E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e500mc
Number of Cores/Bus Width	4 Core, 32-Bit
Speed	800MHz
Co-Processors/DSP	·
RAM Controllers	DDR3, DDR3L
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (5)
SATA	SATA 3Gbps (2)
USB	USB 2.0 + PHY (2)
Voltage - I/O	1.0V, 1.35V, 1.5V, 1.8V, 2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	-
Supplier Device Package	780-FCPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/p2040nsn7hlc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1 780 FC-PBGA Ball Layout Diagrams

These figures show the FC-PBGA ball map diagrams.

Figure 2. 780 BGA Ball Map Diagram (Top View)

1.2 Pinout List

This table provides the pinout listing for the 780 FC-PBGA package by bus. Pins for multiplexed signals appear in the bus group for their default status and have a corresponding note stating that they have multiple functionality depending on the mode in which they are configured.

Signal	Signal Description	Package Pin Number	Pin Type	Power Supply	Note
	DDR SDRAM Memory Interface		<u> </u>		_
MDQ00	Data	Y4	I/O	GV_{DD}	-
MDQ01	Data	Y5	I/O	GV_{DD}	_
MDQ02	Data	AB1	I/O	$\mathrm{GV}_{\mathrm{DD}}$	—
MDQ03	Data	AB3	I/O	GV_DD	—
MDQ04	Data	Y1	I/O	GV_DD	_
MDQ05	Data	Y3	I/O	GV_DD	_
MDQ06	Data	AA3	I/O	GV_DD	—
MDQ07	Data	AA4	I/O	GV_DD	_
MDQ08	Data	AB5	I/O	GV_DD	—
MDQ09	Data	AB6	I/O	GV_DD	_
MDQ10	Data	AE4	I/O	GV_{DD}	_
MDQ11	Data	AE6	I/O	GV_DD	_
MDQ12	Data	AA6	I/O	GV_DD	_
MDQ13	Data	AB4	I/O	GV_{DD}	_
MDQ14	Data	AC6	I/O	$\mathrm{GV}_{\mathrm{DD}}$	—
MDQ15	Data	AD6	I/O	$\mathrm{GV}_{\mathrm{DD}}$	_
MDQ16	Data	AF7	I/O	GV_{DD}	_
MDQ17	Data	AF8	I/O	$\mathrm{GV}_{\mathrm{DD}}$	_
MDQ18	Data	AD11	I/O	$\mathrm{GV}_{\mathrm{DD}}$	_
MDQ19	Data	AF11	I/O	GV_{DD}	_
MDQ20	Data	AE7	I/O	$\mathrm{GV}_{\mathrm{DD}}$	—
MDQ21	Data	AD7	I/O	$\mathrm{GV}_{\mathrm{DD}}$	_
MDQ22	Data	AD10	I/O	GV_{DD}	_
MDQ23	Data	AE10	I/O	GV_{DD}	-
MDQ24	Data	AC1	I/O	GV_{DD}	-
MDQ25	Data	AC2	I/O	GV_{DD}	-
MDQ26	Data	AF1	I/O	GV _{DD}	-
MDQ27	Data	AF2	I/O	GV _{DD}	-
MDQ28	Data	AC3	I/O	GV _{DD}	_

Table 1. Pin List by Bus

Table 1. Pin List by Bus (continued)

Signal	Signal Description	Package Pin Number	Pin Type	Power Supply	Note
IRQ05/GPIO23/DMA2_DDONE0	External Interrupts	AA22	I	OV _{DD}	24
IRQ06/GPIO24/USB1_DRVVBUS	External Interrupts	Y26	I	OV_{DD}	24
IRQ07/GPIO25/USB1_PWRFAULT	External Interrupts	AA23	I	OV_{DD}	24
IRQ08/GPIO26/USB2_DRVVBUS	External Interrupts	AC22	I	OV _{DD}	24
IRQ09/GPIO27/USB2_PWRFAULT	External Interrupts	AC27	I	OV_{DD}	24
IRQ10/GPIO28/EVT7	External Interrupts	AB24	I	OV_{DD}	24
IRQ11/GPIO29/EVT8	External Interrupts	AC24	I	OV_{DD}	24
IRQ_OUT/EVT9	Interrupt Output	Y24	0	OV_{DD}	1, 2, 24
	Trust		1 1		
TMP_DETECT	Tamper Detect	T24	Ι	OV _{DD}	25
LP_TMP_DETECT	Low Power Tamper Detect	L21	I	V _{DD_LP}	25
	eSDHC		11		
SDHC_CMD	Command/Response	N22	I/O	CV _{DD}	_
SDHC_DAT0	Data	N23	I/O	CV _{DD}	<u> </u>
SDHC_DAT1	Data	N26	I/O	CV _{DD}	
SDHC_DAT2	Data	N27	I/O	CV _{DD}	_
SDHC_DAT3	Data	N28	I/O	CV _{DD}	-
SDHC_DAT4/SPI_CS0/GPIO00	Data	H26	I/O	CV _{DD}	24, 28
SDHC_DAT5/SPI_CS1/GPIO01	Data	H23	I/O	CV _{DD}	24, 28
SDHC_DAT6/SPI_CS2/GPIO02	Data	H27	I/O	CV _{DD}	24, 28
SDHC_DAT7/SPI_CS3/GPIO03	Data	H24	I/O	CV _{DD}	24, 28
SDHC_CLK	Host to Card Clock	N24	0	OV_{DD}	-
SDHC_CD/IIC3_SCL/GPIO16/ M1DVAL/LB_DVAL/DMA1_DACK0	Card Detection	AB23	I/O	OV_{DD}	24, 28
SDHC_WP/IIC3_SDA/GPIO17/ M1SRCID0/LB_SRCID0/DMA1_DDONE	Card Write Protection	AB26	I	OV_{DD}	24, 28
	eSPI		1 1		
SPI_MOSI	Master Out Slave In	H28	I/O	CV _{DD}	
SPI_MISO	Master In Slave Out	G23	I	CV _{DD}	-
SPI_CLK	eSPI Clock	H22			-
SPI_CS0/SDHC_DAT4/GPIO00	eSPI Chip Select	H26	O CV _{DD}		24
SPI_CS1/SDHC_DAT5/GPIO01	eSPI Chip Select	H23	0	CV _{DD}	24
SPI_CS2/SDHC_DAT6/GPIO02	eSPI Chip Select	H27	0	CV _{DD}	24
SPI_CS3/SDHC_DAT7/GPIO03	eSPI Chip Select	H24	0	CV _{DD}	24

Table 1. Pin List by Bus (continued)

Signal	Signal Description	Package Pin Number	Pin Type	Power Supply	Note
SD_RX04	Receive Data (positive)	A2	I	XV _{DD}	
SD_RX03	Receive Data (positive)	E1	I	XV _{DD}	
SD_RX02	Receive Data (positive)	G1	I	XV_{DD}	—
SD_RX13	Receive Data (negative)	A21	I	XV_{DD}	-
SD_RX12	Receive Data (negative)	A19	I	XV_{DD}	
SD_RX11	Receive Data (negative)	A15	I	XV_{DD}	-
SD_RX10	Receive Data (negative)	B13	I	XV_{DD}	
SD_RX07	Receive Data (negative)	A11	I	XV_{DD}	
SD_RX06	Receive Data (negative)	A9	I	XV_{DD}	-
SD_RX05	Receive Data (negative)	A7	I	XV_{DD}	
SD_RX04	Receive Data (negative)	A3	I	XV_{DD}	
SD_RX03	Receive Data (negative)	E2	I	XV _{DD}	
SD_RX02	Receive Data (negative)	G2	I	XV_{DD}	-
SD_REF_CLK1	SerDes Bank 1 PLL Reference Clock	D3	I	XV _{DD}	
SD_REF_CLK1	SerDes Bank 1 PLL Reference Clock Complement	D4	I	XV_{DD}	-
SD_REF_CLK2	SerDes Bank 2 PLL Reference Clock	E17	I	XV_{DD}	-
SD_REF_CLK2	SerDes Bank 2 PLL Reference Clock Complement	F17	I	XV _{DD}	—
	General-Purpose Input/Output				+
GPIO00/SPI_CS0/SDHC_DATA4	General Purpose Input/Output	H26	I/O	CV_{DD}	
GPIO01/SPI_CS1/SDHC_DATA5	General Purpose Input/Output	H23	I/O	CV_{DD}	
GPIO02/SPI_CS2/SDHC_DATA6	General Purpose Input/Output	H27	I/O	CV_{DD}	-
GPIO03SPI_CS3/SDHC_DATA7	General Purpose Input/Output	H24	I/O	CV_{DD}	-
GPIO08/UART1_SOUT	General Purpose Input/Output	R23	I/O	OV_{DD}	-
GPIO09/UART2_SOUT	General Purpose Input/Output	P26	I/O	OV _{DD}	
GPIO10/UART1_SIN	General Purpose Input/Output	R26	I/O	OV _{DD}	
GPIO11/UART2_SIN	General Purpose Input/Output	P27	I/O	OV _{DD}	
GPIO12/UART1_RTS/UART3_SOUT	General Purpose Input/Output	P24	I/O	OV _{DD}	
GPIO13/UART2_RTS/UART4_SOUT	General Purpose Input/Output	P25	I/O	OV _{DD}	
GPIO14/UART1_CTS/UART3_SIN	General Purpose Input/Output	R25	I/O	OV _{DD}	<u> </u>
GPIO15/UART2_CTS/UART4_SIN	General Purpose Input/Output	P23	I/O	OV _{DD}	<u> </u>
GPIO16/IIC3_SCL/M1DVAL/LB_DVAL/ DMA1_DACK0/SDHC_CD	General Purpose Input/Output	AB23	I/O	OV_{DD}	

Table 1.	Pin	List b	v Bus ((continued)
			, ,	

Signal	Signal Description	Package Pin Number	Pin Type	Power Supply	Note
GND098	Ground	P21	—	_	_
GND097	Ground	R2	—		_
GND096	Ground	R8	—	—	—
GND095	Ground	R10	—	—	-
GND094	Ground	R12	—	—	—
GND093	Ground	R14	—	_	—
GND092	Ground	R16	—	_	—
GND091	Ground	R18	—	—	—
GND090	Ground	R21	—	—	-
GND089	Ground	R24	—	—	-
GND088	Ground	R27	—	—	—
GND087	Ground	Т8	—	—	—
GND086	Ground	T10	—	—	—
GND085	Ground	T12	—	—	—
GND084	Ground	T14	—	_	—
GND083	Ground	T16	—	_	—
GND082	Ground	T18	—	—	—
GND081	Ground	T21	—	_	—
GND080	Ground	U7	_	_	—
GND079	Ground	U8	—	_	—
GND078	Ground	U10	_	_	—
GND077	Ground	U12		_	—
GND076	Ground	U14	—	_	—
GND075	Ground	U17	_	_	—
GND074	Ground	U19	—	_	—
GND073	Ground	U22	—	_	—
GND072	Ground	U25	—	_	—
GND071	Ground	V2	—	_	_
GND070	Ground	V4	—	_	—
GND069	Ground	V6	—	—	-
GND068	Ground	V8	—	—	-
GND067	Ground	V10	—	—	-
GND066	Ground	V12	—	—	-
GND065	Ground	V14	_	_	- 1

Table 1. Pin List by Bus (continued)

Signal	Signal Description	Package Pin Number	Pin Type	Power Supply	Note
XGND08	SerDes Transceiver GND	C21	_	_	_
XGND07	SerDes Transceiver GND	D9	—	_	_
XGND06	SerDes Transceiver GND	D13		_	
XGND05	SerDes Transceiver GND	D19	—	—	_
XGND04	SerDes Transceiver GND	F6	—	—	—
XGND03	SerDes Transceiver GND	F21	—	—	-
XGND02	SerDes Transceiver GND	G3	—	—	-
XGND01	SerDes Transceiver GND	H5	—		_
SGND17	SerDes Core Logic GND	A5	—	_	
SGND16	SerDes Core Logic GND	A8	—	—	_
SGND15	SerDes Core Logic GND	A12	—	—	_
SGND14	SerDes Core Logic GND	A16	—	—	-
SGND13	SerDes Core Logic GND	A20	—	—	—
SGND12	SerDes Core Logic GND	B1	—	—	-
SGND11	SerDes Core Logic GND	B6	—	—	—
SGND10	SerDes Core Logic GND	B10	—	—	—
SGND09	SerDes Core Logic GND	B14	—	—	-
SGND08	SerDes Core Logic GND	B18	—	—	—
SGND07	SerDes Core Logic GND	B22	—	—	—
SGND06	SerDes Core Logic GND	C3	—	—	—
SGND05	SerDes Core Logic GND	D2	—	—	_
SGND04	SerDes Core Logic GND	D17	—	—	-
SGND03	SerDes Core Logic GND	E3	—	—	—
SGND02	SerDes Core Logic GND	F1	—	—	—
SGND01	SerDes Core Logic GND	H2	—	—	—
AGND_SRDS1	SerDes PLL1 GND	C2	—	—	_
AGND_SRDS2	SerDes PLL2 GND	B17	—	—	—
SENSEGND_CA_PL	Core Group A and Platform GND Sense	G8	—	—	8
SENSEGND_CB	Core Group B GND Sense	AA16	—	—	8
USB1_AGND06	USB1 PHY Transceiver GND	J28	—	—	_
USB1_AGND05	USB1 PHY Transceiver GND	K27	—		-
USB1_AGND04	USB1 PHY Transceiver GND	L27	—	—	-
USB1_AGND03	USB1 PHY Transceiver GND	M22	—		-
USB1_AGND02	USB1 PHY Transceiver GND	M24	_	_	_

Table 1. Pin List by Bus (continued)

Signal	Signal Description	Package Pin Number	Pin Type	Power Supply	Note
VDD_CA_PL16	Core Group A and Platform Supply	U13	_	V _{DD_CA_PL}	37
VDD_CA_PL15	Core Group A and Platform Supply	U15		V _{DD_CA_PL}	37
VDD_CA_PL14	Core Group A and Platform Supply	U20	_	V _{DD_CA_PL}	37
VDD_CA_PL13	Core Group A and Platform Supply	V9		V _{DD_CA_PL}	37
VDD_CA_PL12	Core Group A and Platform Supply	V11		V _{DD_CA_PL}	37
VDD_CA_PL11	Core Group A and Platform Supply	V13		V _{DD_CA_PL}	37
VDD_CA_PL10	Core Group A and Platform Supply	V15	—	V _{DD_CA_PL}	37
VDD_CA_PL09	Core Group A and Platform Supply	W9		V _{DD_CA_PL}	37
VDD_CA_PL08	Core Group A and Platform Supply	W11		V _{DD_CA_PL}	37
VDD_CA_PL07	Core Group A and Platform Supply	W13	—	V _{DD_CA_PL}	37
VDD_CA_PL06	Core Group A and Platform Supply	W15		V _{DD_CA_PL}	37
VDD_CA_PL05	Core Group A and Platform Supply	Y9	—	V _{DD_CA_PL}	37
VDD_CA_PL04	Core Group A and Platform Supply	Y11	—	V _{DD_CA_PL}	37
VDD_CA_PL03	Core Group A and Platform Supply	Y13	—	V _{DD_CA_PL}	37
VDD_CA_PL02	Core Group A and Platform Supply	Y15		V _{DD_CA_PL}	37
VDD_CA_PL01	Core Group A and Platform Supply	AA21	—	V _{DD_CA_PL}	37
VDD_CB11	Core Group B Supply	U16	—	V _{DD_CB}	37
VDD_CB10	Core Group B Supply	U18	—	V _{DD_CB}	37
VDD_CB09	Core Group B Supply	V18	—	V _{DD_CB}	37
VDD_CB08	Core Group B Supply	V20		V _{DD_CB}	37
VDD_CB07	Core Group B Supply	W16	—	V _{DD_CB}	37
VDD_CB06	Core Group B Supply	W18		V _{DD_CB}	37
VDD_CB05	Core Group B Supply	W20	_	V _{DD_CB}	37
VDD_CB04	Core Group B Supply	Y18		V _{DD_CB}	37
VDD_CB03	Core Group B Supply	Y20		V _{DD_CB}	37
VDD_CB02	Core Group B Supply	AA18		V _{DD_CB}	37
VDD_CB01	Core Group B Supply	AA20		V _{DD_CB}	37
VDD_LP	Low Power Security Monitor Supply	L20		V _{DD_LP}	25
AVDD_CC1	Core Cluster PLL1 Supply	V7			13
AVDD_CC2	Core Cluster PLL2 Supply	W22		—	13
AVDD_PLAT	Platform PLL Supply	V22	—	_	13
AVDD_DDR	DDR PLL Supply	W6		_	13
AVDD_SRDS1	SerDes PLL1 Supply	C1	—		13
AVDD_SRDS2	SerDes PLL2 Supply	A17	—	—	13

Table 1. Pin List by Bus (continued)

Signal	Signal Description	Package Pin Number	Pin Type	Power Supply	Note
SENSEVDD_CA_PL	Core Group A and Platform Vdd Sense	H8		_	8
SENSEVDD_CB	Core Group B Vdd Sense	Core Group B Vdd Sense AB16 — —			
USB1_VDD_3P3	USB1 PHY Transceiver 3.3 V Supply	M23		_	
USB2_VDD_3P3	USB2 PHY Transceiver 3.3 V Supply	J23	—	—	—
USB1_VDD_1P0	USB1 PHY PLL 1.0 V Supply	L22	—	—	—
USB2_VDD_1P0	USB2 PHY PLL 1.0 V Supply	K22		_	
	Analog Signals		11		
MVREF	SSTL_1.5/1.35 Reference Voltage	W7	Ι	GV _{DD} /2	_
SD_IMP_CAL_TX	SerDes Tx Impedance Calibration	E21	Ι	200Ω (±1%) to XV _{DD}	21
SD_IMP_CAL_RX	SerDes Rx Impedance Calibration	F7	I	200Ω (±1%) to SV _{DD}	22
TEMP_ANODE	Temperature Diode Anode	V5	—	internal diode	9
TEMP_CATHODE	Temperature Diode Cathode	U6	—	internal diode	9
USB2_IBIAS_REXT	USB PHY2 Reference Bias Current Generation	K23	—	GND	32
USB1_IBIAS_REXT	USB PHY1 Reference Bias Current Generation	L23	—	GND	32
USB2_VDD_1P8_DECAP	USB2 PHY 1.8 V Output to External Decap	K24	—	GND	33
USB1_VDD_1P8_DECAP	USB1 PHY 1.8 V Output to External Decap	L24	—	GND	33
	No Connection Pins				
NC03	No Connection	W4	_	_	11
NC04	No Connection	W3	—	_	11
NC05	No Connection	W1	—	_	11
NC06	No Connection	H7	_	_	11
NC07	No Connection	G7	—	_	11
NC08	No Connection	F20		_	11
NC09	No Connection			_	11
NC10	No Connection	F18		_	11
NC11	No Connection	F16		_	11
NC12	No Connection	F13			11

2.1.3 Output Driver Characteristics

This table provides information about the characteristics of the output driver strengths. The values are preliminary estimates.

Driver Type	Output Impedance (Ω)	(Nominal) Supply Voltage	Note
Local Bus interface utilities signals	45 45 45	BV _{DD} = 3.3 V BV _{DD} = 2.5 V BV _{DD} = 1.8 V	_
DDR3 signal	20 (full-strength mode) 40 (half-strength mode)	GV _{DD} = 1.5 V	1
DDR3L signal	20 (full-strength mode) 40 (half-strength mode)	GV _{DD} = 1.35 V	1
eTSEC/10/100 signals	45 45	LV _{DD} = 3.3 V LV _{DD} = 2.5 V	_
DUART, system control, JTAG	45	OV _{DD} = 3.3 V	—
l ² C	45	OV _{DD} = 3.3 V	—
eSPI, eSDHC	45 45 45	CV _{DD} = 3.3 V CV _{DD} = 2.5 V CV _{DD} =1.8 V	-

Table 4. Output Drive Capability

Note:

1. The drive strength of the DDR3 or DDR3L interface in half-strength mode is at $T_i = 105 \text{ °C}$ and at GV_{DD} (min).

2.2 Power Up Sequencing

The device requires that its power rails be applied in a specific sequence in order to ensure proper device operation. These requirements are as follows for power up:

- 1. Bring up OV_{DD} , LV_{DD} , BV_{DD} , CV_{DD} , and USB_V_{DD} -3P3. Drive POV_{DD} = GND.
 - **PORESET** input must be driven asserted and held during this step.
 - IO_VSEL inputs must be driven during this step and held stable during normal operation.
 - USB_V_{DD}_3P3 rise time (10% to 90%) has a minimum of 350 μ s.
- 2. Bring up V_{DD_CA_CB_PL}, SV_{DD}, AV_{DD} (cores, platform, SerDes) and USB_V_{DD}_1P0. V_{DD_CA_CB_PL} and USB_V_{DD}_1P0 must be ramped up simultaneously.
- 3. Bring up GV_{DD} (DDR) and XV_{DD} .
- 4. Negate **PORESET** input as long as the required assertion/hold time has been met per Table 17.
- 5. For secure boot fuse programming: After negation of $\overrightarrow{PORESET}$, drive $\overrightarrow{POV}_{DD} = 1.5$ V after a required minimum delay per Table 5. After fuse programming is completed, it is required to return $\overrightarrow{POV}_{DD} = \overrightarrow{GND}$ before the system is power cycled ($\overrightarrow{PORESET}$ assertion) or powered down ($V_{DD_CA_CB_PL}$ ramp down) per the required timing specified in Table 5. See Section 5, "Security Fuse Processor," for additional details.

WARNING

Only two secure boot fuse programming events are permitted per lifetime of a device.

No activity other than that required for secure boot fuse programming is permitted while POV_{DD} driven to any voltage above GND, including the reading of the fuse block. The reading of the fuse block may only occur while $POV_{DD} = GND$.

While VDD is ramping, current may be supplied from VDD through the chip to GVDD. Nevertheless, GVDD from an external supply should follow the sequencing described above.

WARNING

Only 100,000 POR cycles are permitted per lifetime of a device.

All supplies must be at their stable values within 75 ms.

Items on the same line have no ordering requirement with respect to one another. Items on separate lines must be ordered sequentially such that voltage rails on a previous step must reach 90% of their value before the voltage rails on the current step reach 10% of theirs.

This figure provides the POV_{DD} timing diagram.

NOTE: POV_{DD} must be stable at 1.5 V prior to initiating fuse programming.

Figure 8. POV_{DD} Timing Diagram

This table provides information on the power-down and power-up sequence parameters for POV_{DD}.

Table 5. POV_{DD} Timing ⁵

Driver Type	Min	Мах	Unit	Note
^t POVDD_DELAY	100	—	SYSCLKs	1
tpovdd_prog	0	—	μs	2
tpovdd_vdd	0	—	μs	3
^t povdd_rst	0	—	μs	4

Note:

1. Delay required from the negation of PORESET to driving POV_{DD} ramp up. Delay measured from PORESET negation at 90% OV_{DD} to 10% POV_{DD} ramp up.

Delay required from fuse programming finished to POV_{DD} ramp down start. Fuse programming must complete while POV_{DD} is stable at 1.5 V. No activity other than that required for secure boot fuse programming is permitted while POV_{DD} driven to any voltage above GND, including the reading of the fuse block. The reading of the fuse block may only occur while POV_{DD} = GND. After fuse programming is completed, it is required to return POV_{DD} = GND.

 Delay required from POV_{DD} ramp down complete to V_{DD_CA_CB_PL} ramp down start. POV_{DD} must be grounded to minimum 10% POV_{DD} before V_{DD_CA_CB_PL} is at 90% V_{DD}.

 Delay required from POV_{DD} ramp down complete to PORESET assertion. POV_{DD} must be grounded to minimum 10% POV_{DD} before PORESET assertion reaches 90% OV_{DD}.

5. Only two secure boot fuse programming events are permitted per lifetime of a device.

To guarantee MCKE low during power up, the above sequencing for GV_{DD} is required. If there is no concern about any of the DDR signals being in an indeterminate state during power up, the sequencing for GV_{DD} is not required.

WARNING

Incorrect voltage select settings can lead to irreversible device damage. See Section 3.2, "Supply Power Default Setting."

NOTE

From a system standpoint, if any of the I/O power supplies ramp prior to the $V_{DD_CA_CB_PL}$ supplies, the I/Os associated with that I/O supply may drive a logic one or zero during power-up, and extra current may be drawn by the device.

2.3 Power Down Requirements

The power-down cycle must complete such that power supply values are below 0.4 V before a new power-up cycle can be started.

If performing secure boot fuse programming per Section 2.2, "Power Up Sequencing," it is required that $POV_{DD} = GND$ before the system is power cycled (PORESET assertion) or powered down ($V_{DD_CA_CB_PL}$ ramp down) per the required timing specified in Table 5.

 $V_{DD_CA_CB_PL}$ and USB_ V_{DD} _1P0 must be ramped down simultaneously. USB_ V_{DD} _1P8_DECAP should starts ramping down only after USB_ V_{DD} _3P3 is below 1.65 V.

2.4 Power Characteristics

This table shows the power dissipations of the $V_{DD_CA_CB_PL}$ supply for various operating platform clock frequencies versus the core and DDR clock frequencies.

Power Mode	Core Freq (MHz)	Plat Freq (MHz)	DDR Data Rate (MT/s)	FM Freq (MHz)	V _{DD_CA_CB_PL} (V)	Junction Temp (°C)	Core & Platform Power ¹ (W)	V _{DD_CA_CB_PL} Power (W)	Core & Platform Power ¹ (W)	V _{DD_CA_CB_PL} Power (W)	SV _{DD} Power (W)	Note
			(, -,				Qua	ad Cores	Du	al Cores		
Typical	1200	600	1200	500	1.0	65	10.3	—	9.8	—	_	2, 3
Thermal						105	14.2	_	13.8	—		5, 7
Maximum							14.8	13.5	14.0	12.8	1.4	4, 6, 7
Typical	1000	533	1067	467	1.0	65	9.2	_	8.6	—	_	2, 3
Thermal						105	12.5	_	12.1	—	_	5, 7
Maximum							13.0	11.7	12.3	11.0	1.4	4, 6, 7
Typical	800	534	1067	467	1.0	65	9.0	_	8.4	—	_	2, 3
Thermal						105	12.2	—	12.0	—	_	5, 7
Maximum							12.6	11.4	12.1	10.9	1.4	4, 6, 7

Table 6. Device Power Dissipation

2.12.2.2 RGMII AC Timing Specifications

This table shows the RGMII AC timing specifications.

Table 37. RGMII AC Timing Specifications

For recommended operating conditions, see Table 3.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit	Note
Data to clock output skew (at transmitter)	t _{SKRGT_TX}	-500	0	500	ps	5
Data to clock input skew (at receiver)	t _{SKRGT_RX}	1.0	—	2.8	ns	2
Clock period duration	t _{RGT}	7.2	8.0	8.8	ns	3
Duty cycle for 10BASE-T and 100BASE-TX	t _{RGTH} /t _{RGT}	40	50	60	%	3, 4
Duty cycle for Gigabit	t _{RGTH} /t _{RGT}	45	50	55	%	—
Rise time (20%–80%)	t _{RGTR}	_	—	0.75	ns	—
Fall time (20%–80%)	t _{RGTF}	_	—	0.75	ns	—

Note:

 In general, the clock reference symbol representation for this section is based on the symbols RGT to represent RGMII timing. Note that the notation for rise (R) and fall (F) times follows the clock symbol that is being represented. For symbols representing skews, the subscript is skew (SK) followed by the clock that is being skewed (RGT).

 This implies that PC board design requires clocks to be routed such that an additional trace delay of greater than 1.5 ns is added to the associated clock signal. Many PHY vendors already incorporate the necessary delay inside their chip. If so, additional PCB delay is probably not needed.

3. For 10 and 100 Mbps, t_{RGT} scales to 400 ns ± 40 ns and 40 ns ± 4 ns, respectively.

4. Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domains as long as the minimum duty cycle is not violated and stretching occurs for no more than three t_{RGT} of the lowest speed transitioned between.

5. The frequency of RX_CLK should not exceed the frequency of GTX_CLK125 by more than 300ppm.

This figure shows how the AC timing diagram applies to GPCM. The same principle applies to UPM and FCM.

¹ t_{addr} is programmable and determined by LCRR[EADC] and ORx[EAD].

 2 t_{arcs} , t_{awcs} , t_{aoe} , t_{rc} , t_{oen} , t_{awe} , t_{wc} , t_{wen} are determined by ORx. See the chip reference manual.

Figure 22. GPCM Output Timing Diagram

2.15 Enhanced Secure Digital Host Controller (eSDHC)

This section describes the DC and AC electrical specifications for the eSDHC interface.

2.15.1 eSDHC DC Electrical Characteristics

This table provides the eSDHC electrical characteristics.

Table 50. eSDHC Interface DC Electrical Characteristics

For recommended operating conditions, see Table 3.

Characteristic	Symbol	Condition	Min	Мах	Unit	Note
Input high voltage	V _{IH}		$0.625 \times CV_{DD}$		V	1
Input low voltage	V _{IL}	—	—	$0.25\times CV_{DD}$	V	1
Input/output leakage current	I _{IN} /I _{OZ}	_	-50	50	μA	_
Output high voltage	V _{OH}	I _{OH} = −100 μA at CV _{DD} min	$0.75 \times CV_{DD}$	_	V	_

Table 56. I²C DC Electrical Characteristics ($OV_{DD} = 3.3 V$) (continued)

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Мах	Unit	Note
Pulse width of spikes which must be suppressed by the input filter	t _{i2KHKL}	0	50	ns	3
Input current each I/O pin (input voltage is between $0.1 \times OV_{DD}$ and $0.9 \times OV_{DD}$ (max)	I	-40	40	μA	4
Capacitance for each I/O pin	CI	_	10	pF	

Note:

- 1. The min V_{IL} and max V_{IH} values are based on the respective min and max OV_{IN} values found in Table 3.
- 2. Output voltage (open drain or open collector) condition = 3 mA sink current.
- 3. See the chip reference manual for information about the digital filter used.
- 4. I/O pins obstruct the SDA and SCL lines if OV_{DD} is switched off.

2.18.2 I²C AC Electrical Specifications

This table provides the I²C AC timing specifications.

Table 57. I²C AC Timing Specifications

For recommended operating conditions, see Table 3.

Parameter	Symbol ¹	Min	Мах	Unit	Note
SCL clock frequency	f _{I2C}	0	400	kHz	2
Low period of the SCL clock	t _{I2CL}	1.3	—	μS	—
High period of the SCL clock	t _{I2CH}	0.6	—	μS	—
Setup time for a repeated START condition	t _{I2SVKH}	0.6	—	μS	—
Hold time (repeated) START condition (after this period, the first clock pulse is generated)	t _{I2SXKL}	0.6	—	μS	—
Data setup time	t _{I2DVKH}	100	_	ns	—
Data input hold time: CBUS compatible masters I ² C bus devices	t _{i2DXKL}	0		μS	3
Data output delay time	t _{I2OVKL}	—	0.9	μS	4
Setup time for STOP condition	t _{I2PVKH}	0.6	—	μS	—
Bus free time between a STOP and START condition	t _{I2KHDX}	1.3	—	μS	—

2.19.2 GPIO AC Timing Specifications

This table provides the GPIO input and output AC timing specifications.

Table 60. GPIO Input AC Timing Specifications

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Unit	Note
GPIO inputs—minimum pulse width	t _{PIWID}	20	ns	1

Note:

1. GPIO inputs and outputs are asynchronous to any visible clock. GPIO outputs must be synchronized before use by any external synchronous logic. GPIO inputs are required to be valid for at least t_{PIWID} to ensure proper operation.

This figure provides the AC test load for the GPIO.

Figure 31. GPIO AC Test Load

2.20 High-Speed Serial Interfaces (HSSI)

The device features a serializer/deserializer (SerDes) interface to be used for high-speed serial interconnect applications. The SerDes interface can be used for PCI Express, Serial RapidIO, Aurora, and SGMII data transfers.

This section describes the common portion of SerDes DC electrical specifications: the DC requirement for SerDes reference clocks. The SerDes data lane's transmitter (Tx) and receiver (Rx) reference circuits are also shown.

2.20.1 Signal Terms Definition

The SerDes utilizes differential signaling to transfer data across the serial link. This section defines terms used in the description and specification of differential signals.

2.20.7.1.2 SATA DC Receiver (Rx) Input Characteristics

This table provides the Gen1i or 1.5 Gbits/s differential receiver input DC characteristics for the SATA interface.

Table 80. Gen1i/1.5 G Receiver (Rx) Input DC Specifications (XV_{DD} = 1.5 V or 1.8 V)

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Typical	Мах	Unit	Note
Differential input voltage	V _{SATA_RXDIFF}	240	—	600	mV p-p	1
Differential Rx input impedance	Z _{SATA_RXSEIM}	85	100	115	Ω	_
OOB signal detection threshold	V _{SATA_OOB}	50	120	240	mV p-p	

Note:

1. Voltage relative to common of either signal comprising a differential pair

This table provides the Gen2i or 3 Gbits/s differential receiver input DC characteristics for the SATA interface.

Table 81. Gen2i/3 G Receiver (Rx) Input DC Specifications (XV_{DD} = 1.5 V or 1.8 V)

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Typical	Мах	Unit	Note
Differential input voltage	V _{SATA_RXDIFF}	275		750	mV p-p	1
Differential Rx input impedance	Z _{SATA_RXSEIM}	85	100	115	Ω	2
OOB signal detection threshold	V _{SATA_OOB}	75	120	240	mV p-p	2

Note:

1. Voltage relative to common of either signal comprising a differential pair

2. DC impedance

2.20.7.2 SATA AC Timing Specifications

This section discusses the SATA AC timing specifications.

2.20.7.2.1 AC Requirements for SATA REF_CLK

The AC requirements for the SATA reference clock are listed in this table to be guaranteed by the customer's application design.

Table 82. SATA Reference Clock Input Requirements

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Тур	Max	Unit	Note
SD_REF_CLK/SD_REF_CLK frequency range	t _{CLK_REF}	_	100/125	_	MHz	1
SD_REF_CLK/SD_REF_CLK clock frequency tolerance	^t CLK_TOL	-350	_	+350	ppm	—
SD_REF_CLK/SD_REF_CLK reference clock duty cycle (measured at 1.6 V)	t _{CLK_DUTY}	40	50	60	%	—

3.1.4 e500mc Core Complex PLL Select

The clock frequency of each the e500mc core 0-3 complex is determined by the binary value of the RCW field CC*n*_PLL_SEL. These tables describe the supported ratios for each core complex 0-3, where each individual core complex can select a frequency from the table.

Binary Value of Cn_PLL_SEL for n=[0,1]	e500mc:Core Cluster Ratio
0000	CC1 PLL /1
0001	CC1 PLL /2
0100	CC2 PLL /1
All Others	Reserved

Table 96. e500mc Core Complex [0,1] PLL Select

Binary Value of Cn_PLL_SEL for n=[0,1]	e500mc:Core Cluster Ratio
0000	CC1 PLL /1
0100	CC2 PLL /1
0101	CC2 PLL /2
All Others	Reserved

3.1.5 DDR Controller PLL Ratios

The single DDR memory controller complexes can be asynchronous to the platform, depending on configuration.

Table 98 describes the clock ratio between the DDR memory controller PLLs and the externally supplied SYSCLK input (asynchronous mode).

In asynchronous DDR mode, the DDR data rate to SYSCLK ratios supported are listed in this table. This ratio is determined by the binary value of the RCW configuration field MEM_PLL_RAT[10:14].

The RCW configuration field MEM_PLL_CFG[8:9] must be set to MEM_PLL_CFG[8:9] = 0b01 if the applied DDR PLL reference clock frequency is greater than the cutoff frequency listed in Table 98 for asynchronous DDR clock ratios; otherwise, set MEM_PLL_CFG[8:9] = 0b00.

NOTE

The RCW Configuration field DDR_SYNC (bit 184) must be set to 0b0 for asynchronous mode.

The RCW Configuration field DDR_RATE (bit 232) must be set to b'0 for asynchronous mode

The RCW Configuration field DDR_RSV0 (bit 234) must be set to b'0 for all ratios.

Package Information

The heat sink removes most of the heat from the device. Heat generated on the active side of the chip is conducted through the silicon and through the heat sink attach material (or thermal interface material), and finally to the heat sink. The junction-to-case thermal resistance is low enough that the heat sink attach material and heat sink thermal resistance are the dominant terms.

3.8.2 Thermal Interface Materials

A thermal interface material is required at the package-to-heat sink interface to minimize the thermal contact resistance. The performance of thermal interface materials improves with increasing contact pressure; this performance characteristic chart is generally provided by the thermal interface vendor. The recommended method of mounting heat sinks on the package is by means of a spring clip attachment to the printed-circuit board (see Figure 61).

The system board designer can choose among several types of commercially-available thermal interface materials.

3.8.3 Temperature Diode

The chip has a temperature diode on the microprocessor that can be used in conjunction with other system temperature monitoring devices (such as Analog Devices, ADT7461ATM). These devices use the negative temperature coefficient of a diode operated at a constant current to determine the temperature of the microprocessor and its environment.

The following are the specifications of the chip's on-board temperature diode:

- Operating range: 10 230µA
- Ideality factor over $13.5 220 \ \mu A$: $n = 1.00589 \pm 0.008$

4 Package Information

The following section describes the detailed content and mechanical description of the package.

4.1 Package Parameters for the FC-PBGA

The package parameters are as provided in the following list. The package type is $23 \text{ mm} \times 23 \text{ mm}$, 780 flip chip plastic ball grid array (FC-PBGA).

Package outline	$23 \text{ mm} \times 23 \text{mm}$
Interconnects	780
Ball Pitch	0.8 mm
Ball Diameter (typical)	0.40 mm
Solder Balls	96.5% Sn, 3% Ag, 0.5% Cu
Module height (typical)	2.21 mm to 2.51 mm (Maximum)

5 Security Fuse Processor

The device implements the QorIQ platform's Trust Architecture supporting capabilities such as secure boot. Use of the Trust Architecture features is dependent on programming fuses in the Security Fuse Processor (SFP). The details of the Trust Architecture and SFP can be found in the chip reference manual.

In order to program SFP fuses, the user is required to supply 1.5 V to the POV_{DD} pin per Section 2.2, "Power Up Sequencing." POV_{DD} should only be powered for the duration of the fuse programming cycle, with a per device limit of two fuse programming cycles. All other times POV_{DD} must be connected to GND. The sequencing requirements for raising and lowering POV_{DD} are shown in Figure 8. To ensure device reliability, fuse programming must be performed within the recommended fuse programming temperature range per Table 3.

Users not implementing the QorIQ platform's Trust Architecture features are not required to program fuses and should connect POV_{DD} to GND.

6 Ordering Information

Contact your local Freescale sales office or regional marketing team for ordering information.

6.1 Part Numbering Nomenclature

This table provides the Freescale QorIQ platform part numbering nomenclature. Not all possible combinations of part numbers implied by the part numbering scheme are supported. For a list of available part numbers, contact your Freescale Sales office. Each part number also contains a revision code which refers to the die mask revision number.

p	n	nn	n	x	t	е	n	с	d	r
Generation	Platform	Number of Cores	Derivative	Qual Status	Temp. Range	Encryption	Package Type	CPU Freq	DDR Data Rate	Die Revision
P = 45 nm	1–5	01 = 1 core 02 = 2 cores 04 = 4 cores	0–9	P = Prototype N = Industrial qualification	S = Std temp X = Extended temp (–40 to 105C)	E = SEC present N = SEC not present	1 = FC-PBGA Pb-free spheres 7 = FC-PBGA C4 and sphere Pb-free	F = 667 MHz H = 800 MHz K = 1000 MHz M = 1200 MHz	L = 1067 MT/s M = 1200 MT/s	A = Rev 1.0 B = Rev 1.1 C = Rev 2.0

Table 107. Part Numbering Nomenclature

6.2 Orderable Part Numbers Addressed by this Document

This table provides the Freescale orderable part numbers addressed by this document for the chip.

Ordering Information

Part Number	р	n	nn	n	x	t	е	n	с	d	r
P2040NSE1FLB P2040NSE7FLC	P	2	04 = 4 core	1	N = Industrial qualification	S = Std temp	E = SEC present	1= FC-PBGA Pb-free spheres 7 = FC-PBGA C4 and sphere Pb-free	F = 667 MHz H = 800 MHz	L = 1067 MT/s	B C
P2040NSN1FLB P2040NSN7FLC							N = SEC not present				
P2040NSE1HLB P2040NSE7HLC							E = SEC present				
P2040NSN1HLB P2040NSN7HLC							N = SEC not present				
P2040NSE1KLB P2040NSE7KLC							E = SEC Present		K = 1000 MHz		
P2040NSN1KLB P2040NSN7KLC							N = SEC not present				
P2040NSE1MMB P2040NSE7MMC							E = SEC Present		M = 1200 MHz	M = 1200 MT/s	
P2040NSN1MMB P2040NSN7MMC							N = SEC not present				
P2040NXE1FLB P2040NXE7FLC						X = Extended temp	E = SEC Present		F = 667 MHz	L = 1067 MT/s	
P2040NXN1FLB P2040NXN7FLC							N = SEC not present				
P2040NXE1MMB P2040NXE7MMC							E = SEC Present		M = 1200 MHz	M = 1200 MT/s	
P2040NXN1MMB P2040NXN7MMC							N = SEC not present				