time $\label{eq:LVDD} \begin{array}{l} \text{LV}_{\text{DD}} = 2.5 \text{ V} \\ \text{LV}_{\text{DD}} = 3.3 \text{ V} \end{array}$	t _{G125R} /t _{G125F}			0.75 1.0	ns	1
EC_GTX_CLK125 duty cycle 1000Base-T for RGMII	t _{G125H} /t _{G125}	47	_	53	%	2
EC_GTX_CLK125 jitter	—	—	_	± 150	ps	2

Note:

1. Rise and fall times for EC_GTX_CLK125 are measured from 20% to 80% (rise time) and 80% to 20% (fall time) of LV_{DD}.

EC_GTX_CLK125 is used to generate the GTX clock for the dTSEC transmitter with 2% degradation. EC_GTX_CLK125 duty cycle can be loosened from 47%/53% as long as the PHY device can tolerate the duty cycle generated by the dTSEC GTX_CLK. See Section 2.12.2.2, "RGMII AC Timing Specifications," for duty cycle for 10Base-T and 100Base-T reference clock.

2.6.5 Other Input Clocks

A description of the overall clocking of this device is available in the chip reference manual in the form of a clock subsystem block diagram. For information on the input clock requirements of functional blocks sourced external of the device, such as SerDes, Ethernet Management, eSDHC, Local Bus, see the specific interface section.

This figure shows the DDR3 and DDR3L SDRAM interface output timing for the MCK to MDQS skew measurement (t_{DDKHMH}).

Figure 10. t_{DDKHMH} Timing Diagram

This figure shows the DDR3 and DDR3L SDRAM output timing diagram.

Figure 11. DDR3 and DDR3L Output Timing Diagram

This table provides the DC electrical characteristics for the enhanced local bus interface operating at $BV_{DD} = 1.8$ V.

Table 48. Enhanced Local Bus DC Electrical Characteristics (BV_{DD} = 1.8 V)

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Мах	Unit	Note
Input high voltage	V _{IH}	1.25	—	V	1
Input low voltage	V _{IL}	—	0.6	V	1
Input current ($V_{IN} = 0 V \text{ or } V_{IN} = BV_{DD}$)	I _{IN}	—	±40	μA	2
Output high voltage (BV _{DD} = min, I _{OH} = -0.5 mA)	V _{OH}	1.35	_	V	—
Output low voltage (BV _{DD} = min, I _{OL} = 0.5 mA)	V _{OL}	—	0.4	V	—

Note:

1. The min V_{IL} and max V_{IH} values are based on the respective min and max BV_{IN} values found in Table 3.

2. The symbol V_{IN}, in this case, represents the BV_{IN} symbol referenced in Section 2.1.2, "Recommended Operating Conditions."

2.14.2 Enhanced Local Bus AC Timing Specifications

This section describes the AC timing specifications for the enhanced local bus interface.

This figure shows the eLBC AC test load.

Figure 20. Enhanced Local Bus AC Test Load

2.14.2.1 Local Bus AC Timing Specification

All output signal timings are relative to the falling edge of any LCLKs. The external circuit must use the rising edge of the LCLKs to latch the data.

All input timings except LGTA/LUPWAIT/LFRB are relative to the rising edge of LCLKs. LGTA/LUPWAIT/LFRB are relative to the falling edge of LCLKs.

This table provides the eLBC timing specifications.

Table 49. Enhanced Local Bus Timing Specifications

For recommended operating conditions, see Table 3.

Parameter	Symbol ¹	Min	Мах	Unit	Note
Local bus cycle time	t _{LBK}	15		ns	
Local bus duty cycle	t _{LBKH} /t _{LBK}	45	55	%	
LCLK[n] skew to LCLK[m]	t _{LBKSKEW}		150	ps	2
Input setup (except LGTA/LUPWAIT/LFRB)	t _{LBIVKH}	6	_	ns	—
Input hold (except LGTA/LUPWAIT/LFRB)	t _{LBIXKH}	1	_	ns	—

Table 49. Enhanced Local Bus Timing Specifications (continued)

For recommended operating conditions, see Table 3.

Parameter	Symbol ¹	Min	Мах	Unit	Note
Input setup (for LGTA/LUPWAIT/LFRB)	t _{LBIVKL}	6		ns	_
Input hold (for LGTA/LUPWAIT/LFRB)	t _{LBIXKL}	1		ns	_
Output delay (Except LALE)	t _{LBKLOV}	—	2.0	ns	—
Output hold (Except LALE)	t _{LBKLOX}	-3.5	_	ns	5
Local bus clock to output high impedance for LAD/LDP	t _{lbkloz}	—	2	ns	3
LALE output negation to LAD/LDP output transition (LATCH hold time)	t _{lbonot}	2 platform clock cycles - 1ns (LBCR[AHD] = 1)	_	ns	4
		4 platform clock cycles - 2 ns (LBCR[AHD] = 0)	_		

Note:

1. All signals are measured from $BV_{DD}/2$ of rising/falling edge of LCLK to $BV_{DD}/2$ of the signal in question.

2. Skew is measured between different LCLKs at BV_{DD}/2.

3. For purposes of active/float timing measurements, the high impedance or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.

- t_{LBONOT} is a measurement of the minimum time between the negation of LALE and any change in LAD. t_{LBONOT} is determined by LBCR[AHD]. The unit is the eLBC controller clock cycle, which is the internal clock that runs the local bus controller, not the external LCLK. After power on reset, LBCR[AHD] defaults to 0.
- 5. Output hold is negative, meaning that the output transition happens earlier than the falling edge of LCLK.

This figure shows the AC timing diagram of the local bus interface.

Figure 21. Enhanced Local Bus Signals

Figure 22 applies to all three controllers that eLBC supports: GPCM, UPM, and FCM.

For input signals, the AC timing data is used directly for all three controllers.

For output signals, each type of controller provides its own unique method to control the signal timing. The final signal delay value for output signals is the programmed delay plus the AC timing delay. For example, for GPCM, LCS can be programmed to delay by t_{acs} (0, ¹/₄, ¹/₂, 1, 1 + ¹/₄, 1 + ¹/₂, 2, 3 cycles), so the final delay is $t_{acs} + t_{LBKLOV}$.

only one signal trace curve in a differential waveform. The voltage represented in the differential waveform is not referenced to ground. See Figure 37 as an example for differential waveform.

Common Mode Voltage, V_{cm}

The common mode voltage is equal to half of the sum of the voltages between each conductor of a balanced interchange circuit and ground. In this example, for SerDes output,

 $V_{cm_out} = (V_{SD_TXn} + V_{\overline{SD_TXn}}) \div 2 = (A + B) \div 2$, which is the arithmetic mean of the two complimentary output voltages within a differential pair. In a system, the common mode voltage may often differ from one component's output to the other's input. It may be different between the receiver input and driver output circuits within the same component. It is also referred to as the DC offset on some occasions.

To illustrate these definitions using real values, consider the example of a current mode logic (CML) transmitter that has a common mode voltage of 2.25 V and outputs, TD and TD. If these outputs have a swing from 2.0 V to 2.5 V, the peak-to-peak voltage swing of each signal (TD or TD) is 500 mV p-p, which is referred to as the single-ended swing for each signal. Because the differential signaling environment is fully symmetrical in this example, the transmitter output's differential swing (V_{OD}) has the same amplitude as each signal's single-ended swing. The differential output signal ranges between 500 mV and -500 mV. In other words, V_{OD} is 500 mV in one phase and -500 mV in the other phase. The peak differential voltage (V_{DIFFp}) is 500 mV. The peak-to-peak differential voltage (V_{DIFFp}) is 1000 mV p-p.

2.20.2 SerDes Reference Clocks

The SerDes reference clock inputs are applied to an internal PLL whose output creates the clock used by the corresponding SerDes lanes. The SerDes reference clocks inputs are SD_REF_CLK1 and SD_REF_CLK1 for SerDes bank1 and SD_REF_CLK2 and SD_REF_CLK2 for SerDes bank2.

SerDes banks 1–2 may be used for various combinations of the following IP blocks based on the RCW configuration field SRDS_PRTCL:

- SerDes bank 1: PCI Express 1/2/3, sRIO1/2, SGMII (1.25 Gbps only).
- SerDes bank 2: PCI Express3, SGMII (1.25 or 3.125 GBaud), SATA or Aurora.

The following sections describe the SerDes reference clock requirements and provide application information.

2.20.2.1 SerDes Reference Clock Receiver Characteristics

This figure shows a receiver reference diagram of the SerDes reference clocks.

Figure 33. Receiver of SerDes Reference Clocks

— For an external AC-coupled connection, there is no common mode voltage requirement for the clock driver. Because the external AC-coupling capacitor blocks the DC level, the clock driver and the SerDes reference clock receiver operate in different common mode voltages. The SerDes reference clock receiver in this connection scheme has its common mode voltage set to SGND. Each signal wire of the differential inputs is allowed to swing below and above the common mode voltage (SGND). This figure shows the SerDes reference clock input requirement for AC-coupled connection scheme.

Figure 35. Differential Reference Clock Input DC Requirements (External AC-Coupled)

- Single-Ended Mode
 - The reference clock can also be single-ended. The SD_REF_CLKn input amplitude (single-ended swing) must be between 400 mV and 800 mV peak-peak (from V_{MIN} to V_{MAX}) with SD_REF_CLKn either left unconnected or tied to ground.
 - The SD_REF_CLKn input average voltage must be between 200 and 400 mV. Figure 36 shows the SerDes reference clock input requirement for single-ended signaling mode.
 - To meet the input amplitude requirement, the reference clock inputs may need to be DC- or AC-coupled externally. For the best noise performance, the reference of the clock could be DC- or AC-coupled into the unused phase (SD_REF_CLKn) through the same source impedance as the clock input (SD_REF_CLKn) in use.

Figure 36. Single-Ended Reference Clock Input DC Requirements

The DC and AC specification of SerDes data lanes are defined in each interface protocol section below based on the application usage:

- Section 2.20.4, "PCI Express"
- Section 2.20.5, "Serial RapidIO (sRIO)"
- Section 2.20.6, "Aurora"
- Section 2.20.7, "Serial ATA (SATA)
- Section 2.20.8, "SGMII Interface"

2.20.4 PCI Express

This section describes the clocking dependencies, DC and AC electrical specifications for the PCI Express bus.

2.20.4.1 Clocking Dependencies

The ports on the two ends of a link must transmit data at a rate that is within 600 parts per million (ppm) of each other at all times. This is specified to allow bit rate clock sources with a \pm 300 ppm tolerance.

2.20.4.2 PCI Express Clocking Requirements for SD_REF_CLK*n* and SD_REF_CLK*n*

SerDes banks 1–2 (SD_REF_CLK[1:2] and SD_REF_CLK[1:2]) may be used for various SerDes PCI Express configurations based on the RCW configuration field SRDS_PRTCL.

For more information on these specifications, see Section 2.20.2, "SerDes Reference Clocks."

2.20.4.3 PCI Express DC Physical Layer Specifications

This section contains the DC specifications for the physical layer of PCI Express on this device.

2.20.4.3.1 PCI Express DC Physical Layer Transmitter Specifications

This section discusses the PCI Express DC physical layer transmitter specifications for 2.5 GT/s and 5 GT/s.

This table defines the PCI Express 2.0 (2.5 GT/s) DC specifications for the differential output at all transmitters. The parameters are specified at the component pins.

Table 62. PCI Express 2.0 (2.5 GT/s) Differential Transmitter (Tx) Output DC Specifications (XV_{DD} = 1.5 V or 1.8 V)

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Typical	Max	Unit	Note
Differential peak-to-peak output voltage	V _{TX-DIFFp-p}	800		1200	mV	$V_{TX-DIFFp-p} = 2 \times V_{TX-D+} - V_{TX-D-} $ See Note 1.
De-emphasized differential output voltage (ratio)	V _{TX-DE-RATIO}	3.0	3.5	4.0	dB	Ratio of the $V_{TX-DIFFp-p}$ of the second and following bits after a transition divided by the $V_{TX-DIFFp-p}$ of the first bit after a transition. See Note 1.
DC differential Tx impedance	Z _{TX-DIFF-DC}	80	100	120	Ω	Tx DC differential mode low Impedance

Table 62. PCI Express 2.0 (2.5 GT/s) Differential Transmitter (Tx) Output DC Specifications (XV_{DD} = 1.5 V or 1.8 V) (continued)

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Typical	Max	Unit	Note
Transmitter DC impedance	Z _{TX-DC}	40	50	60	Ω	Required Tx D+ as well as D– DC Impedance during all states

Note:

1. Measured at the package pins with a test load of 50Ω to GND on each pin.

This table defines the PCI Express 2.0 (5 GT/s) DC specifications for the differential output at all transmitters. The parameters are specified at the component pins.

Table 63. PCI Express 2.0 (5 GT/s) Differential Transmitter (Tx) Output DC Specifications (XV_{DD} = 1.5 V or 1.8 V)

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Typical	Max	Unit	Note
Differential peak-to-peak output voltage	V _{TX-DIFFp-p}	800	_	1200	mV	$V_{TX-DIFFp-p} = 2 \times IV_{TX-D+} - V_{TX-D-}I$ See Note 1.
Low power differential peak-to-peak output voltage	V _{TX-DIFFp-p_low}	400	500	1200	mV	$V_{TX-DIFFp-p} = 2 \times IV_{TX-D+} - V_{TX-D-}I$ See Note 1.
De-emphasized differential output voltage (ratio)	V _{TX-DE-RATIO-3.5dB}	3.0	3.5	4.0	dB	Ratio of the $V_{TX-DIFFp-p}$ of the second and following bits after a transition divided by the $V_{TX-DIFFp-p}$ of the first bit after a transition. See Note 1.
De-emphasized differential output voltage (ratio)	V _{TX-DE} -RATIO-6.0dB	5.5	6.0	6.5	dB	Ratio of the $V_{TX-DIFFp-p}$ of the second and following bits after a transition divided by the $V_{TX-DIFFp-p}$ of the first bit after a transition. See Note 1.
DC differential Tx impedance	Z _{TX-DIFF-DC}	80	100	120	Ω	Tx DC differential mode low impedance
Transmitter DC Impedance	Z _{TX-DC}	40	50	60	Ω	Required Tx D+ as well as D– DC impedance during all states

Note:

1. Measured at the package pins with a test load of 50Ω to GND on each pin.

2.20.4.4 PCI Express DC Physical Layer Receiver Specifications

This section discusses the PCI Express DC physical layer receiver specifications 2.5 GT/s, and 5 GT/s.

• The use of active circuits in the receiver, often referred to as adaptive equalization.

2.20.5.3 Serial RapidIO Clocking Requirements for SD_REF_CLK*n* and SD_REF_CLK*n*

SerDes bank 1 (SD_REF_CLK1 and SD_REF_CLK1) may be used for various SerDes Serial RapidIO configurations based on the RCW configuration field SRDS_PRTCL. Serial RapidIO is not supported on SerDes banks 2.

For more information on these specifications, see Section 2.20.2, "SerDes Reference Clocks."

2.20.5.4 DC Requirements for Serial RapidIO

This section explains the DC requirements for the Serial RapidIO interface.

2.20.5.4.1 DC Serial RapidIO Timing Transmitter Specifications

LP-Serial transmitter electrical and timing specifications are stated in the text and tables of this section.

The differential return loss, S11, of the transmitter in each case is better than the following:

- $-10 \text{ dB for (Baud Frequency)} \div 10 < \text{Freq(f)} < 625 \text{ MHz}$
- $-10 \text{ dB} + 10\log(f \div 625 \text{ MHz}) \text{ dB}$ for $625 \text{ MHz} \le \text{Freq}(f) \le \text{Baud}$ Frequency

The reference impedance for the differential return loss measurements is $100-\Omega$ resistive. Differential return loss includes contributions from on-chip circuitry, chip packaging, and any off-chip components related to the driver. The output impedance requirement applies to all valid output levels.

It is recommended that the 20%–80% rise/fall time of the transmitter, as measured at the transmitter output, have a minimum value 60 ps in each case.

It is recommended that the timing skew at the output of an LP-Serial transmitter between the two signals that comprise a differential pair not exceed 20 ps at 2.50 GBaud and 15 ps at 3.125 GBaud and XX ps at 5 GBaud.

This table defines the transmitter DC specifications for Serial RapidIO operating at $XV_{DD} = 1.5$ V or 1.8 V.

Table 70. Serial RapidIO Transmitter DC Timing Specifications—2.5 GBaud, 3.125 GBaud, 5 GBaud

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Тур	Мах	Unit	Note
Output voltage	V _O	-0.40	_	2.30	V	1
Long-run differential output voltage	V _{DIFFPP}	800	_	1600	mV p-p	—
Short-run differential output voltage	V _{DIFFPP}	500	_	1000	mV p-p	—

Note:

1. Voltage relative to COMMON of either signal comprising a differential pair.

2.20.5.4.2 DC Serial RapidIO Receiver Specifications

LP-Serial receiver electrical and timing specifications are stated in the text and tables of this section.

Receiver input impedance results in a differential return loss better than 10 dB and a common mode return loss better than 6 dB from 100 MHz to $(0.8) \times (Baud Frequency)$. This includes contributions from on-chip circuitry, the chip package, and any off-chip components related to the receiver. AC coupling components are included in this requirement. The reference impedance for return loss measurements is 100- Ω resistive for differential return loss and 25- Ω resistive for common mode.

This table defines the receiver DC specifications for Serial RapidIO operating at $XV_{DD} = 1.5$ V or 1.8 V.

Table 71. Serial RapidIO Receiver DC Timing Specifications—2.5 GBaud, 3.125 GBaud, 5 GBaud

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Тур	Мах	Unit	Note
Differential input voltage	V _{IN}	200		1600	mV p-p	1

Note:

1. Measured at the receiver.

2.20.5.5 AC Requirements for Serial RapidIO

This section explains the AC requirements for the Serial RapidIO interface.

2.20.5.5.1 AC Requirements for Serial RapidIO Transmitter

This table defines the transmitter AC specifications for the Serial RapidIO interface. The AC timing specifications do not include RefClk jitter.

Table 72. Serial RapidIO Transmitter AC Timing Specifications

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Typical	Max	Unit
Deterministic jitter	J _D	_	—	0.17	UI p-p
Total jitter	J _T	—	—	0.35	UI p-p
Unit interval: 2.5 GBaud	UI	400 – 100ppm	400	400 + 100ppm	ps
Unit interval: 3.125 GBaud	UI	320 – 100ppm	320	320 + 100ppm	ps

This table defines the receiver AC specifications for Serial RapidIO. The AC timing specifications do not include RefClk jitter.

Table 73. Serial RapidIO Receiver AC Timing Specifications

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Typical	Мах	Unit	Note
Deterministic jitter tolerance	J _D	0.37	—	—	UI p-p	1
Combined deterministic and random jitter tolerance	J_DR	0.55	—	—	UI p-p	1
Total jitter tolerance ²	J _T	0.65	—	—	UI p-p	1
Bit error rate	BER	—	—	10 ⁻¹²		_
Unit interval: 2.5 GBaud	UI	400 – 100ppm	400	400 + 100ppm	ps	—
Unit interval: 3.125 GBaud	UI	320 – 100ppm	320	320 + 100ppm	ps	_

Note:

1. Measured at receiver

2. Total jitter is composed of three components: deterministic jitter, random jitter, and single frequency sinusoidal jitter. The sinusoidal jitter may have any amplitude and frequency in the unshaded region of Figure 42. The sinusoidal jitter component is included to ensure margin for low-frequency jitter, wander, noise, crosstalk, and other variable system effects.

2.20.6.1.3 Aurora Receiver DC Electrical Characteristics

This table provides the Aurora receiver DC electrical characteristics (XVDD = 1.5 V or 1.8 V).

Table 75. Aurora Receiver DC Electrical Characteristics (XV_{DD} = 1.5 V or 1.8 V)

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Typical	Мах	Unit	Note
Differential input voltage	V _{IN}	120	900	1200	mV p-p	1

Note:

1. Measured at receiver

2.20.6.2 Aurora AC Timing Specifications

This section describes the AC timing specifications for Aurora.

2.20.6.2.1 Aurora AC Clocking Requirements for SD_REF_CLK*n* and SD_REF_CLK*n*

Only SerDes bank 2(SD_REF_CLK2 and SD_REF_CLK2) may be used for SerDes Aurora configurations based on the RCW configuration field SRDS_PRTCL. Aurora is not supported on SerDes banks 1.

2.20.6.2.2 Aurora Transmitter AC Timing Specifications

This table defines the Aurora transmitter AC timing specifications. RefClk jitter is not included.

Table 76. Aurora Transmitter AC Timing Specifications

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Typical	Мах	Unit
Deterministic jitter	J _D	_	—	0.17	UI p-p
Total jitter	J _T		_	0.35	UI p-p
Unit Interval: 2.5 GBaud	UI	400 – 100 ppm	400	400 + 100 ppm	ps
Unit Interval: 3.125 GBaud	UI	320 – 100 ppm	320	320 + 100 ppm	ps
Unit Interval: 5.0 GBaud	UI	200 – 100 ppm	200	200 + 100 ppm	ps

2.20.6.2.3 Aurora Receiver AC Timing Specifications

This table defines the Aurora receiver AC timing specifications. RefClk jitter is not included.

Table 77. Aurora Receiver AC Timing Specifications

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Typical	Мах	Unit	Note
Deterministic jitter tolerance	J _D	0.37	_	—	UI p-p	1
Combined deterministic and random jitter tolerance	J _{DR}	0.55		_	UI p-p	1
Total jitter tolerance	J _T	0.65	—	—	UI p-p	1, 2
Bit error rate	BER	_		10 ⁻¹²		

Table 89. SGMII DC Receiver Electrical Characteristics (XV_{DD} = 1.5 V or 1.8 V) (continued)

For recommended operating conditions, see Table 3.

	Parameter Symbol Min Typ Max Unit Note
--	--

Note:

- 1. Input must be externally AC coupled.
- 2. V_{RX DIFFp-p} is also referred to as peak-to-peak input differential voltage.
- The concept of this parameter is equivalent to the electrical idle detect threshold parameter in PCI Express. Refer to Section 2.20.4.4, "PCI Express DC Physical Layer Receiver Specifications," and Section 2.20.4.5.2, "PCI Express AC Physical Layer Receiver Specifications," for further explanation.
- 4. The REIDL_CTL shown in the table refers to the chip's SerDes control register B(1-3)GCR(lane)1[REIDL_CTL] bit field.

This table defines the SGMII 2.5x receiver DC electrical characteristics for 3.125 GBaud.

Table 90. SGMII 2.5x Receiver DC Timing Specifications (XV_{DD} = 1.5 V or 1.8 V)

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Typical	Мах	Unit	Note
Differential input voltage	V _{IN}	200	900	1600	mV p-p	1

Note:

1. Measured at the receiver.

2.20.8.2 SGMII AC Timing Specifications

This section discusses the AC timing specifications for the SGMII interface.

2.20.8.2.1 SGMII Transmit AC Timing Specifications

This table provides the SGMII transmit AC timing specifications. A source synchronous clock is not supported. The AC timing specifications do not include RefClk jitter.

Table 91. SGMII Transmit AC Timing Specifications

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Тур	Max	Unit	Note
Deterministic jitter	JD	—	—	0.17	UI p-p	_
Total jitter	JT	—	_	0.35	UI p-p	1
Unit interval: 1.25 GBaud	UI	800 – 100 ppm	800	800 + 100 ppm	ps	_
Unit interval: 3.125 GBaud	UI	320 – 100 ppm	320	320 + 100 ppm	ps	_
AC coupling capacitor	C _{TX}	10		200	nF	2

Note:

1. See Figure 42 for single frequency sinusoidal jitter measurements.

2. The external AC coupling capacitor is required. It is recommended that it be placed near the device transmitter outputs.

2.20.8.2.2 SGMII AC Measurement Details

Transmitter and receiver AC characteristics are measured at the transmitter outputs (SD_TX*n* and \overline{SD}_TXn) or at the receiver inputs (SD_RX*n* and \overline{SD}_RXn) respectively, as depicted in this figure.

3.1.2 Platform to SYSCLK PLL Ratio

This table shows the allowed platform clock-to-SYSCLK ratios.

The chip platform clock frequency is always below 666 MHz frequencies; set the RCW configuration field SYS_PLL_CFG = 0b01.

Binary Value of SYS_PLL_RAT	Platform:SYSCLK Ratio
0_0100	4:1
0_0101	5:1
0_0110	6:1
0_0111	7:1
0_1000	8:1
0_1001	9:1
All Others	Reserved

Table 94. Platform to SYSCLK PLL Ratios

3.1.3 e500mc Core Cluster to SYSCLK PLL Ratio

The clock ratio between SYSCLK and each of the two core cluster PLLs is determined at power up by the binary value of the RCW field CCn_PLL_RAT. This table describes the supported ratios. Note that a core cluster PLL frequency targeting 1 GHz and above must set RCW field CCn_PLL_CFG = 0b00 for frequency targeting below 1 GHz set CCn_PLL_CFG = 0b01.

This table lists the supported Core Cluster to SYSCLK ratios.

Binary Value of CCn_PLL_RAT	Core Cluster:SYSCLK Ratio
0_1000	8:1
0_1001	9:1
0_1010	10:1
0_1011	11:1
0_1100	12:1
0_1101	13:1
0_1110	14:1
0_1111	15:1
1_0000	16:1
1_0001	17:1
1_0010	18:1
All Others	Reserved

Table 95. e500mc Core Cluster PLL to SYSCLK Ratios

3.1.4 e500mc Core Complex PLL Select

The clock frequency of each the e500mc core 0-3 complex is determined by the binary value of the RCW field CC*n*_PLL_SEL. These tables describe the supported ratios for each core complex 0-3, where each individual core complex can select a frequency from the table.

Binary Value of Cn_PLL_SEL for n=[0,1]	e500mc:Core Cluster Ratio
0000	CC1 PLL /1
0001	CC1 PLL /2
0100	CC2 PLL /1
All Others	Reserved

Table 96. e500mc Core Complex [0,1] PLL Select

Binary Value of Cn_PLL_SEL for n=[0,1]	e500mc:Core Cluster Ratio
0000	CC1 PLL /1
0100	CC2 PLL /1
0101	CC2 PLL /2
All Others	Reserved

3.1.5 DDR Controller PLL Ratios

The single DDR memory controller complexes can be asynchronous to the platform, depending on configuration.

Table 98 describes the clock ratio between the DDR memory controller PLLs and the externally supplied SYSCLK input (asynchronous mode).

In asynchronous DDR mode, the DDR data rate to SYSCLK ratios supported are listed in this table. This ratio is determined by the binary value of the RCW configuration field MEM_PLL_RAT[10:14].

The RCW configuration field MEM_PLL_CFG[8:9] must be set to MEM_PLL_CFG[8:9] = 0b01 if the applied DDR PLL reference clock frequency is greater than the cutoff frequency listed in Table 98 for asynchronous DDR clock ratios; otherwise, set MEM_PLL_CFG[8:9] = 0b00.

NOTE

The RCW Configuration field DDR_SYNC (bit 184) must be set to 0b0 for asynchronous mode.

The RCW Configuration field DDR_RATE (bit 232) must be set to b'0 for asynchronous mode

The RCW Configuration field DDR_RSV0 (bit 234) must be set to b'0 for all ratios.

Hardware Design Considerations

Binary Value of MEM_PLL_RAT[10:14]	DDR:SYSCLK Ratio	Set MEM_PLL_CFG = 01 for SYSCLK Freq ¹	
0_0101	5:1	>96.7 MHz	
0_0110	6:1	>80.6 MHz	
0_1000	8:1	>120.9 MHz	
0_1001	9:1	>107.4 MHz	
0_1010	10:1	>96.7 MHz	
0_1100	12:1	>80.6 MHz	
0_1101	13:1	>74.4 MHz	
1_0000	16:1	>60.4 MHz	
1_0010	18:1	>53.7 MHz	
All Others	Reserved	erved —	

Table 98. Asynchronous DDR Clock Ratio

Note:

1. Set RCW field MEM_PLL_CFG = 0b01 if the applied DDR PLL reference clock (SYSCLK) frequency is greater than the given cutoff; otherwise, set to 0b00 for a frequency that is less than or equal to the cutoff.

In synchronous mode, the DDR data rate to platform clock ratios supported are listed in this table. This ratio is determined by the binary value of the RCW Configuration field MEM_PLL_RAT[10:14].

Binary Value of MEM_PLL_RAT[10:14]	DDR:Platform CLK Ratio	Set MEM_PLL_CFG=01 for Platform CLK Freq ¹	
0_0001	1:1	>600 MHz	
All Others	Reserved	—	

Table 99. Synchronous DDR Clock Ratio

Note:

1. Set MEM_PLL_CFG=0b01 if the applied DDR PLL reference clock (Platform clock) frequency is greater than given cutoff, else set to 0b00 for frequency that is less than or equal to cutoff.

Hardware Design Considerations

Signals	Value	VDD Voltage Selection		
	(Binary)	BVDD	CVDD	LVDD
IO_VSEL[0:4] Default (0_0000)	0_000	3.3 V	3.3 V	3.3 V
	0_0001			2.5 V
	0_0010			Reserved
	0_0011	3.3 V	2.5 V	3.3 V
	0_0100			2.5 V
	0_0101			Reserved
	0_0110	3.3 V	1.8 V	3.3 V
	0_0111			2.5 V
	0_1000			Reserved
	0_1001	2.5 V	3.3 V	3.3 V
	0_1010	-		2.5 V
	0_1011	-		Reserved
	0_1100	2.5 V	2.5 V	3.3 V
	0_1101			2.5 V
	0_1110			Reserved
	0_1111	2.5 V	1.8 V	3.3 V
	1_0000			2.5 V
	1_0001			Reserved
	1_0010	1.8 V	3.3 V	3.3 V
	1_0011			2.5 V
	1_0100			Reserved
	1_0101	1.8 V	2.5 V	3.3 V
	1_0110			2.5 V
	1_0111			Reserved
	1_1000	1.8 V	1.8 V	3.3 V
	1_1001			2.5 V
	1_1010			Reserved
	1_1011	3.3 V	3.3 V	3.3 V
	1_1100			
	1_1101			
	1_1110			
	1_1111			

Table 105. I/O Voltage Selection

3.6.3 Guidelines for High-Speed Interface Termination

This section provides the guidelines for when the SerDes interface is either entirely unused or partly unused.

3.6.3.1 SerDes Interface Entirely Unused

If the high-speed SerDes interface is not used at all, the unused pin must be terminated as described in this section.

The following pins must be left unconnected:

- SD_TX[7:2], SD_TX[13:10]
- <u>SD_TX</u>[7:2], <u>SD_TX</u>[13:10]
- SD_IMP_CAL_RX
- SD_IMP_CAL_TX

The following pins must be connected to SGND:

- SD_RX[7:2], SD_RX[13:10]
- <u>SD_RX</u>[13:10], <u>SD_RX</u>[13:10]
- SD_REF_CLK1, SD_REF_CLK2
- <u>SD_REF_CLK1</u>, <u>SD_REF_CLK2</u>

In the RCW configuration fields SRDS_LPD_B1 and SRDS_LPD_B2, all bits must be set to power down all the lanes in each bank.

RCW configuration field SRDS_EN may be cleared to power down the SerDes block for power saving. Setting $RCW[SRDS_EN] = 0$ power-downs the PLLs of both banks.

Additionally, software may configure SRDSBnRSTCTL[SDRD] = 1 for the unused banks to power down the SerDes bank PLLs to save power.

Note that both SV_{DD} and XV_{DD} must remain powered.

3.6.3.2 SerDes Interface Partly Unused

If only part of the high speed SerDes interface pins are used, the remaining high-speed serial I/O pins must be terminated as described in this section.

The following unused pins must be left unconnected:

- SD_TX[*n*]
- $\overline{\text{SD}_{TX}}[n]$

The following unused pins must be connected to SGND:

- SD_RX[*n*]
- $\overline{\text{SD}}_{RX}[n]$
- SD_REF_CLK1, <u>SD_REF_CLK1</u> (If entire SerDes bank 1 unused)
- SD_REF_CLK2, <u>SD_REF_CLK2</u> (If entire SerDes bank 2 unused)

In the RCW configuration field for each bank SRDS_LPD_B*n* with unused lanes, the respective bit for each unused lane must be set to power down the lane.

3.6.4 USB Controller Connections

This section details the hardware connections required for the USB controllers.