

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e500mc
Number of Cores/Bus Width	4 Core, 32-Bit
Speed	1.2GHz
Co-Processors/DSP	-
RAM Controllers	DDR3, DDR3L
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (5)
SATA	SATA 3Gbps (2)
USB	USB 2.0 + PHY (2)
Voltage - I/O	1.0V, 1.35V, 1.5V, 1.8V, 2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	780-BFBGA, FCBGA
Supplier Device Package	780-FCPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/p2040nsn7mmc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

This figure shows the major functional units within the chip.

Figure 1. Block Diagram

1 Pin Assignments and Reset States

This section provides a top view of the ball layout diagram and four detailed views by quadrant. It also provides a pinout listing by bus.

R	LCS [3]	GND [097]	LA [21]	BV _{DD} [1]	LCS [0]	LA [24]	LAD [11]	GND [096]	V _{DD} _ CA_PL [30]	GND [095]	V _{DD} _ CA_PL [29]	GND [094]	V _{DD} CA_PL [28]	GND [093]
Т	LA [22]	LA [27]	LA [26]	LAD [12]	LA [25]	LAD [14]	LAD [15]	GND [087]	V _{DD} _ CA_PL [24]	GND [086]	V _{DD} CA_PL [23]	GND [085]	V _{DD} CA_PL [22]	GND [084]
U	LA [23]	LAD [13]	LA [29]	LCS2	LA [28]	TEMP_ CATHODE	GND [080]	GND [079]	V _{DD} _ CA_PL [18]	GND [078]	V _{DD} _ CA_PL [17]	GND [077]	V _{DD} CA_PL [16]	GND [076]
V	LA [30]	GND [071]	LA [31]	GND [070]	TEMP_ANODE	GND [069]	AVDD_ CC1	GND [068]	V _{DD_} CA_PL [13],	GND [067]	V _{DD} CA_PL [12],	GND [066]	V _{DD} _ CA_PL [11],	GND [065]
W	NC [05]	GND [058]	NC [04]	NC [03]	GND [057]	AVDD_ DDR	MVREF	GND [056]	V _{DD_} CA_PL [09],	GND [055]	V _{DD} CA_PL [08],	GND [054]	V _{DD} _ CA_PL [07],	GND [053]
Y	MDQ [04]	MDM [0]	MDQ [05]	MDQ [00]	MDQ [01]	GND [048]	GND [047]	GND [046]	V _{DD} _ CA_PL [05]	GND [045]	V _{DD} CA_PL [04]	GND [044]	V _{DD} CA_PL [03]	GND [043]
AA	MDQS [0]	MDQS [0]	MDQ [06]	MDQ [07]	GND [038]	MDQ [12]	GND [037]	GV _{DD} [17]	GV _{DD} [16]	GV _{DD} [15]	GV _{DD} [14]	GV _{DD} [13]	GV _{DD} [12]	GV _{DD} [11]
AB	MDQ [02]	GND [032]	MDQ [03]	MDQ [13]	MDQ [08	MDQ [09]	MCKE [1]	MCKE [0]	GND [031]	GND [030]	GND [029]	GND [028]	GV _{DD} [09]	GV _{DD} [08]
AC	MDQ [24]	MDQ [25]	MDQ [28]	MDQ [29]	GND [025]	MDQ [14]	MDM [1]	MBA [2]	MA [12]	MA [07]	MA [06]	MA [02]	GV _{DD} [07]	GV _{DD} [06]
AD	MDQS [3]	MDQS [3]	MDQS [1]	MDQS [1]	MDM [3]	MDQ [15]	MDQ [21]	MDM [2]	MDQS [2]	MDQ [22]	MDQ [18]	GND [021]	MCK [1]	MCK [0]
AE	MDQ [30]	GND [019]	MDQ [31]	MDQ [10]	GND [018]	MDQ [11]	MDQ [20]	GND [017]	MDQS [2]	MDQ [23]	GND [016]	MDIC [1]	MCK [1]	MCK [0]
AF	MDQ [26]	MDQ [27]	MECC [1]	MDM [8]	MECC [7]	GV _{DD} [05]	MDQ [16]	MDQ [17]	GV _{DD} [04]	MA [08]	MDQ [19]	MA [01]	GND [010]	GND [009]
AG	MECC [4]	MECC [5]	MDQS [8]	GND [008]	MECC [2]	MCKE [3]	GND [007]	MA [14]	MA [11]	GND [006]	MA [04]	MDIC [0]	MCK [2]	MCK [3]
AH		MECC [0]	MDQS [8]	MECC [6]	MECC [5]	MCKE [2]	MA [15]	MAPAR _ERR	MA [09]	MA [05]	MA [03]	GND [002]	MCK [2]	MCK [3]
	1	2	3	4	5	6	7	8	9	10	11	12	13	14

Figure 5. 780 BGA Ball Map Diagram (Detail View C)

Table 1. Pin List by Bus (continued)

Signal	Signal Description	Package Pin Number	Pin Type	Power Supply	Note
MDQS5	Data Strobe	AH24	I/O	$\mathrm{GV}_{\mathrm{DD}}$	
MDQS6	Data Strobe	AE22	I/O	GV_{DD}	
MDQS7	Data Strobe	AF28	I/O	GV_{DD}	
MDQS8	Data Strobe	AG3	I/O	GV_{DD}	
MBA0	Bank Select	AC16	0	GV _{DD}	
MBA1	Bank Select	AC15	0	GV _{DD}	
MBA2	Bank Select	AC8	0	GV_{DD}	
MA00	Address	AG16	0	GV_{DD}	
MA01	Address	AF12	0	GV _{DD}	
MA02	Address	AC12	0	GV_{DD}	
MA03	Address	AH11	0	GV _{DD}	
MA04	Address	AG11	0	GV _{DD}	
MA05	Address	AH10	0	GV_{DD}	
MA06	Address	AC11	0	GV_{DD}	
MA07	Address	AC10	0	GV_{DD}	
MA08	Address	AF10	0	GV_{DD}	
MA09	Address	AH9	0	GV _{DD}	
MA10	Address	AH16	0	GV_{DD}	
MA11	Address	AG9	0	GV_DD	
MA12	Address	AC9	0	GV _{DD}	
MA13	Address	AH20	0	GV_{DD}	
MA14	Address	AG8	0	GV_DD	
MA15	Address	AH7	0	GV_{DD}	
MWE	Write Enable	AH18	0	GV_{DD}	
MRAS	Row Address Strobe	AH17	0	$\mathrm{GV}_{\mathrm{DD}}$	
MCAS	Column Address Strobe	AH19	0	$\mathrm{GV}_{\mathrm{DD}}$	
MCSO	Chip Select	AC18	0	$\mathrm{GV}_{\mathrm{DD}}$	
MCS1	Chip Select	AC21	0	$\mathrm{GV}_{\mathrm{DD}}$	
MCS2	Chip Select	AG17	0	$\mathrm{GV}_{\mathrm{DD}}$	
MCS3	Chip Select	AG20	0	$\mathrm{GV}_{\mathrm{DD}}$	
MCKE0	Clock Enable	AB8	0	GV_DD	—
MCKE1	Clock Enable	AB7	0	GV_DD	—
MCKE2	Clock Enable	AH6	0	GV_DD	—
MCKE3	Clock Enable	AG6	0	GV_DD	

Table 1. Pin List by Bus (continued)

Signal	Signal Description	Package Pin Number	Pin Type	Power Supply	Note
	DMA	1	1	L	L
DMA1_DREQ0/IIC4_SCL/EVT5/M1SRCID 1/LB_SRCID1/GPIO18	DMA1 Channel 0 Request	AC23	I	OV _{DD}	24
DMA1_DACK0/IIC3_SCL/GPIO16/SDHC_ CD/ M1DVAL/LB_DVAL	DMA1 Channel 0 Acknowledge	AB23	0	OV _{DD}	2, 14
DMA1_DDONE0/IIC3_SDA/GPIO17/M1SR CID0/LB_SRCID0/SDHC_WP	DMA1 Channel 0 Done	AB26	0	OV _{DD}	2, 14
DMA2_DREQ0/IRQ03/GPIO21	DMA2 Channel 0 Request	AA26	I	OV _{DD}	24
DMA2_DACK0/IRQ04/GPIO22	DMA2 Channel 0 Acknowledge	V25	0	OV _{DD}	24
DMA2_DDONE0/IRQ05/GPIO23	DMA2 Channel 0 Done	AA22	0	OV _{DD}	24
	USB Host Port 1			L	I
USB1_UDP	USB1 PHY Data Plus	K28	I/O	USB_V _{DD} _3P 3	_
USB1_UDM	USB1 PHY Data Minus	L28	I/O	USB_V _{DD} _3P 3	
USB1_VBUS_CLMP	USB1 PHY VBUS Divided Signals	M25	I	USB_V _{DD} _3P 3	34
USB1_UID	USB1 PHY ID Detect	M27	I	USB_V _{DD} _3P 3	
USB_CLKIN	USB PHY Clock Input	P22	I	OV _{DD}	—
USB1_DRVVBUS/GPIO24/IRQ6	USB1 5V Supply Enable	Y26	0	OV _{DD}	—
USB1_PWRFAULT/GPIO25/IRQ7	USB Power Fault	AA23	I	OV _{DD}	—
	USB Host Port 2				
USB2_UDP	USB2 PHY Data Plus	K26	I/O	USB_V _{DD} _3P 3	
USB2_UDM	USB2 PHY Data Minus	L26	I/O	USB_V _{DD} _3P 3	_
USB2_VBUS_CLMP	USB2 PHY VBUS Divided Signals	J25	I	USB_V _{DD} _3P 3	34
USB2_UID	USB2 PHY ID Detect	J27	I	USB_V _{DD} _3P 3	—
USB2_DRVVBUS/GPIO26/IRQ8	USB2 5V Supply Enable	AC22	I/O	OV _{DD}	—
USB2_PWRFAULT/GPIO27/IRQ9	USB2 Power Fault	AC27	I/O	OV _{DD}	—
	Programmable Interrupt Controller				
IRQ00	External Interrupts	Y25	Ι	OV _{DD}	—
IRQ01	External Interrupts	AB27	I	OV _{DD}	—
IRQ02	External Interrupts	AB25	I	OV _{DD}	—
IRQ03/GPIO21/DMA2_DREQ0	External Interrupts	AA26	I	OV _{DD}	24
IRQ04/GPIO22/DMA2_DACK0	External Interrupts	V25	I	OV _{DD}	24

Table 1.	Pin I	List by	Bus ((continued)

Signal	Signal Description	Package Pin Number	Pin Type	Power Supply	Note
GPIO17/IIC3_SDA/M1SRCID0/LB_SRCID0	General Purpose Input/Output	AB26	I/O	OV_{DD}	—
/ DMA1_DDONE0/SDHC_WP					
GPIO18/IIC4_SCL/EVT5/M1SRCID1/ LB_SRCID1/DMA1_DREQ0	General Purpose Input/Output	AC23	I/O	OV_{DD}	
GPIO19/IIC4_SDA/EVT6/M1SRCID2/ LB_SRCID2	General Purpose Input/Output	V24	I/O	OV _{DD}	
GPIO21/IRQ3/DMA2_DREQ0	General Purpose Input/Output	AA26	I/O	OV_{DD}	—
GPIO22/IRQ4/DMA2_DACK0	General Purpose Input/Output	V25	I/O	OV_{DD}	—
GPIO23/IRQ5/DMA2_DDONE0	General Purpose Input/Output	AA22	I/O	OV_{DD}	—
GPIO24/IRQ6/USB1_DRVVBUS	General Purpose Input/Output	Y26	I/O	OV _{DD}	_
GPIO25/IRQ7/USB1_PWRFAULT	General Purpose Input/Output	AA23	I/O	OV_{DD}	—
GPIO26/IRQ8/USB2_DRVVBUS	General Purpose Input/Output	AC22	I/O	OV _{DD}	_
GPIO27/IRQ9/USB2_PWRFAULT	General Purpose Input/Output	AC27	I/O	OV _{DD}	_
GPIO28/IRQ10/EVT7	General Purpose Input/Output	AB24	I/O	OV _{DD}	_
GPIO29/IRQ11/EVT8	General Purpose Input/Output	AC24	I/O	OV _{DD}	_
GPIO30/EC1_TXD1/TSEC_1588_ALARM_ OUT2	General Purpose Input/Output	C25	I/O	LV_{DD}	23
GPIO31/EC1_TXD3/TSEC_1588_PULSE_ OUT2	General Purpose Input/Output	A26	I/O	LV _{DD}	23
	System Control				I
PORESET	Power On Reset	T22	Ι	OV _{DD}	_
HRESET	Hard Reset	T23	I/O	OV_{DD}	1, 2
RESET_REQ	Reset Request	U28	0	OV_{DD}	31
CKSTP_OUT	Checkstop Out	T25	0	OV_{DD}	1, 2
	Debug				
EVTO	Event 0	V26	I/O	OV_{DD}	18
EVT1	Event 1	U27	I/O	OV _{DD}	_
EVT2	Event 2	U26	I/O	OV_{DD}	—
EVT3	Event 3	W24	I/O	OV_{DD}	—
EVT4	Event 4	U24	I/O	OV _{DD}	_
EVT5/IIC4_SCL/M1SRCID1/LB_SRCID1/ GPIO18/DMA1_DREQ0	Event 5	AC23	I/O	OV_{DD}	
EVT6/IIC4_SDA/M1SRCID2/ LB_SRCID2/GPIO19	Event 6	V24	I/O	OV_{DD}	
EVT7GPIO28/IRQ10	Event 7	AB24	I/O	OV _{DD}	

Table 3. Recommended	Operating Condition	s (continued)
----------------------	----------------------------	---------------

Parameter		Symbol	Recommended Value	Unit	Note
Enhanced local bus I/O voltage		BV _{DD}	3.3 ± 165 mV 2.5 ± 125 mV 1.8 ± 90 mV	V	_
SerDes core logic s	upply and transceivers	SV _{DD}	1.0 ± 50 mV	V	_
Pad power supply fo	or SerDes transceivers	XV _{DD}	1.8 ± 90 mV 1.5 ± 75 mV	V	—
Ethernet I/O, Ethern (EMI1),1588, GPIO	et management interface 1	LV _{DD}	3.3 ± 165 mV 2.5 ± 125 mV	V	3
USB PHY transceive	er supply voltage	USB_V _{DD} _3P3	3.3 ± 165 mV	V	—
USB PHY PLL supp	ly voltage	USB_V _{DD} _1P0	1.0 ± 50 mV	V	—
Low Power Security	Monitor Supply	V _{DD_LP}	1.0 ± 50 mV	V	—
Input voltage	DDR3 and DDR3L DRAM signals	MV _{IN}	GND to GV _{DD}	V	_
	DDR3 and DDR3L DRAM reference	MV _{REF}	GV _{DD} /2 ± 1%	V	_
	Ethernet signals, GPIO	LV _{IN}	GND to LV _{DD}	V	—
	eSPI, eSHDC, GPIO	CV _{IN}	GND to CV _{DD}	V	—
	Enhanced Local Bus signals	BV _{IN}	GND to BV _{DD}	V	_
	DUART, I ² C, DMA, MPIC, GPIO, system control and power management, clocking, debug, I/O voltage select, and JTAG I/O voltage	OV _{IN}	GND to OV _{DD}	V	_
	SerDes signals	XV _{IN}	GND to XV _{DD}	V	
	USB PHY Transceiver signals	USB_V _{IN} _3P3	GND to USB_V _{DD} _3P3	V	—
Operating Temperature range	Normal Operation	T _A , T _J	$T_A = 0$ (min) to $T_J = 105$ (max)	°C	_
	Extended Operation	T _A , T _J	T _A = -40 (min) to T _J = 105 (max)	°C	_
	Secure Boot Fuse Programming	T _A , T _J	$T_A = 0(min)$ to $T_J = 70 (max)$	°C	1

Table 3. Recommended Operating Conditions (continued)

Parameter Symb		Recommended Value	Unit	Note
Note:				

- 1. POV_{DD} must be supplied 1.5 V and the device must operate in the specified fuse programming temperature range only during secure boot fuse programming. For all other operating conditions, POV_{DD} must be tied to GND, subject to the power sequencing constraints shown in Section 2.2, "Power Up Sequencing."
- 2. Selecting RGMII limits LV_{DD} to 2.5 V.
- 3. Unless otherwise stated in an interface's DC specifications, the maximum allowed input capacitance in this table is a general recommendation for signals.
- 4. Supply voltage specified at the voltage sense pin. Voltage input pins must be regulated to provide specified voltage at the sense pin.
- 5. Core Group A and Platform supply (VDD_CA_PL) and Core Group B supply (VDD_CB) were separate supplies in Rev1.0, they are tied together in Rev1.1.

This figure shows the undershoot and overshoot voltages at the interfaces of the device.

Notes:

 $t_{\mbox{CLOCK}}$ refers to the clock period associated with the respective interface:

- For I²C, t_{CLOCK} refers to SYSCLK.
- For DDR GV_{DD}, t_{CLOCK} refers to D*n*_MCK.
- For eSPI CV_{DD}, t_{CLOCK} refers to SPI_CLK.
- For eLBC BV_{DD}, t_{CLOCK} refers to LCLK.
- For SerDes XV_{DD}, t_{CLOCK} refers to SD_REF_CLK.
- For dTSEC LV_{DD}, t_{CLOCK} refers to EC_GTX_CLK125.
- For JTAG OV_{DD}, t_{CLOCK} refers to TCK.

Figure 7. Overshoot/Undershoot Voltage for BV_{DD}/GV_{DD}/LV_{DD}/OV_{DD}

The core and platform voltages must always be provided at nominal 1.0 V. See Table 3 for the actual recommended core voltage conditions. Voltage to the processor interface I/Os is provided through separate sets of supply pins and must be provided at the voltages shown in Table 3. The input voltage threshold scales with respect to the associated I/O supply voltage. CV_{DD} , BV_{DD} , OV_{DD} , and LV_{DD} -based receivers are simple CMOS I/O circuits and satisfy appropriate LVCMOS type specifications. The DDR SDRAM interface uses differential receivers referenced by the externally supplied $MV_{REF}n$ signal (nominally set to $GV_{DD}/2$) as is appropriate for the SSTL_1.5/SSTL_1.35 electrical signaling standard. The DDR DQS receivers cannot be operated in single-ended fashion. The complement signal must be properly driven and cannot be grounded.

Table 27. DDR3 and DDR3L SDRAM Interface Output AC Timing Specifications (continued)

For recommended operating conditions, see Table 3.

Parameter	Symbol ¹	Min	Мах	Unit	Note
MCK to MDQS Skew	t _{DDKHMH}			ns	4
≥ 1066 MT/s data rate		-0.245	0.245		4, 6
800 MT/s data rate		-0.375	0.375		4
MDQ/MECC/MDM output setup with respect to MDQS	t _{DDKHDS,} t _{DDKLDS}			ps	5
1200 MT/s data rate		275	—		
1066 MT/s data rate		300	—		
800 MT/s data rate		375	—		
MDQ/MECC/MDM output hold with respect to MDQS	t _{DDKHDX,} t _{DDKLDX}			ps	5
1200 MT/s data rate		275	—		
1066 MT/s data rate		300	—		
800 MT/s data rate		375	—		
MDQS preamble	t _{DDKHMP}	$0.9 imes t_{MCK}$	—	ns	
MDQS postamble	t _{DDKHME}	$0.4 imes t_{MCK}$	$0.6 imes t_{MCK}$	ns	

Note:

- The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state) (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. Output hold time can be read as DDR timing (DD) from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (AX or DX). For example, t_{DDKHAS} symbolizes DDR timing (DD) for the time t_{MCK} memory clock reference (K) goes from the high (H) state until outputs (A) are setup (S) or output valid time. Also, t_{DDKLDX} symbolizes DDR timing (DD) for the time t_{MCK} memory clock reference (K) goes low (L) until data outputs (D) are invalid (X) or data output hold time.
 </sub>
- 2. All MCK/MCK and MDQS/MDQS referenced measurements are made from the crossing of the two signals.
- 3. ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK, MCS, and MDQ/MECC/MDM/MDQS.
- 4. Note that t_{DDKHMH} follows the symbol conventions described in note 1. For example, t_{DDKHMH} describes the DDR timing (DD) from the rising edge of the MCK[n] clock (KH) until the MDQS signal is valid (MH). t_{DDKHMH} can be modified through control of the MDQS override bits (called WR_DATA_DELAY) in the TIMING_CFG_2 register. This is typically set to the same delay as in DDR_SDRAM_CLK_CNTL[CLK_ADJUST]. The timing parameters listed in the table assume that these two parameters have been set to the same adjustment value. See the chip reference manual for a description and explanation of the timing modifications enabled by use of these bits.
- 5. Determined by maximum possible skew between a data strobe (MDQS) and any corresponding bit of data (MDQ), ECC (MECC), or data mask (MDM). The data strobe must be centered inside of the data eye at the pins of the microprocessor.
- 6. Note that for 1200/1333 frequencies it is required to program the start value of the DQS adjust for write leveling.

NOTE

For the ADDR/CMD setup and hold specifications in Table 27, it is assumed that the clock control register is set to adjust the memory clocks by ½ applied cycle.

2.12.2.2 RGMII AC Timing Specifications

This table shows the RGMII AC timing specifications.

Table 37. RGMII AC Timing Specifications

For recommended operating conditions, see Table 3.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit	Note
Data to clock output skew (at transmitter)	t _{SKRGT_TX}	-500	0	500	ps	5
Data to clock input skew (at receiver)	t _{SKRGT_RX}	1.0	—	2.8	ns	2
Clock period duration	t _{RGT}	7.2	8.0	8.8	ns	3
Duty cycle for 10BASE-T and 100BASE-TX	t _{RGTH} /t _{RGT}	40	50	60	%	3, 4
Duty cycle for Gigabit	t _{RGTH} /t _{RGT}	45	50	55	%	—
Rise time (20%–80%)	t _{RGTR}	—	—	0.75	ns	—
Fall time (20%–80%)	t _{RGTF}	—	—	0.75	ns	—

Note:

 In general, the clock reference symbol representation for this section is based on the symbols RGT to represent RGMII timing. Note that the notation for rise (R) and fall (F) times follows the clock symbol that is being represented. For symbols representing skews, the subscript is skew (SK) followed by the clock that is being skewed (RGT).

 This implies that PC board design requires clocks to be routed such that an additional trace delay of greater than 1.5 ns is added to the associated clock signal. Many PHY vendors already incorporate the necessary delay inside their chip. If so, additional PCB delay is probably not needed.

3. For 10 and 100 Mbps, t_{RGT} scales to 400 ns ± 40 ns and 40 ns ± 4 ns, respectively.

4. Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domains as long as the minimum duty cycle is not violated and stretching occurs for no more than three t_{RGT} of the lowest speed transitioned between.

5. The frequency of RX_CLK should not exceed the frequency of GTX_CLK125 by more than 300ppm.

Table 41. IEEE 1588 DC Electrical Characteristics (LV_{DD} = 3.3 V) (continued)

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Мах	Unit	Note
Output low voltage (LV _{DD} = Min, I_{OL} = 1.0 mA)	V _{OL}	—	0.4	V	—

Note:

1. The symbol V_{IN} , in this case, represents the LV_{IN} symbol referenced in Table 2 and Table 3.

2. The min V_{IL} and max V_{IH} values are based on the respective LV_{IN} values found in Table 3.

This table shows the eTSEC IEEE 1588 DC electrical characteristics when operating at $LV_{DD} = 2.5$ V supply.

Table 42. IEEE 1588 DC Electrical Characteristics (LV_{DD} = 2.5 V)

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Max	Unit	Note
Input high voltage	V _{IH}	1.70	—	V	1
Input low voltage	V _{IL}	—	0.70	V	1
Input current ($LV_{IN} = 0 V \text{ or } LV_{IN} = LV_{DD}$)	I _{IH}		±40	μA	2
Output high voltage (LV _{DD} = min, I_{OH} = -1.0 mA)	V _{OH}	2.00	_	V	
Output low voltage (LV _{DD} = min, I_{OL} = 1.0 mA)	V _{OL}	—	0.40	V	

Note:

- 1. The min V_{IL} and max V_{IH} values are based on the respective min and max LV_{IN} values found in Table 3.
- 2. The symbol V_{IN}, in this case, represents the LV_{IN} symbols referenced in Table 2 and Table 3.

2.12.5 eTSEC IEEE Std 1588 AC Specifications

This table provides the eTSEC IEEE 1588 AC timing specifications.

Table 43. eTSEC IEEE 1588 AC Timing Specifications

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Тур	Мах	Unit	Note
TSEC_1588_CLK clock period	t _{T1588CLK}	6.4	_	$T_{RX_CLK} \times 7$	ns	1, 2
TSEC_1588_CLK duty cycle	t _{T1588CLKH} / t _{T1588CLK}	40	50	60	%	3
TSEC_1588_CLK peak-to-peak jitter	t _{T1588} CLKINJ	—	_	250	ps	_
Rise time eTSEC_1588_CLK (20%-80%)	t _{T1588CLKINR}	1.0	_	2.0	ns	_
Fall time eTSEC_1588_CLK (80%-20%)	t _{T1588CLKINF}	1.0	_	2.0	ns	
TSEC_1588_CLK_OUT clock period	t _{T1588CLKOUT}	$2 \times t_{T1588CLK}$	_	—	ns	
TSEC_1588_CLK_OUT duty cycle	t _{T1588CLKOTH} / t _{T1588CLKOUT}	30	50	70	%	
TSEC_1588_PULSE_OUT	t _{T1588OV}	0.5	_	3.5	ns	_
TSEC_1588_TRIG_IN pulse width	t _{T1588} TRIGH	$2 \times t_{T1588CLK_MAX}$	—	—	ns	2

VM = Midpoint Voltage (OV_{DD}/2)

Figure 24. eSDHC Data and Command Input/Output Timing Diagram Referenced to Clock

2.16 Multicore Programmable Interrupt Controller (MPIC) Specifications

This section describes the DC and AC electrical specifications for the multicore programmable interrupt controller.

2.16.1 MPIC DC specifications

This table provides the DC electrical characteristics for the MPIC interface.

Table 52. MPIC DC Electrical Characteristics (OV_{DD} = 3.3 V)

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Мах	Unit	Note
Input high voltage	V _{IH}	2.0	_	V	1
Input low voltage	V _{IL}	_	0.8	V	1
Input current ($OV_{IN} = 0$ V or $OV_{IN} = OV_{DD}$)	I _{IN}	_	±40	μΑ	2
Output high voltage ($OV_{DD} = min, I_{OH} = -2 mA$)	V _{OH}	2.4	_	V	_
Output low voltage (OV _{DD} = min, I_{OL} = 2 mA)	V _{OL}	—	0.4	V	—

Table 56. I²C DC Electrical Characteristics ($OV_{DD} = 3.3 V$) (continued)

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Мах	Unit	Note
Pulse width of spikes which must be suppressed by the input filter	t _{I2KHKL}	0	50	ns	3
Input current each I/O pin (input voltage is between $0.1 \times OV_{DD}$ and $0.9 \times OV_{DD}$ (max)	Ι _Ι	-40	40	μA	4
Capacitance for each I/O pin	CI	_	10	pF	

Note:

- 1. The min V_{IL} and max V_{IH} values are based on the respective min and max OV_{IN} values found in Table 3.
- 2. Output voltage (open drain or open collector) condition = 3 mA sink current.
- 3. See the chip reference manual for information about the digital filter used.
- 4. I/O pins obstruct the SDA and SCL lines if OV_{DD} is switched off.

2.18.2 I²C AC Electrical Specifications

This table provides the I²C AC timing specifications.

Table 57. I²C AC Timing Specifications

For recommended operating conditions, see Table 3.

Parameter	Symbol ¹	Min	Мах	Unit	Note
SCL clock frequency	f _{I2C}	0	400	kHz	2
Low period of the SCL clock	t _{I2CL}	1.3	—	μS	_
High period of the SCL clock	t _{I2CH}	0.6	—	μS	—
Setup time for a repeated START condition	t _{I2SVKH}	0.6	—	μS	—
Hold time (repeated) START condition (after this period, the first clock pulse is generated)	t _{I2SXKL}	0.6	—	μS	—
Data setup time	t _{I2DVKH}	100	_	ns	_
Data input hold time: CBUS compatible masters I ² C bus devices	t _{i2DXKL}	0		μS	3
Data output delay time	t _{I2OVKL}	—	0.9	μS	4
Setup time for STOP condition	t _{I2PVKH}	0.6	—	μS	_
Bus free time between a STOP and START condition	t _{I2KHDX}	1.3	—	μS	—

2.19.2 GPIO AC Timing Specifications

This table provides the GPIO input and output AC timing specifications.

Table 60. GPIO Input AC Timing Specifications

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Unit	Note
GPIO inputs—minimum pulse width	t _{PIWID}	20	ns	1

Note:

1. GPIO inputs and outputs are asynchronous to any visible clock. GPIO outputs must be synchronized before use by any external synchronous logic. GPIO inputs are required to be valid for at least t_{PIWID} to ensure proper operation.

This figure provides the AC test load for the GPIO.

Figure 31. GPIO AC Test Load

2.20 High-Speed Serial Interfaces (HSSI)

The device features a serializer/deserializer (SerDes) interface to be used for high-speed serial interconnect applications. The SerDes interface can be used for PCI Express, Serial RapidIO, Aurora, and SGMII data transfers.

This section describes the common portion of SerDes DC electrical specifications: the DC requirement for SerDes reference clocks. The SerDes data lane's transmitter (Tx) and receiver (Rx) reference circuits are also shown.

2.20.1 Signal Terms Definition

The SerDes utilizes differential signaling to transfer data across the serial link. This section defines terms used in the description and specification of differential signals.

— For an external AC-coupled connection, there is no common mode voltage requirement for the clock driver. Because the external AC-coupling capacitor blocks the DC level, the clock driver and the SerDes reference clock receiver operate in different common mode voltages. The SerDes reference clock receiver in this connection scheme has its common mode voltage set to SGND. Each signal wire of the differential inputs is allowed to swing below and above the common mode voltage (SGND). This figure shows the SerDes reference clock input requirement for AC-coupled connection scheme.

Figure 35. Differential Reference Clock Input DC Requirements (External AC-Coupled)

- Single-Ended Mode
 - The reference clock can also be single-ended. The SD_REF_CLKn input amplitude (single-ended swing) must be between 400 mV and 800 mV peak-peak (from V_{MIN} to V_{MAX}) with SD_REF_CLKn either left unconnected or tied to ground.
 - The SD_REF_CLKn input average voltage must be between 200 and 400 mV. Figure 36 shows the SerDes reference clock input requirement for single-ended signaling mode.
 - To meet the input amplitude requirement, the reference clock inputs may need to be DC- or AC-coupled externally. For the best noise performance, the reference of the clock could be DC- or AC-coupled into the unused phase (SD_REF_CLKn) through the same source impedance as the clock input (SD_REF_CLKn) in use.

Figure 36. Single-Ended Reference Clock Input DC Requirements

2.20.2.3 AC Requirements for SerDes Reference Clocks

This table lists AC requirements for the PCI Express, SGMII, Serial RapidIO, SATA and Aurora SerDes reference clocks to be guaranteed by the customer's application design.

Table 61. SD_REF_CLK*n* and SD_REF_CLK*n* Input Clock Requirements (SV_{DD} = 1.0 V)

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Тур	Мах	Unit	Note
SD_REF_CLK/SD_REF_CLK frequency range	t _{CLK_REF}	_	100/125/156.25	_	MHz	1
SD_REF_CLK/SD_REF_CLK clock frequency tolerance	^t CLK_TOL	-350	_	350	ppm	
SD_REF_CLK/SD_REF_CLK reference clock duty cycle	^t CLK_DUTY	40	50	60	%	4
SD_REF_CLK/SD_REF_CLK max deterministic peak-peak jitter at 10 ⁻⁶ BER	^t CLK_DJ	—	—	42	ps	_
SD_REF_CLK/SD_REF_CLK total reference clock jitter at 10 ⁻⁶ BER (peak-to-peak jitter at refClk input)	^t clk_tj	—	—	86	ps	2
SD_REF_CLK/SD_REF_CLK rising/falling edge rate	^t clkrr/ ^t clkfr	1	_	4	V/ns	3
Differential input high voltage	V _{IH}	200	—	_	mV	4
Differential input low voltage	V _{IL}	—	—	-200	mV	4
Rising edge rate (SD_REF_CLK <i>n</i>) to falling edge rate (SD_REF_CLK <i>n</i>) matching	Rise-Fall Matching		_	20	%	5, 6

Note:

1. Caution: Only 100, 125 and 156.25 have been tested. In-between values do not work correctly with the rest of the system.

2. Limits from PCI Express CEM Rev 2.0

 Measured from -200 mV to +200 mV on the differential waveform (derived from SD_REF_CLKn minus SD_REF_CLKn). The signal must be monotonic through the measurement region for rise and fall time. The 400 mV measurement window is centered on the differential zero crossing. See Figure 37.

- 4. Measurement taken from differential waveform
- 5. Measurement taken from single-ended waveform

6. Matching applies to rising edge for SD_REF_CLK*n* and falling edge rate for SD_REF_CLK*n*. It is measured using a 200 mV window centered on the median cross point where SD_REF_CLK*n* rising meets SD_REF_CLK*n* falling. The median cross point is used to calculate the voltage thresholds that the oscilloscope uses for the edge rate calculations. The rise edge rate of SD_REF_CLK*n* must be compared to the fall edge rate of SD_REF_CLK*n*, the maximum allowed difference should not exceed 20% of the slowest edge rate. See Figure 38.

Table 89. SGMII DC Receiver Electrical Characteristics (XV_{DD} = 1.5 V or 1.8 V) (continued)

For recommended operating conditions, see Table 3.

	Parameter Symbol Min Typ Max Unit Note
--	--

Note:

- 1. Input must be externally AC coupled.
- 2. V_{RX DIFFp-p} is also referred to as peak-to-peak input differential voltage.
- The concept of this parameter is equivalent to the electrical idle detect threshold parameter in PCI Express. Refer to Section 2.20.4.4, "PCI Express DC Physical Layer Receiver Specifications," and Section 2.20.4.5.2, "PCI Express AC Physical Layer Receiver Specifications," for further explanation.
- 4. The REIDL_CTL shown in the table refers to the chip's SerDes control register B(1-3)GCR(lane)1[REIDL_CTL] bit field.

This table defines the SGMII 2.5x receiver DC electrical characteristics for 3.125 GBaud.

Table 90. SGMII 2.5x Receiver DC Timing Specifications (XV_{DD} = 1.5 V or 1.8 V)

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Typical	Мах	Unit	Note
Differential input voltage	V _{IN}	200	900	1600	mV p-p	1

Note:

1. Measured at the receiver.

2.20.8.2 SGMII AC Timing Specifications

This section discusses the AC timing specifications for the SGMII interface.

2.20.8.2.1 SGMII Transmit AC Timing Specifications

This table provides the SGMII transmit AC timing specifications. A source synchronous clock is not supported. The AC timing specifications do not include RefClk jitter.

Table 91. SGMII Transmit AC Timing Specifications

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Тур	Max	Unit	Note
Deterministic jitter	JD	—	—	0.17	UI p-p	_
Total jitter	JT	—	_	0.35	UI p-p	1
Unit interval: 1.25 GBaud	UI	800 – 100 ppm	800	800 + 100 ppm	ps	_
Unit interval: 3.125 GBaud	UI	320 – 100 ppm	320	320 + 100 ppm	ps	_
AC coupling capacitor	C _{TX}	10		200	nF	2

Note:

1. See Figure 42 for single frequency sinusoidal jitter measurements.

2. The external AC coupling capacitor is required. It is recommended that it be placed near the device transmitter outputs.

2.20.8.2.2 SGMII AC Measurement Details

Transmitter and receiver AC characteristics are measured at the transmitter outputs (SD_TX*n* and \overline{SD}_TXn) or at the receiver inputs (SD_RX*n* and \overline{SD}_RXn) respectively, as depicted in this figure.

3.1.2 Platform to SYSCLK PLL Ratio

This table shows the allowed platform clock-to-SYSCLK ratios.

The chip platform clock frequency is always below 666 MHz frequencies; set the RCW configuration field SYS_PLL_CFG = 0b01.

Binary Value of SYS_PLL_RAT	Platform:SYSCLK Ratio
0_0100	4:1
0_0101	5:1
0_0110	6:1
0_0111	7:1
0_1000	8:1
0_1001	9:1
All Others	Reserved

Table 94. Platform to SYSCLK PLL Ratios

3.1.3 e500mc Core Cluster to SYSCLK PLL Ratio

The clock ratio between SYSCLK and each of the two core cluster PLLs is determined at power up by the binary value of the RCW field CCn_PLL_RAT. This table describes the supported ratios. Note that a core cluster PLL frequency targeting 1 GHz and above must set RCW field CCn_PLL_CFG = 0b00 for frequency targeting below 1 GHz set CCn_PLL_CFG = 0b01.

This table lists the supported Core Cluster to SYSCLK ratios.

Binary Value of CCn_PLL_RAT	Core Cluster:SYSCLK Ratio
0_1000	8:1
0_1001	9:1
0_1010	10:1
0_1011	11:1
0_1100	12:1
0_1101	13:1
0_1110	14:1
0_1111	15:1
1_0000	16:1
1_0001	17:1
1_0010	18:1
All Others	Reserved

Table 95. e500mc Core Cluster PLL to SYSCLK Ratios

Hardware Design Considerations

See Section 19.4 "LP-Serial Signal Descriptions," in the chip reference manual for Serial RapidIO interface width and frequency details.

3.1.7 SerDes PLL Ratio

The clock ratio between each of the three SerDes PLLs and their respective externally supplied SD_REF_CLK*n*/SD_REF_CLK*n* inputs is determined by the binary value of the RCW Configuration field SRDS_RATIO_B*n* as shown in this table. Furthermore, each SerDes lane grouping can be run at a SerDes PLL frequency divider determined by the binary value of the RCW field SRDS_DIV_B*n* as shown in Table 103.

This table lists the supported SerDes PLL Bank *n* to SD_REF_CLK*n* ratios.

Binary Value of SRDS_RATIO_B1	SRDS_PLL_ <i>n</i> :SD_REF_CLK <i>n</i> Ratio		
	<i>n</i> = 1 (Bank)	<i>n</i> = 2 (Bank 2)	
000	Reserved	Reserved	
001	Reserved	20:1	
010	25:1	25:1	
011	40:1	40:1	
100	50:1	50:1	
101	Reserved	24:1	
110	Reserved	30:1	
All Others	Reserved	Reserved	

Table 101. SerDes PLL Bank *n* to SD_REF_CLK*n* Ratios

These tables list the supported SerDes PLL dividers.

This table shows the PLL divider support for each pair of lanes on SerDes Bank 1.

Table 102. SerDes Bank 1 PLL Dividers

Binary Value of SRDS_DIV_B1[0:4]	SerDes Bank 1 PLL Divider
0b0	Divide by 1 off Bank 1 PLL
0b1	Divide by 2 off Bank 1 PLL

Note: 1 bit (of 5 total SRDS_DIV_B1 bits) controls each pair of lanes.

This table shows the PLL dividers supported for each 4-lane for SerDes Banks 2.

Table 103. SerDes Banks 2 PLL Dividers

Binary Value of SRDS_DIV_B2	SerDes Bank 2 PLL Divider
0b0	Divide by 1 off Bank 2 PLL
0b1	Divide by 2 off Bank <i>2</i> PLL

Note: 1 bit controls all four lanes of bank 2.

3.1.8 Frame Manager (FMan) Clock Select

The Frame Managers (FM) can each be synchronous to the platform.

Hardware Design Considerations

This table describes the clocking options that may be applied to each FM. The clock selection is determined by the binary value of the RCW clocking configuration fields FM_CLK_SEL.

Binary Value of FM_CLK_SEL	FM Frequency
0b0	Platform Clock Frequency /2
0b1	Core Cluster 2 Frequency /2 ¹

Table 104. Frame Manager Clock Select

Notes:

¹ For asynchronous mode, max frequency, see Table 93.

3.2 Supply Power Default Setting

The device is capable of supporting multiple power supply levels on its I/O supplies. The I/O voltage select inputs, shown in Table 105, properly configure the receivers and drivers of the I/Os associated with the BVDD, CVDD, and LVDD power planes, respectively.

WARNING

Incorrect voltage select settings can lead to irreversible device damage.

Package Information

The heat sink removes most of the heat from the device. Heat generated on the active side of the chip is conducted through the silicon and through the heat sink attach material (or thermal interface material), and finally to the heat sink. The junction-to-case thermal resistance is low enough that the heat sink attach material and heat sink thermal resistance are the dominant terms.

3.8.2 Thermal Interface Materials

A thermal interface material is required at the package-to-heat sink interface to minimize the thermal contact resistance. The performance of thermal interface materials improves with increasing contact pressure; this performance characteristic chart is generally provided by the thermal interface vendor. The recommended method of mounting heat sinks on the package is by means of a spring clip attachment to the printed-circuit board (see Figure 61).

The system board designer can choose among several types of commercially-available thermal interface materials.

3.8.3 Temperature Diode

The chip has a temperature diode on the microprocessor that can be used in conjunction with other system temperature monitoring devices (such as Analog Devices, ADT7461ATM). These devices use the negative temperature coefficient of a diode operated at a constant current to determine the temperature of the microprocessor and its environment.

The following are the specifications of the chip's on-board temperature diode:

- Operating range: 10 230µA
- Ideality factor over $13.5 220 \ \mu A$: $n = 1.00589 \pm 0.008$

4 Package Information

The following section describes the detailed content and mechanical description of the package.

4.1 Package Parameters for the FC-PBGA

The package parameters are as provided in the following list. The package type is $23 \text{ mm} \times 23 \text{ mm}$, 780 flip chip plastic ball grid array (FC-PBGA).

Package outline	$23 \text{ mm} \times 23 \text{mm}$
Interconnects	780
Ball Pitch	0.8 mm
Ball Diameter (typical)	0.40 mm
Solder Balls	96.5% Sn, 3% Ag, 0.5% Cu
Module height (typical)	2.21 mm to 2.51 mm (Maximum)