

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Active
Core Processor	-
Number of Cores/Bus Width	-
Speed	-
Co-Processors/DSP	-
RAM Controllers	-
Graphics Acceleration	-
Display & Interface Controllers	-
Ethernet	-
SATA	-
USB	-
Voltage - I/O	-
Operating Temperature	-
Security Features	
Package / Case	
Supplier Device Package	· · · · · · · · · · · · · · · · · · ·
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=p2041nse7pnc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

													-	7
V _{DD} CA_PL [27]	GND [092]	V _{DD} _ CA_PL [26]	GND [091]	V _{DD} _ CA_PL [25]	OV _{DD} [4]	GND [090]	ASLEEP	UART1_ SOUT	GND [089]	UART1_ CTS	UART1_ SIN	GND [088]	SYSCLK	R
V _{DD} CA_PL [21]	GND [083]	V _{DD} _ CA_PL [20]	GND [082]	V _{DD} _ CA_PL [19]	OV _{DD} [3]	GND [081]	PORESE	THRESET		CKSTP OUT	OV _{DD} [2]	CLK_ OUT	TEST_ SEL	Т
V _{DD_} CA_PL [15]	VDD_CB [11]	GND [075]	VDD_CB [10]	GND [074]	V _{DD} CA_PL [14]	POVDD	GND [073]	IO_ VSEL1	EVT [4]	GND [072]	EVT [2]	EVT [1]	RESET_ REQ	U
V _{DD} _ CA_PL [10]	GND [064]	GND [063]	VDD_CB [09]	GND [062]	VDD_CB [08]	GND [061]	AVDD_ PLAT	GND [060]	IIC4_ SDA	IRQ [04]	EVT [0]	GND [059]	SCAN_ MODE	V
V _{DD} CA_PL [06]	VDD_CB [07]	GND [052]	VDD_CB [06]	GND [051]	VDD_CB [05]	GND [050]	AVDD_ CC2	GND [049]	EVT [3]	IIC2_ SCL	OV _{DD} [1]	TMS	TDI	W
V _{DD} _ CA_PL [02]	GND [042]	GND [041]	VDD_CB [04]	GND [040]	VDD_CB [03]	IO_ VSEL_ [4]	GND [039]	IO_ VSEL_ [3]		IIRQ_ [00]	IIRQ_ [06]	TRST	тск	Y
GV _{DD} [10]	SENSE GND_CB	GND [036]	VDD_CB [02]	GND [035]	VDD_CB [01]	V _{DD} _ CA_PL [01]	IIRQ_ [05]	IIRQ_ [07]	GND [034]	IIC2_ SDA	IIRQ_ [03]	GND [033]	TDO	AA
GND [027]	SENSE VDD_CB	RSRV	RSRV	RSRV	RSRV	IO_ VSEL [2]	GND [026]	IIC3_ SCL	IIRQ_ [10]	IIRQ_ [02]	IIC3_ SDA	IIRQ_ [0]	IO_ VSEL [0]	AB
MBA [1]	MBA [0]	GND [024]	MCS [0]	MODT [0]	GND [023]	MCS1	IIRQ_ [08]	IIC4_ SCL	IIRQ_ [11]	IIC1_ SCL	GND [022]	IIRQ_ [09]	IIC1_ SDA	AC
GND [020]	MDQ [33]	MDQS [4]	MDQS [4]	MDQ [35]	MDQ [53]	MDQ [49]	MODT [1]	MDQ [54]	MDQ [51]	MDQ [58]	MDQ [59]	MDQ [62]	MDQ [63]	AD
GND [015]	MDQ [32]	MDM [4]	GND [014]	MDQ [34]	MDQ [52]	GND [013]	MDQS [6]	MDQS [6]	GND [012]	MDQ [55]	MDM [7]	GND [011]	MDQS [7]	AE
MDQ [36]	MDQ [37]	GV _{DD} [03]	MDQ [38]	MDQ [39]	GV _{DD} [02]	MDQ [48]	MDM [6]	GV _{DD} [01]	MDQ [50]	MDQ [61]	MDQ [56]	MDQ [57]	MDQS [7]	AF
MAPAR _OUT	MA [00]	MCS [2]	MODT [2]	GND [005]	MCS [3]	MDQ [44]	GND [004]	MDQ [41]	MDQS [5]	GND [003]	MDQ [47]	MDQ [43]	MDQ [60]	AG
GND [001]	MA [10]	MRAS	MWE	MCAS	MA [13]	MODT [3]	MDQ [45]	MDQ [40]	MDQS [5]	MDM [5]	MDQ [46]	MDQ [42]		АН
15	16	17	18 Fig	19 gure 6.	20 780 BG	21 A Ball I	22 Map Dia	23 Igram (I	24 Detail V	25 iew D)	26	27	28	

Pin Assignments and Reset States

Table 1.	Pin	List b	y Bus	(continued)
				(

Signal	Signal Description	Package Pin Number	Pin Type	Power Supply	Note
IIC3_SDA/GPIO17/M1SRCID0/LB_SRCID0	Serial Data	AB26	I/O	OV_{DD}	2, 14
/ DMA1_DDONE0/SDHC_WP					
IIC4_SCL/EVT5/M1SRCID1/LB_SRCID1/ GPIO18/DMA1_DREQ0	Serial Clock	AC23	I/O	OV _{DD}	2, 14
IIC4_SDA/EVT6/M1SRCID2/ LB_SRCID2/GPIO19	Serial Data	V24	I/O	OV _{DD}	2, 14
SerDes (x10) PCI Express, Serial RapidIO, Aurora, 10	GE, 1GE	, , , , , , , , , , , , , , , , , , , ,		
SD_TX13	Transmit Data (positive)	C20	0	XV _{DD}	_
SD_TX12	Transmit Data (positive)	C18	0	XV _{DD}	
SD_TX11	Transmit Data (positive)	D16	0	XV _{DD}	—
SD_TX10	Transmit Data (positive)	C14	0	XV_{DD}	—
SD_TX07	Transmit Data (positive)	C12	0	XV _{DD}	—
SD_TX06	Transmit Data (positive)	C10	0	XV_{DD}	—
SD_TX05	Transmit Data (positive)	C8	0	XV_{DD}	—
SD_TX04	Transmit Data (positive)	B4	0	XV_{DD}	—
SD_TX03	Transmit Data (positive)	F3	0	XV_{DD}	—
SD_TX02	Transmit Data (positive)	G5	0	XV_{DD}	—
SD_TX13	Transmit Data (negative)	D20	0	XV_{DD}	—
SD_TX12	Transmit Data (negative)	D18	0	XV_{DD}	—
SD_TX11	Transmit Data (negative)	C16	0	XV_{DD}	—
SD_TX10	Transmit Data (negative)	D14	0	XV_{DD}	—
SD_TX07	Transmit Data (negative)	D12	0	XV_{DD}	—
SD_TX06	Transmit Data (negative)	D10	0	XV_{DD}	—
SD_TX05	Transmit Data (negative)	D8	0	XV_{DD}	—
SD_TX04	Transmit Data (negative)	B5	0	XV_{DD}	—
SD_TX03	Transmit Data (negative)	F4	0	XV _{DD}	—
SD_TX02	Transmit Data (negative)	G6	0	XV_{DD}	—
SD_RX13	Receive Data (positive)	B21	I	XV _{DD}	—
SD_RX12	Receive Data (positive)	B19	I	XV_{DD}	—
SD_RX11	Receive Data (positive)	B15	I	XV_{DD}	—
SD_RX10	Receive Data (positive)	A13	I	XV_{DD}	—
SD_RX07	Receive Data (positive)	B11	I	XV_{DD}	—
SD_RX06	Receive Data (positive)	B9	I	XV_{DD}	—
SD_RX05	Receive Data (positive)	B7	I	XV_{DD}	_

Pin Assignments and Reset States

Tahla	1	Din	l iet	hv	Rue /	(continued)
lable	۰.	гш	LISU	Dy	DUS ((continued)

Signal	Signal Description	Package Pin Number	Pin Type	Power Supply	Note
GND030	Ground	AB10	—		—
GND029	Ground	AB11	—		—
GND028	Ground	AB12	_		—
GND027	Ground	AB15	—		—
GND026	Ground	AB22	—	—	—
GND025	Ground	AC5	—	—	—
GND024	Ground	AC17	—	—	—
GND023	Ground	AC20	—	—	—
GND022	Ground	AC26	—	—	—
GND021	Ground	AD12	—		—
GND020	Ground	AD15	—	_	_
GND019	Ground	AE2	—	—	—
GND018	Ground	AE5	—	—	—
GND017	Ground	AE8	_		—
GND016	Ground	AE11	—	—	—
GND015	Ground	AE15	—	—	—
GND014	Ground	AE18	—	—	—
GND013	Ground	AE21	—		—
GND012	Ground	AE24	_		—
GND011	Ground	AE27	—		—
GND010	Ground	AF13	_		—
GND009	Ground	AF14	_		—
GND008	Ground	AG4	—		—
GND007	Ground	AG7	_		—
GND006	Ground	AG10	_		—
GND005	Ground	AG19	—		—
GND004	Ground	AG22	—	—	—
GND003	Ground	AG25	—		—
GND002	Ground	AH12	_		—
GND001	Ground	AH15	—		—
XGND12	SerDes Transceiver GND	C5	—		—
XGND11	SerDes Transceiver GND	C7	—	—	—
XGND10	SerDes Transceiver GND	C11	—		—
XGND09	SerDes Transceiver GND	C15	—		—

Table 1. Pin List by Bus (continued)

Signal	Signal Description	Package Pin Number	Pin Type	Power Supply	Note
LVDD05	Ethernet Controller 1 and 2 Supply	C26		LV _{DD}	_
LVDD04	Ethernet Controller 1 and 2 Supply	E26	— LV _{DD}		_
LVDD03	Ethernet Controller 1 and 2 Supply	G20	— LV _{DD}		_
LVDD02	Ethernet Controller 1 and 2 Supply	H20	—	LV _{DD}	_
LVDD01	Ethernet Controller 1 and 2 Supply	J20	—	LV _{DD}	_
POVDD	Fuse Programming Override Supply	U21	—	POV _{DD}	30
VDD_CA_PL78	Core Group A and Platform Supply	G9	—	V _{DD_CA_PL}	37
VDD_CA_PL77	Core Group A and Platform Supply	G11	—	V _{DD_CA_PL}	37
VDD_CA_PL76	Core Group A and Platform Supply	G13	—	V _{DD_CA_PL}	37
VDD_CA_PL75	Core Group A and Platform Supply	G15	—	V _{DD_CA_PL}	37
VDD_CA_PL74	Core Group A and Platform Supply	G17	—	V _{DD_CA_PL}	37
VDD_CA_PL73	Core Group A and Platform Supply	G19	—	V _{DD_CA_PL}	37
VDD_CA_PL72	Core Group A and Platform Supply	H9	—	V _{DD_CA_PL}	37
VDD_CA_PL71	Core Group A and Platform Supply	H11	—	V _{DD_CA_PL}	37
VDD_CA_PL70	Core Group A and Platform Supply	H13	—	V _{DD_CA_PL}	37
VDD_CA_PL69	Core Group A and Platform Supply	H15	—	V _{DD_CA_PL}	37
VDD_CA_PL68	Core Group A and Platform Supply	H17	—	V _{DD_CA_PL}	37
VDD_CA_PL67	Core Group A and Platform Supply	H19	—	$V_{DD_CA_PL}$	37
VDD_CA_PL66	Core Group A and Platform Supply	J9	—	$V_{DD_CA_PL}$	37
VDD_CA_PL65	Core Group A and Platform Supply	J11	—	$V_{DD_CA_PL}$	37
VDD_CA_PL64	Core Group A and Platform Supply	J13	—	$V_{DD_CA_PL}$	37
VDD_CA_PL63	Core Group A and Platform Supply	J15	—	$V_{DD_CA_PL}$	37
VDD_CA_PL62	Core Group A and Platform Supply	J17	—	$V_{DD_CA_PL}$	37
VDD_CA_PL61	Core Group A and Platform Supply	J19	—	V _{DD_CA_PL}	37
VDD_CA_PL60	Core Group A and Platform Supply	K9		$V_{DD_CA_PL}$	37
VDD_CA_PL59	Core Group A and Platform Supply	K11	—	$V_{DD_CA_PL}$	37
VDD_CA_PL58	Core Group A and Platform Supply	K13	—	$V_{DD_CA_PL}$	37
VDD_CA_PL57	Core Group A and Platform Supply	K15	—	$V_{DD_CA_PL}$	37
VDD_CA_PL56	Core Group A and Platform Supply	K17	—	V _{DD_CA_PL}	37
VDD_CA_PL55	Core Group A and Platform Supply	K19	—	$V_{DD_CA_PL}$	37
VDD_CA_PL54	Core Group A and Platform Supply	L9	—	$V_{DD_CA_PL}$	37
VDD_CA_PL53	Core Group A and Platform Supply	L11	—	$V_{DD_CA_PL}$	37
VDD_CA_PL52	Core Group A and Platform Supply	L13	—	$V_{DD_CA_PL}$	37
VDD_CA_PL51	Core Group A and Platform Supply	L15	—	$V_{DD_CA_PL}$	37

Pin Assignments and Reset States

Table	1.	Pin	List	bv	Bus ((continued)
TUDIC	••		LIGU	~y	Du0 (ooninaca)

Signal	Signal Description	Package Pin Number	Pin Type	Power Supply	Note
NC13	No Connection	F12	—		11
NC14	No Connection	F11	_	_	11
NC15	No Connection	F10	—	_	11
NC16	No Connection	F9	—	_	11
NC17	No Connection	F8	—	—	11
NC18	No Connection	E20	—	_	11
NC19	No Connection	E19	—	_	11
NC20	No Connection	E18	—	—	11
NC21	No Connection	E16	—	_	11
NC22	No Connection	E15	—	_	11
NC23	No Connection	E14	—	—	11
NC24	No Connection	E13	—	_	11
NC25	No Connection	E12	—	—	11
NC26	No Connection	E11	—	_	11
NC27	No Connection	E10	—	_	11
NC28	No Connection	E9	—	_	11
NC29	No Connection	E8	—	—	11
NC30	No Connection	E7	—	_	11
NC31	No Connection	D22	—	_	11
NC32	No Connection	D6	—	_	11
NC33	No Connection	D5	—	—	11
NC34	No Connection	C22	—	—	11
NC35	No Connection	C6	—	—	11
NC_M21	No Connection	M21	—	—	11
	Reserved Pins	I	11		1
Reserve	_	F24		1.2 V	20
Reserve	_	E23		1.2 V	20
Reserve	_	E5		_	11
Reserve	_	E6		_	11
Reserve	_	F14	_	_	11
Reserve	_	F15		_	11
Reserve	_	AB17		GND	19
Reserve	_	AB18		GND	19
Reserve	—	AB19	—	GND	19

	Parameter	Symbol	Max Value	Unit	Note
eSPI, eSHDC, GPIO		CV _{DD}	-0.3 to 3.63 -0.3 to 2.75 -0.3 to 1.98	V	_
DDR3 and DDR3L DF	RAM I/O voltage	GV _{DD}	–0.3 to 1.65	V	—
Enhanced local bus I/	O voltage	BV _{DD}	-0.3 to 3.63 -0.3 to 2.75 -0.3 to 1.98	V	
SerDes core logic sup	oply and receivers	SV _{DD}	-0.3 to 1.1	V	—
Pad power supply for	SerDes transceivers	XV _{DD}	-0.3 to 1.98 -0.3 to 1.65	V	—
Ethernet I/O, Ethernet	t management interface 1 (EMI1), 1588, GPIO	LV _{DD}	-0.3 to 3.63 -0.3 to 2.75	V	3
USB PHY transceiver	supply voltage	USB_V _{DD} _3P3	-0.3 to 3.63	V	—
USB PHY PLL supply	voltage	USB_V _{DD} _1P0	-0.3 to 1.1	V	—
Low Power Security M	Ionitor Supply	V _{DD_LP}	-0.3 to 1.1	V	—
Input voltage ⁷	DDR3 and DDR3L DRAM signals	MV _{IN}	–0.3 to (GV _{DD} + 0.3)	V	2, 7
	DDR3 and DDR3L DRAM reference	MV _{REF} n	–0.3 to (GV _{DD} /2+ 0.3)	V	2, 7
	Ethernet signals, GPIO	LV _{IN}	–0.3 to (LV _{DD} + 0.3)	V	3, 7
	eSPI, eSHDC, GPIO	CVIN	–0.3 to (CV _{DD} + 0.3)	V	4, 7
	Enhanced local bus signals	BVIN	–0.3 to (BV _{DD} + 0.3)	V	5, 7
	DUART, I ² C, DMA, MPIC, GPIO, system control and power management, clocking, debug, I/O voltage select, and JTAG I/O voltage	OV _{IN}	–0.3 to (OV _{DD} + 0.3)	V	6, 7
	SerDes signals	XV _{IN}	–0.4 to (XV _{DD} + 0.3)	V	7
	USB PHY transceiver signals	USB_V _{IN} _3P3	-0.3 to (USB_V _{DD} _3P3 + 0.3)	V	7
Storage junction temp	perature range	T _{stg}	-55 to 150	°C	_

Table 2. Absolute Operating Conditions¹ (continued)

Table 13. SYSCLK AC Timing Specifications

For recommended operating conditions, see Table 3.

Parameter/Condition	Symbol	Min	Тур	Мах	Unit	Note
SYSCLK frequency	f _{SYSCLK}	67	—	133	MHz	1, 2
SYSCLK cycle time	t _{SYSCLK}	7.5	—	15	ns	1, 2
SYSCLK duty cycle	t _{KHK} /t _{SYSCLK}	40	—	60	%	2
SYSCLK slew rate		1	—	4	V/ns	3
SYSCLK peak period jitter		_	—	±150	ps	_
SYSCLK jitter phase noise at – 56dBc		—	—	500	KHz	4
AC Input Swing Limits at 3.3 V OV_{DD}	ΔV_{AC}	1.9	—		V	_

Note:

- 1. **Caution:** The relevant clock ratio settings must be chosen such that the resulting SYSCLK frequency, do not exceed their respective maximum or minimum operating frequencies.
- 2. Measured at the rising edge and/or the falling edge at $OV_{DD} \div 2$.
- 3. Slew rate as measured from \pm 0.3 ΔV_{AC} at center of peak to peak voltage at clock input.
- 4. Phase noise is calculated as FFT of TIE jitter.

2.6.2 Spread Spectrum Sources

Spread spectrum clock sources are an increasingly popular way to control electromagnetic interference emissions (EMI) by spreading the emitted noise to a wider spectrum and reducing the peak noise magnitude in order to meet industry and government requirements. These clock sources intentionally add long-term jitter to diffuse the EMI spectral content. The jitter specification given in this table considers short-term (cycle-to-cycle) jitter only. The clock generator's cycle-to-cycle output jitter should meet the device input cycle-to-cycle jitter requirement. Frequency modulation and spread are separate concerns; the device is compatible with spread spectrum sources if the recommendations listed in this table are observed.

Table 14. Spread Spectrum Clock Source Recommendations

For recommended operating conditions, see Table 3.

Parameter	Min	Мах	Unit	Note
Frequency modulation	—	60	kHz	—
Frequency spread	—	1.0	%	1, 2

Note:

1. SYSCLK frequencies that result from frequency spreading and the resulting core frequency must meet the minimum and maximum specifications given in Table 13.

2. Maximum spread spectrum frequency may not result in exceeding any maximum operating frequency of the device.

CAUTION

The processor's minimum and maximum SYSCLK and core/platform/DDR frequencies must not be exceeded regardless of the type of clock source. Therefore, systems in which the processor is operated at its maximum rated core/platform/DDR frequency should avoid violating the stated limits by using down-spreading only.

2.6.3 Real Time Clock Timing

The real time clock timing (RTC) input is sampled by the platform clock. The output of the sampling latch is then used as an input to the counters of the MPIC and the time base unit of the e500mc; there is no need for jitter specification. The minimum pulse width of the RTC signal must be greater than $16 \times$ the period of the platform clock. That is, minimum clock high time is $8 \times$ (platform clock), and minimum clock low time is $8 \times$ (platform clock). There is no minimum RTC frequency; RTC may be grounded if not needed.

2.6.4 dTSEC Gigabit Ethernet Reference Clock Timing

This table provides the dTSEC gigabit reference clocks DC electrical characteristics.

Table 15. EC_GTX_CLK125 DC Timing Specifications

Parameter	Symbol	Min	Мах	Unit	Note
High-level input voltage	V _{IH}	2	—	V	1
Low-level input voltage	V _{IL}	—	0.7	V	1
Input current ($LV_{IN} = 0 V \text{ or } LV_{IN} = LV_{DD}$)	I _{IN}		±40	μÂ	2

Note:

1. The max V_{IH} , and min V_{IL} values are based on the respective min and max LVIN values found in Table 3.

2. The symbol LV_{IN} , in this case, represents the LV_{IN} symbol referenced in Table 3.

This table provides the dTSEC gigabit reference clocks AC timing specifications.

Table 16.	EC	GTX	CLK125	AC Timina	Specifications
		MIX		AC I IIIIIII	opcomoutions

Parameter/Condition	Symbol	Min	Typical	Мах	Unit	Note
EC_GTX_CLK125 frequency	t _{G125}	_	125	_	MHz	_
EC_GTX_CLK125 cycle time	t _{G125}		8		ns	
EC_GTX_CLK125 rise and fall time $LV_{DD} = 2.5 \text{ V}$ $LV_{DD} = 3.3 \text{ V}$	t _{G125R} /t _{G125F}			0.75 1.0	ns	1
EC_GTX_CLK125 duty cycle 1000Base-T for RGMII	t _{G125H} /t _{G125}	47	_	53	%	2
EC_GTX_CLK125 jitter	—	—	_	± 150	ps	2

Note:

1. Rise and fall times for EC_GTX_CLK125 are measured from 20% to 80% (rise time) and 80% to 20% (fall time) of LV_{DD}.

EC_GTX_CLK125 is used to generate the GTX clock for the dTSEC transmitter with 2% degradation. EC_GTX_CLK125 duty cycle can be loosened from 47%/53% as long as the PHY device can tolerate the duty cycle generated by the dTSEC GTX_CLK. See Section 2.12.2.2, "RGMII AC Timing Specifications," for duty cycle for 10Base-T and 100Base-T reference clock.

2.6.5 Other Input Clocks

A description of the overall clocking of this device is available in the chip reference manual in the form of a clock subsystem block diagram. For information on the input clock requirements of functional blocks sourced external of the device, such as SerDes, Ethernet Management, eSDHC, Local Bus, see the specific interface section.

This figure shows the DDR3 and DDR3L SDRAM interface output timing for the MCK to MDQS skew measurement (t_{DDKHMH}).

Figure 10. t_{DDKHMH} Timing Diagram

This figure shows the DDR3 and DDR3L SDRAM output timing diagram.

Figure 11. DDR3 and DDR3L Output Timing Diagram

This figure provides the AC test load for the DDR3 and DDR3L controller bus.

Figure 12. DDR3 and DDR3L Controller Bus AC Test Load

2.9.2.3 DDR3 and DDR3L SDRAM Differential Timing Specifications

This section describes the DC and AC differential timing specifications for the DDR3 and DDR3L SDRAM controller interface. This figure shows the differential timing specification.

Figure 13. DDR3 and DDR3L SDRAM Differential Timing Specifications

NOTE

VTR specifies the true input signal (such as MCK or MDQS) and VCP is the complementary input signal (such as \overline{MCK} or \overline{MDQS}).

This table provides the DDR3 differential specifications for the differential signals MDQS/MDQS and MCK/MCK.

Table 28. DDR3 SDRAM Differential Electrical Characteristics¹

Parameter	Symbol	Min	Мах	Unit	Note
Input AC Differential Cross-Point Voltage	VIXAC	$0.5\times GV_{DD}-0.150$	$0.5 imes GV_{DD} + 0.150$	V	_
Output AC Differential Cross-Point Voltage	V _{OXAC}	$0.5\times GV_{DD}-0.115$	$0.5 imes GV_{DD} + 0.115$	V	

Note:

1. I/O drivers are calibrated before making measurements.

This table provides the DDR3L differential specifications for the differential signals MDQS/MDQS and MCK/MCK.

Table 29. DDR3L SDRAM Differential Electrical Characteristics¹

Parameter	Symbol	Min	Мах	Unit	Note
Input AC differential cross-point voltage	V _{IXAC}	$0.5\times GV_{DD}-0.135$	$0.5 imes GV_{DD} + 0.135$	V	
Output AC differential cross-point voltage	V _{OXAC}	$0.5\times GV_{DD}-0.105$	$0.5 imes GV_{DD} + 0.105$	V	

Note:

1. I/O drivers are calibrated before making measurements.

2.11.2 DUART AC Electrical Specifications

This table provides the AC timing parameters for the DUART interface.

Table 35. DUART AC Timing Specifications

For recommended operating conditions, see Table 3.

Parameter	Value	Unit	Note
Minimum baud rate	f _{PLAT} /(2 × 1,048,576)	baud	1
Maximum baud rate	$f_{PLAT}/(2 \times 16)$	baud	1, 2
Oversample rate	16	_	3

Note:

- 1. f_{PLAT} refers to the internal platform clock.
- 2. The actual attainable baud rate is limited by the latency of interrupt processing.
- 3. The middle of a start bit is detected as the eighth sampled 0 after the 1-to-0 transition of the start bit. Subsequent bit values are sampled every 16th sample.

2.12 Ethernet: Data path Three-Speed Ethernet (dTSEC), Management Interface, IEEE Std 1588

This section provides the AC and DC electrical characteristics for the data path three-speed Ethernet controller, the Ethernet Management Interface, and the IEEE Std 1588 interface.

2.12.1 SGMII Timing Specifications

See Section 2.20.8, "SGMII Interface."

2.12.2 RGMII Timing Specifications

This section discusses the electrical characteristics for the MII and RGMII interfaces.

2.12.2.1 RGMII DC Electrical Characteristics

This table shows the RGMII DC electrical characteristics when operating at $LV_{DD} = 2.5$ V supply.

Table 36. RGMII DC Electrical Characteristics (LV_{DD} = 2.5 V)

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Max	Unit	Note
Input high voltage	V _{IH}	1.70	—	V	1
Input low voltage	V _{IL}		0.70	V	1
Input current ($LV_{IN} = 0 V \text{ or } LV_{IN} = LV_{DD}$)	I _{IH}	—	±40	μA	2
Output high voltage (LV _{DD} = min, $I_{OH} = -1.0 \text{ mA}$)	V _{OH}	2.00	—	V	
Output low voltage (LV _{DD} = min, I _{OL} = 1.0 mA)	V _{OL}	—	0.40	V	

Note:

1. The min V_{IL} and max V_{IH} values are based on the respective min and max LV_{IN} values found in Table 3.

2. The symbol V_{IN}, in this case, represents the LV_{IN} symbols referenced in Table 2 and Table 3.

2.14 Enhanced Local Bus Interface

This section describes the DC and AC electrical specifications for the enhanced local bus interface.

2.14.1 Enhanced Local Bus DC Electrical Characteristics

This table provides the DC electrical characteristics for the enhanced local bus interface operating at $BV_{DD} = 3.3$ V.

Table 46. Enhanced Local Bus DC Electrical Characteristics (BV_{DD} = 3.3 V)

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Max	Unit	Note
Input high voltage	V _{IH}	2	_	V	1
Input low voltage	V _{IL}	—	0.8	V	1
Input current ($V_{IN} = 0$ V or $V_{IN} = BV_{DD}$)	I _{IN}	—	±40	μA	2
Output high voltage (BV _{DD} = min, I _{OH} = -2 mA)	V _{OH}	2.4	—	V	_
Output low voltage (BV _{DD} = min, I _{OL} = 2 mA)	V _{OL}	_	0.4	V	_

Note:

1. The min V_{IL} and max V_{IH} values are based on the respective min and max BV_{IN} values found in Table 3.

2. The symbol V_{IN}, in this case, represents the BV_{IN} symbol referenced in Section 2.1.2, "Recommended Operating Conditions."

This table provides the DC electrical characteristics for the enhanced local bus interface operating at $BV_{DD} = 2.5$ V.

Table 47. Enhanced Local Bus DC Electrical Characteristics (BV_{DD} = 2.5 V)

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Max	Unit	Note
Input high voltage	V _{IH}	1.7		V	1
Input low voltage	V _{IL}	_	0.7	V	1
Input current ($V_{IN} = 0 V \text{ or } V_{IN} = BV_{DD}$)	I _{IN}	_	±40	μA	2
Output high voltage (BV _{DD} = min, I _{OH} = -1 mA)	V _{OH}	2.0	—	V	_
Output low voltage (BV _{DD} = min, I _{OL} = 1 mA)	V _{OL}	_	0.4	V	_

Note:

1. The min $V_{IL} \text{and} \max V_{IH}$ values are based on the respective min and max BV_{IN} values found in Table 3

2. The symbol V_{IN}, in this case, represents the BV_{IN} symbol referenced in Section 2.1.2, "Recommended Operating Conditions."

This figure shows how the AC timing diagram applies to GPCM. The same principle applies to UPM and FCM.

¹ t_{addr} is programmable and determined by LCRR[EADC] and ORx[EAD].

 2 t_{arcs} , t_{awcs} , t_{aoe} , t_{rc} , t_{oen} , t_{awe} , t_{wc} , t_{wen} are determined by ORx. See the chip reference manual.

Figure 22. GPCM Output Timing Diagram

2.15 Enhanced Secure Digital Host Controller (eSDHC)

This section describes the DC and AC electrical specifications for the eSDHC interface.

2.15.1 eSDHC DC Electrical Characteristics

This table provides the eSDHC electrical characteristics.

Table 50. eSDHC Interface DC Electrical Characteristics

For recommended operating conditions, see Table 3.

Characteristic	Symbol	Condition	Min	Max	Unit	Note
Input high voltage	V _{IH}		$0.625 \times CV_{DD}$	_	V	1
Input low voltage	V _{IL}	_	—	$0.25\times CV_{DD}$	V	1
Input/output leakage current	I _{IN} /I _{OZ}		-50	50	μA	
Output high voltage	V _{OH}	I _{OH} = −100 μA at CV _{DD} min	$0.75 \times CV_{DD}$	_	V	

Figure 37. Differential Measurement Points for Rise and Fall Time

2.20.2.4 Spread Spectrum Clock

SD_REF_CLK1/SD_REF_CLK1 were designed to work with a spread spectrum clock (+0 to 0.5% spreading at 30–33 kHz rate is allowed), assuming both ends have same reference clock. For better results, a source without significant unintended modulation must be used.

SD_REF_CLK2/SD_REF_CLK2 were designed to work with a spread spectrum clock (+0 to 0.5% spreading at 30–33 kHz rate is allowed), assuming both ends have same reference clock and the industry protocol specifications supports it. For better results, a source without significant unintended modulation must be used.

2.20.3 SerDes Transmitter and Receiver Reference Circuits

This figure shows the reference circuits for SerDes data lane's transmitter and receiver.

This table defines the DC specifications for the PCI Express 2.0 (2.5 GT/s) differential input at all receivers. The parameters are specified at the component pins.

Table 64. PCI Express 2.0 (2.5 GT/s) Differential Receiver (Rx) Input DC Specifications (XV_{DD} = 1.5 V or 1.8 V)

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Тур	Max	Unit	Note
Differential input peak-to-peak voltage	V _{RX-DIFFp-p}	120	—	1200	mV	$V_{RX-DIFFp-p} = 2 \times V_{RX-D+} - V_{RX-D-} $ See Note 1.
DC differential input impedance	Z _{RX-DIFF-DC}	80	100	120	Ω	Rx DC differential mode impedance. See Note 2
DC input impedance	Z _{RX-DC}	40	50	60	Ω	Required Rx D+ as well as D– DC Impedance (50 ±20% tolerance). See Notes 1 and 2.
Powered down DC input impedance	Z _{RX-HIGH-IMP-DC}	50 k	_		Ω	Required Rx D+ as well as D– DC Impedance when the receiver terminations do not have power. See Note 3.
Electrical idle detect threshold	V _{RX-IDLE-DET-DIFFp-p}	65	_	175	mV	$V_{RX-IDLE-DET-DIFFp-p} = 2 \times IV_{RX-D+} - V_{RX-D}I$ Measured at the package pins of the receiver

Note:

- 1. Measured at the package pins with a test load of 50Ω to GND on each pin.
- 2. Impedance during all LTSSM states. When transitioning from a fundamental reset to detect (the initial state of the LTSSM) there is a 5 ms transition time before receiver termination values must be met on all unconfigured lanes of a port.
- 3. The Rx DC common mode impedance that exists when no power is present or fundamental reset is asserted. This helps ensure that the receiver detect circuit does not falsely assume a receiver is powered on when it is not. This term must be measured at 300 mV above the Rx ground.

This table defines the DC specifications for the PCI Express 2.0 (5 GT/s) differential input at all receivers. The parameters are specified at the component pins.

Table 65. PCI Express 2.0 (5 GT/s) Differential Receiver (Rx) Input DC Specifications (XV_{DD} = 1.5 V or 1.8 V)

Symbol Unit Note Parameter Min Typ Max $V_{RX-DIFFp-p} = 2 \times |V_{RX-D+} - V_{RX-D-}|$ See Note 1. 1200 V Differential input 120 V_{RX-DIFFp-p} peak-to-peak voltage Rx DC Differential mode impedance. See DC differential input 100 120 80 Ω Z_{RX-DIFF-DC} impedance Note 2 DC input impedance 40 50 60 0 Required Rx D+ as well as D- DC Impedance Z_{RX-DC} $(50 \pm 20\% \text{ tolerance}).$ See Notes 1 and 2. Powered down DC Required Rx D+ as well as D- DC Impedance Z_{RX-HIGH-IMP-DC} 50 kΩ input impedance when the Receiver terminations do not have power. See Note 3.

For recommended operating conditions, see Table 3.

Table 82. SATA Reference Clock Input Requirements (continued)

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Тур	Max	Unit	Note
SD_REF_CLK/SD_REF_CLK cycle-to-cycle clock jitter (period jitter)	t _{CLK_CJ}	_	_	100	ps	2
SD_REF_CLK/SD_REF_CLK total reference clock jitter, phase jitter (peak-peak)	t _{CLK_PJ}	-50		+50	ps	2, 3, 4

Note:

1. Caution: Only 100, 125 MHz have been tested. In-between values do not work correctly with the rest of the system.

2. At RefClk input

3. In a frequency band from 150 kHz to 15 MHz at BER of 10^{-12}

4. Total peak-to-peak deterministic jitter must be less than or equal to 50 ps.

This figure shows the reference clock timing waveform.

Figure 43. Reference Clock Timing Waveform

2.20.7.3 AC Transmitter Output Characteristics

This table provides the differential transmitter output AC characteristics for the SATA interface at Gen1i or 1.5 Gbits/s transmission. The AC timing specifications do not include RefClk jitter.

Table 83. Gen1i/1.5 G Transmitter (Tx) AC Specifications

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Тур	Max	Unit	Note
Channel speed	t _{CH_SPEED}	—	1.5	_	Gbps	_
Unit Interval	Τ _{UI}	666.4333	666.6667	670.2333	ps	_
Total jitter data-data 5 UI	U _{SATA_TXTJ5UI}	—	—	0.355	UI p-p	1
Total jitter, data-data 250 UI	U _{SATA_TXTJ250UI}	—	—	0.47	UI p-p	1
Deterministic jitter, data-data 5 UI	U _{SATA_TXDJ5UI}	—	—	0.175	UI p-p	1
Deterministic jitter, data-data 250 UI	U _{SATA_TXDJ250UI}		_	0.22	UI p-p	1

Figure 45. SGMII Transmitter DC Measurement Circuit

This table defines the SGMII 2.5x transmitter DC electrical characteristics for 3.125 GBaud.

Table 88. SGMII 2.5x Transmitter DC Electrical Characteristics (XV_{DD} = 1.5 V or 1.8 V)

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Typical	Мах	Unit	Note
Output voltage	V _O	-0.40		2.30	V	1
Differential output voltage	V _{DIFFPP}	800	—	1600	mV p-p	—

Note:

1. Absolute output voltage limit

2.20.8.1.2 SGMII DC Receiver Electrical Characteristics

This table lists the SGMII DC receiver electrical characteristics for 1.25 GBaud. Source synchronous clocking is not supported. Clock is recovered from the data.

Table 89. SGMII DC Receiver Electrical Characteristics (XV_{DD} = 1.5 V or 1.8 V)

For recommended operating conditions, see Table 3.

Parameter		Symbol	Min	Тур	Мах	Unit	Note
DC Input voltage range				N/A			1
Input differential voltage	REIDL_CTL = 001xx	V _{RX_DIFFp-p}	100		1200	mV	2, 4
	REIDL_CTL = 100xx		175	—			
Loss of signal threshold	REIDL_CTL = 001xx	V _{LOS}	30	—	100	mV	3, 4
	REIDL_CTL = 100xx		65		175		
Receiver differential input impedance		Z _{RX_DIFF}	80	—	120	Ω	

Hardware Design Considerations

This table describes the clocking options that may be applied to each FM. The clock selection is determined by the binary value of the RCW clocking configuration fields FM_CLK_SEL.

Binary Value of FM_CLK_SEL	FM Frequency
0b0	Platform Clock Frequency /2
0b1	Core Cluster 2 Frequency /2 ¹

Table 104. Frame Manager Clock Select

Notes:

¹ For asynchronous mode, max frequency, see Table 93.

3.2 Supply Power Default Setting

The device is capable of supporting multiple power supply levels on its I/O supplies. The I/O voltage select inputs, shown in Table 105, properly configure the receivers and drivers of the I/Os associated with the BVDD, CVDD, and LVDD power planes, respectively.

WARNING

Incorrect voltage select settings can lead to irreversible device damage.

3.3 Power Supply Design

This section discusses the power supply design.

3.3.1 PLL Power Supply Filtering

Each of the PLLs described in Section 3.1, "System Clocking," is provided with power through independent power supply pins $(AV_{DD_PLAT}, AV_{DD_CCn}, AV_{DD_DDR}, and AV_{DD_SRDSn})$. $AV_{DD_PLAT}, AV_{DD_CCn}$ and AV_{DD_DDR} voltages must be derived directly from the $V_{DD_CA_CB_PL}$ source through a low frequency filter scheme. AV_{DD_SRDSn} voltages must be derived directly from the SV_{DD} source through a low frequency filter scheme.

The recommended solution for PLL filtering is to provide independent filter circuits per PLL power supply, as illustrated in Figure 50, one for each of the AV_{DD} pins. By providing independent filters to each PLL the opportunity to cause noise injection from one PLL to the other is reduced.

This circuit is intended to filter noise in the PLL's resonant frequency range from a 500-kHz to 10-MHz range.

Each circuit must be placed as close as possible to the specific AV_{DD} pin being supplied to minimize noise coupled from nearby circuits. It must be possible to route directly from the capacitors to the AV_{DD} pin, which is on the periphery of the footprint, without the inductance of vias.

Figure 50 shows the PLL power supply filter circuit.

Where:

$$\begin{split} R &= 5 \ \Omega \pm 5\% \\ C1 &= 10 \mu F \pm 10\%, \ 0603, \ X5R, \ with \ ESL \leq 0.5 \ nH \\ C2 &= 1.0 \ \mu F \pm 10\%, \ 0402, \ X5R, \ with \ ESL \leq 0.5 \ nH \end{split}$$

NOTE

A higher capacitance value for C2 may be used to improve the filter as long as the other C2 parameters do not change (0402 body, X5R, ESL \leq 0.5 nH).

Voltage for AV_{DD} is defined at the PLL supply filter and not the pin of AV_{DD}.

The AV_{DD_SRDSn} signals provides power for the analog portions of the SerDes PLL. To ensure stability of the internal clock, the power supplied to the PLL is filtered using a circuit similar to the one shown in following Figure 51. For maximum effectiveness, the filter circuit is placed as closely as possible to the AV_{DD_SRDSn} balls to ensure it filters out as much noise as possible. The ground connection must be near the AV_{DD_SRDSn} balls. The 0.003-µF capacitor is closest to the balls, followed by two 2.2-µF capacitors, and finally the 1- Ω resistor to the board supply plane. The capacitors are connected from AV_{DD_SRDSn}

Revision History

6.2.1 Part Marking

Parts are marked as in the example shown in this figure.

Notes:

P2040NSE1MMB is the orderable part number. See Table 107 for details.

ATWLYYWW is the test traceability code.

MMMMMM is the mask number.

CCCCC is the country code.

YWWLAZ is the assembly traceability code.

Figure 64. Part Marking for FC-PBGA Device

7 Revision History

This table provides a revision history for this document.

Table 108. Revision History

Rev. Number	Date	Description
2	02/2013	 In Table 7, "P2040 I/O Power Supply Estimated Values," updated the USB power supply with USB_Vdd_3P3 and updated the typical value with "0.003" in the Others (Reset, System Clock, JTAG & Misc.) row. In Table 8, "Device AVDD Power Dissipation," removed V_{DD_LP} from table. Added Table 10, "VDD_LP Power Dissipation." In Table 53, "MPIC Input AC Timing Specifications," added Trust inputs AC timing and footnote 2. In Table 93, "Processor Clocking Specifications," updated footnote 8 with Rev 1.1 silicon. In Table 107, "Part Numbering Nomenclature," added "C" in the Die Revision collumn. In Section 6.2, "Orderable Part Numbers Addressed by this Document," added the device part numbers for Rev 2.0 silicon.