

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

-XF

Obsolete
PowerPC e500mc
4 Core, 32-Bit
1.3GHz
-
DDR3, DDR3L
No
-
10/100/1000Mbps (5), 10Gbps (1)
SATA 3Gbps (2)
USB 2.0 + PHY (2)
1.0V, 1.35V, 1.5V, 1.8V, 2.5V, 3.3V
0°C ~ 105°C (TA)
-
780-BBGA, FCBGA
780-FCPBGA (23x23)
https://www.e-xfl.com/pro/item?MUrl=&PartUrl=p2041nsn1nnb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Assignments and Reset States

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
A	(SD_ RX [04]	SD RX [04]	SV _{DD} [17]	SGND [17]	SV _{DD} [16]	SD_ <u>RX</u> [05]	SGND [16]	SD_ RX [06]	SV _{DD} [15]	SD_ <u>RX</u> [07]	SGND [15]	SD_ RX [10]	SV _{DD} [14]
В	SGND [12]	SV _{DD} [11]	SV _{DD} [10]	SD_ TX [04]	SD_ TX [04]	SGND [11]	SD_ RX [05]	SV _{DD} [09]	SD_ RX [06]	SGND [10]	SD_ RX [07]	SV _{DD} [14]	SD_ RX [10]	SGND [09]
С	AVDD_ SRDS1	AGND_ SRDS2	SGND [06]	XV _{DD} [12]	XGND [12]	NC [35]	XGND [11]	SD_ TX [05]	XV _{DD} [11]	SD_ TX [06]	XGND [10]	SD_ TX [07]	XV _{DD} [10]	SD_ TX [10]
D	SV _{DD} [04]	SGND [05]	SD_ REF_ CLK1	SD_ REF CLK1	NC [33]	NC [32]	XV _{DD} [08]	SD_ TX [05]	XGND [07]	SD_ <u>TX</u> [06]	XVDD [07]	SD_ TX [07]	XGND [06]	SD_ <u>TX</u> [10]
E	SD_ RX [03]	SD_ RX [03]	SGND [03]	SV _{DD} [03]	RSRV	RSRV	NC [30]	NC [29]	NC [28]	NC [27]	NC [26]	NC [25]	NC [24]	NC [23]
F	SGND [02]	SV _{DD} [02]	SD_ TX [03]	SD_ TX [03]	XV _{DD} [03]	XGND [04]	SD_ IMP_ CAL_RX	NC [17]	NC [16]	NC [15]	NC [14]	NC [13]	NC [12]	RSRV
G	SD_ RX [02]	SD RX [02]	XGND [02]	XV _{DD} [02]	SD_ TX [02]	SD_ TX [02]	NC [07]	SEN SEGND_ CA_PL	V _{DD} _ CA_PL [78]	GND [159]	V _{DD_} CA_PL [77]	GND [158]	V _{DD} _ CA_PL [76]	GND [157]
Η	SV _{DD} [01]	SGND [01]	GND [152]	GND [151]	XGND [01]	XV _{DD} [01]	NC [06]	SEN SEVDD_ CA_PL	V _{DD} _ CA_PL [72]	GND [150]	V _{DD} _ CA_PL [71]	GND [149]	V _{DD_} CA_PL [70]	GND [148]
J	LGPL [5]	GND [143]	LGPL [3]	LAD [01]	LAD [05]	LAD [00]	BV _{DD} [7]	GND [142]	V _{DD} _ CA_PL [66]	GND [141]	V _{DD} _ CA_PL [65]	GND [140]	V _{DD} _ CA_PL [64]	GND [139]
K	LGPL [1]	LAD [02]	LA [17]	LAD [03]	GND [135]	LAD [16]	BV _{DD} [6]	GND [134]	V _{DD} _ CA_PL [60]	GND [133]	V _{DD} _ CA_PL [59]	GND [132]	V _{DD} _ CA_PL [58]	GND [131]
L	LAD [04]	LGPL [4]	LDP [0]	BV _{DD} [5]	LGPL [0]	LGPL [2]	BV _{DD} [4]	GND [127]	V _{DD} _ CA_PL [54]	GND [126]	V _{DD} _ CA_PL [53]	GND [125]	V _{DD} _ CA_PL [52]	GND [124]
М	LDP [1]	GND [121]	LWE [1]	LCLK [0]	GND [120]	LWE [0]	BV _{DD} [3]	GND [119]	V _{DD} _ CA_PL [48]	GND [118]	V _{DD} _ CA_PL [47]	GND [117]	V _{DD} _ CA_PL [46]	GND [116]
N	LAD [09]	LAD [07]	LAD [08]	BV _{DD} [2]	LAD [06]	LALE	LCLK [1]	GND [113]	V _{DD} CA_PL [42]	GND [112]	V _{DD} CA_PL [41]	GND [111]	V _{DD} _ CA_PL [40]	GND [110]
P	LBCTL	LA [20]	LA [19]	LAD [10]	GND [105]	LA [18]	LCS [1]	GND [104]	V _{DD} _ CA_PL [36]	GND [103]	V _{DD} _ CA_PL [35]	GND [102]	V _{DD} _ CA_PL [34]	GND [101]

Figure 3. 780 BGA Ball Map Diagram (Detail View A)

Table	1.	Pin	List	bv	Bus ((continued)
			_	~ ,		

Signal	Signal Description	Package Pin Number	Pin Type	Power Supply	Note
МСКО	Clock	AD14	0	GV _{DD}	—
MCK1	Clock	AE13	0	GV _{DD}	—
MCK2	Clock	AG13	0	GV _{DD}	
МСКЗ	Clock	AG14	0	GV_{DD}	
МСКО	Clock Complements	AE14	0	GV _{DD}	
MCK1	Clock Complements	AD13	0	GV _{DD}	
MCK2	Clock Complements	AH13	0	GV _{DD}	
МСКЗ	Clock Complements	AH14	0	GV _{DD}	
MODT0	On Die Termination	AC19	0	GV_{DD}	
MODT1	On Die Termination	AD22	0	GV _{DD}	
MODT2	On Die Termination	AG18	0	GV _{DD}	
MODT3	On Die Termination	AH21	0	GV _{DD}	
MDIC0	Driver Impedance Calibration	AG12	I/O	GV _{DD}	16
MDIC1	Driver Impedance Calibration	AE12	I/O	GV _{DD}	16
	Local Bus Controller Interface				
LAD00	Muxed Data/Address	J6	I/O	BV _{DD}	3
LAD01	Muxed Data/Address	J4	I/O	BV_DD	3
LAD02	Muxed Data/Address	K2	I/O	BV_DD	3
LAD03	Muxed Data/Address	K4	I/O	BV_DD	3
LAD04	Muxed Data/Address	L1	I/O	BV_DD	3
LAD05	Muxed Data/Address	J5	I/O	BV_DD	3
LAD06	Muxed Data/Address	N5	I/O	BV_DD	3
LAD07	Muxed Data/Address	N2	I/O	BV_DD	3
LAD08	Muxed Data/Address	N3	I/O	BV_DD	3
LAD09	Muxed Data/Address	N1	I/O	BV_DD	3
LAD10	Muxed Data/Address	P4	I/O	BV_DD	3
LAD11	Muxed Data/Address	R7	I/O	BV_DD	3
LAD12	Muxed Data/Address	T4	I/O	BV_DD	3
LAD13	Muxed Data/Address	U2	I/O	BV_DD	3
LAD14	Muxed Data/Address	Т6	I/O	BV_DD	3
LAD15	Muxed Data/Address	T7	I/O	BV _{DD}	3
LA16	Address	K6	I/O	BV _{DD}	31
LA17	Address	К3	I/O	BV _{DD}	31
LA18	Address	P6	I/O	BV _{DD}	31

Table 1. Pin List by Bus (continued)

Signal	Signal Description	Package Pin Number	Pin Type	Power Supply	Note
SD_RX04	Receive Data (positive)	A2	I	XV_{DD}	—
SD_RX03	Receive Data (positive)	E1	I	XV_{DD}	—
SD_RX02	Receive Data (positive)	G1	I	XV_{DD}	—
SD_RX13	Receive Data (negative)	A21	I	XV_{DD}	—
SD_RX12	Receive Data (negative)	A19	I	XV_{DD}	—
SD_RX11	Receive Data (negative)	A15	I	XV_{DD}	—
SD_RX10	Receive Data (negative)	B13	I	XV_{DD}	—
SD_RX07	Receive Data (negative)	A11	I	XV_{DD}	—
SD_RX06	Receive Data (negative)	A9	I	XV_{DD}	—
SD_RX05	Receive Data (negative)	A7	I	XV_{DD}	—
SD_RX04	Receive Data (negative)	A3	I	XV_{DD}	—
SD_RX03	Receive Data (negative)	E2	I	XV_{DD}	—
SD_RX02	Receive Data (negative)	G2	I	XV_{DD}	—
SD_REF_CLK1	SerDes Bank 1 PLL Reference Clock	D3	I	XV_{DD}	—
SD_REF_CLK1	SerDes Bank 1 PLL Reference Clock Complement	D4	I	XV_{DD}	
SD_REF_CLK2	SerDes Bank 2 PLL Reference Clock	E17	I	XV_{DD}	—
SD_REF_CLK2	SerDes Bank 2 PLL Reference Clock Complement	F17	I	XV_{DD}	
	General-Purpose Input/Output				
GPIO00/SPI_CS0/SDHC_DATA4	General Purpose Input/Output	H26	I/O	CV_{DD}	—
GPIO01/SPI_CS1/SDHC_DATA5	General Purpose Input/Output	H23	I/O	CV_{DD}	—
GPIO02/SPI_CS2/SDHC_DATA6	General Purpose Input/Output	H27	I/O	CV_{DD}	—
GPIO03SPI_CS3/SDHC_DATA7	General Purpose Input/Output	H24	I/O	CV_{DD}	—
GPIO08/UART1_SOUT	General Purpose Input/Output	R23	I/O	OV_{DD}	—
GPIO09/UART2_SOUT	General Purpose Input/Output	P26	I/O	OV_{DD}	—
GPIO10/UART1_SIN	General Purpose Input/Output	R26	I/O	OV_{DD}	—
GPIO11/UART2_SIN	General Purpose Input/Output	P27	I/O	OV _{DD}	—
GPIO12/UART1_RTS/UART3_SOUT	General Purpose Input/Output	P24	I/O	OV _{DD}	
GPIO13/UART2_RTS/UART4_SOUT	General Purpose Input/Output	P25	I/O	OV _{DD}	_
GPIO14/UART1_CTS/UART3_SIN	General Purpose Input/Output	R25	I/O	OV _{DD}	—
GPIO15/UART2_CTS/UART4_SIN	General Purpose Input/Output	P23	I/O	OV _{DD}	—
GPIO16/IIC3_SCL/M1DVAL/LB_DVAL/ DMA1_DACK0/SDHC_CD	General Purpose Input/Output	AB23	I/O	OV _{DD}	

Table 1. Pin List by Bus (continued)

Signal	Signal Description	Package Pin Number	Pin Type	Power Supply	Note
GND064	Ground	V16	—	—	—
GND063	Ground	V17	—	—	_
GND062	Ground	V19	—	—	_
GND061	Ground	V21	—	—	_
GND060	Ground	V23	—	—	_
GND059	Ground	V27	—	—	_
GND058	Ground	W2	—		—
GND057	Ground	W5	—		_
GND056	Ground	W8	—	—	—
GND055	Ground	W10	—	—	—
GND054	Ground	W12	—		_
GND053	Ground	W14	—	—	—
GND052	Ground	W17	—	—	—
GND051	Ground	W19	—		_
GND050	Ground	W21	—		—
GND049	Ground	W23	—		—
GND048	Ground	Y6	—		—
GND047	Ground	Y7	—	—	—
GND046	Ground	Y8	—		—
GND045	Ground	Y10	—		—
GND044	Ground	Y12	—		—
GND043	Ground	Y14	—		—
GND042	Ground	Y16	—		—
GND041	Ground	Y17	—		—
GND040	Ground	Y19	—		—
GND039	Ground	Y22	—		—
GND038	Ground	AA5	—		—
GND037	Ground	AA7	—	_	—
GND036	Ground	AA17	—		—
GND035	Ground	AA19	—	—	—
GND034	Ground	AA24	—	—	—
GND033	Ground	AA27	—	—	
GND032	Ground	AB2	—		—
GND031	Ground	AB9	—	—	

Tahla	1	Din	l iet	hv	Rue /	(continued)
lable	۰.	гш	LISU	Dy	DUS ((continued)

Signal	Signal Description	Package Pin Number	Pin Type	Power Supply	Note
GND030	Ground	AB10	—		—
GND029	Ground	AB11	—		—
GND028	Ground	AB12	_		—
GND027	Ground	AB15	—		—
GND026	Ground	AB22	—		—
GND025	Ground	AC5	—	—	—
GND024	Ground	AC17	—	—	—
GND023	Ground	AC20	—		—
GND022	Ground	AC26	—	—	—
GND021	Ground	AD12	—		—
GND020	Ground	AD15	—	_	_
GND019	Ground	AE2	—	—	—
GND018	Ground	AE5	—	—	—
GND017	Ground	AE8	_		—
GND016	Ground	AE11	—	—	—
GND015	Ground	AE15	—	—	—
GND014	Ground	AE18	—		—
GND013	Ground	AE21	—		—
GND012	Ground	AE24	_		—
GND011	Ground	AE27	—		—
GND010	Ground	AF13	_		—
GND009	Ground	AF14	_		—
GND008	Ground	AG4	—		—
GND007	Ground	AG7	_		—
GND006	Ground	AG10	_		—
GND005	Ground	AG19	—		—
GND004	Ground	AG22	—	—	—
GND003	Ground	AG25	—		—
GND002	Ground	AH12	_		—
GND001	Ground	AH15	—		—
XGND12	SerDes Transceiver GND	C5	—		—
XGND11	SerDes Transceiver GND	C7	—	—	—
XGND10	SerDes Transceiver GND	C11	—		—
XGND09	SerDes Transceiver GND	C15	—		—

Table 1. Pin List by Bus (continued)

Signal	Signal Description	Package Pin Number	Pin Type	Power Supply	Note
Reserve	—	AB20	—	GND	19

Note:

- 1. Recommend that a weak pull-up resistor (2–10 k Ω) be placed on this pin to OV_{DD}.
- 2. This pin is an open drain signal.
- 3. This pin is a reset configuration pin. It has a weak internal pull-up P-FET which is enabled only when the processor is in the reset state. This pull-up is designed such that it can be overpowered by an external 4.7-kΩ resistor. However, if the signal is intended to be high after reset, and if there is any device on the net that might pull down the value of the net at reset, then a pull up or active driver is needed.
- 4. Functionally, this pin is an output, but structurally it is an I/O because it either samples configuration input during reset or it has other manufacturing test functions. This pin is therefore described as an I/O for boundary scan.
- 5. Recommend that a weak pull-up resistor (2–10 k Ω) be placed on this pin to BV_{DD} in order to ensure no random chip select assertion due to possible noise, etc.
- 6. This output is actively driven during reset rather than being three-stated during reset.
- 7. These JTAG pins have weak internal pull-up P-FETs that are always enabled.
- 8. These pins are connected to the corresponding power and ground nets internally. They may be connected as a differential pair to be used by the voltage regulators with remote sense function. For Rev1.1 silicon, the better solution is to use the far sense pins relative to the power supply location, the other pair can be left as no connected. The DC power simulation should be done during the board layout process to approve the selected solution.
- 9. These pins may be connected to a thermal diode monitoring device such as the ADT7461A. If a thermal diode monitoring device is not connected, these pins may be connected to test point or left as a no connect.
- 10. If this pin is connected to a device that pulls down during reset, an external pull-up is required to drive this pin to a safe state during reset.
- 11.Do not connect.
- 12. These are test signals for factory use only and must be pulled low (1 K Ω -2 k Ω) to ground (GND) for normal machine operation.
- 13. Independent supplies derived from board V_{DD_CA_CB_PL} (core clusters, platform, DDR) or SV_{DD} (SerDes).
- 14. Recommend that a pull-up resistor (1 K Ω) be placed on this pin to OV_{DD} if I²C interface is used.
- 15. This pin requires an external 1 KΩ pull-down resistor to prevent PHY from seeing a valid Transmit Enable before it is actively driven.
- 16. For DDR3 and DDR3L, $Dn_MDIC[0]$ is grounded through an 20- Ω (full-strength mode) or 40.2- Ω (half-strength mode) precision 1% resistor and $Dn_MDIC[1]$ is connected to GV_{DD} through an 20- Ω (full-strength mode) or 40.2- Ω (half-strength mode) precision 1% resistor. These pins are used for automatic calibration of the DDR3 and DDR3L IOs.
- 17. These pins must be pulled up to 1.2 V through a 180 $\Omega \pm 1\%$ resistor for EM2_MDC and a 330 $\Omega \pm 1\%$ resistor for EM2_MDIO. 18. Pin has a weak internal pull-up.
- 19. These pins must be pulled to ground (GND).
- 20. Ethernet MII Management Interface 2 pins function as open drain I/Os. The interface shall conform to 1.2 V nominal voltage levels. LV_{DD} must be powered to use this interface.
- 21. This pin requires a 200- Ω pull-up to XV_{DD}.
- 22. This pin requires a 200- Ω pull-up to SV_{DD}.
- 23. This GPIO pin is on LV_{DD} power plane, not OV_{DD}.
- 24. Functionally, this pin is an I/O, but may act as an output only or an input only depending on the pin mux configuration defined by the RCW.
- 25. See Section 3.6, "Connection Recommendations," for additional details on this signal.

Power Mode	Core Freq (MHz)	Plat Freq (MHz)	DDR Data Rate (MT/s)	FM Freq (MHz)	V _{DD_CA_CB_PL} (V)	Junction Temp (°C)	Core & Platform Power ¹ (W)	V _{DD_CA_CB_PL} Power (W)	Core & Platform Power ¹ (W)	V _{DD_CA_CB_PL} Power (W)	SV _{DD} Power (W)	Note
			(,0)				Qua	ad Cores	Dual Cores			
Typical	667	534	1067	467	1.0	65	8.7	—	8.2	_	_	2, 3
Thermal						105	12.0	—	11.8	_	_	5, 7
Maximum							12.3	11.1	11.9	10.6	1.4	4, 6, 7

Table 6. Device Power Dissipation (continued)

Note:

- 1. Combined power of V_{DD_CA_CB_PL}, SVDD with the DDR controller and all SerDes banks active. Does not include I/O power.
- 2. Typical power assumes Dhrystone running with activity factor of 70% on all four cores, 80% on two cores and executing DMA on the platform with 90% activity factor.
- 3. Typical power based on nominal processed device.
- 4. Maximum power assumes Dhrystone running with activity factor at 100% on all cores and executing DMA on the platform with 100% activity factor.
- 5. Thermal power assumes Dhrystone running with activity factor of 70% on all four cores, 80% on two cores and executing DMA on the platform with 90% activity factor.
- 6. Maximum power provided for power supply design sizing.
- 7. Thermal and maximum power are based on worst case processed device.

This table shows the all I/O power supply estimated values.

Table 7. P2040 I/O Power Supply Estimated Values

Interface	Parameter	Symbol	Typical	Maximum	Unit	Notes
DDR3 64 Bits Per Controller	667 MT/s data rate	GVdd (1.5V)	0.705	1.764	W	1,2,5,6
	800 MT/s data rate		0.714	1.785		
	1066 MT/s data rate		0.731	1.827		
	1200 MT/s data rate		0.739	1.848		
	1333 MT/s data rate		0.747	1.869		
HSSI: PCI-e, SGMII, SATA, SRIO, Aurora, Debug, XAUI	x1, 1.25 G-baud	XVdd (1.5V)	0.078	0.087	W	1, 7
	x2, 1.25 G-baud		0.119	0.134		
	x4, 1.25 G-baud		0.202	0.226		
	x8, 1.25 G-baud		0.367	0.411		
	x1, 2.5/3.0/3.125/5.0 G-baud		0.088	0.099		
	x2, 2.5/3.0/3.125/5.0 G-baud		0.139	0.156		
	x4, 2.5/3.0/3.125/5.0 G-baud		0.241	0.270		
	x8, 2.5/3.0/3.125/5.0 G-baud		0.447	0.501		
dTSEC Per Controller	RGMII	LVdd (2.5V)	0.075	0.100	W	1,3,6

2.9.2.1 DDR3 and DDR3L SDRAM Interface Input AC Timing Specifications

This table provides the input AC timing specifications for the DDR controller when interfacing to DDR3 SDRAM.

Table 24. DDR3 SDRAM Interface Input AC Timing Specifications

For recommended operating conditions, see Table 3.

Par	ameter	Symbol	Min	Мах	Unit	Note
AC input low voltage	> 1200 MT/s data rate	VILAC	—	MVREF <i>n</i> – 0.150	V	_
	\leq 1200 MT/s data rate			MVREF <i>n</i> – 0.175		
AC input high voltage	> 1200 MT/s data rate	V _{IHAC}	MVREF <i>n</i> + 0.150	—	V	_
	\leq 1200 MT/s data rate		MVREF <i>n</i> + 0.175			

This table provides the input AC timing specifications for the DDR controller when interfacing to DDR3L SDRAM.

Table 25. DDR3L SDRAM Interface Input AC Timing Specifications

For recommended operating conditions, see Table 3.

Parameter		Symbol	Min	Max	Unit	Note
AC input low voltage	> 1200 MT/s data rate	V _{ILAC}	—	MVREF <i>n</i> – 0.135	V	_
	\leq 1200 MT/s data rate		—	MVREF <i>n</i> -0.160		
AC input high voltage	> 1200 MT/s data rate	VIHAC	MVREF <i>n</i> + 0.135	—	V	_
	\leq 1200 MT/s data rate		MVREF <i>n</i> + 0.160	_		

This table provides the input AC timing specifications for the DDR controller when interfacing to DDR3 SDRAM.

Table 26. DDR3 and DDR3L SDRAM Interface Input AC Timing Specifications

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Max	Unit	Note
Controller Skew for MDQS—MDQ/MECC	t _{CISKEW}			ps	1
1200 MT/s data rate		-142	142		
1066 MT/s data rate		-170	170		
800 MT/s data rate		-200	200		
Tolerated Skew for MDQS—MDQ/MECC	t _{DISKEW}			ps	2
1200 MT/s data rate		-275	275		
1066 MT/s data rate		-300	300		
800 MT/s data rate		-425	425		

Note:

1. t_{CISKEW} represents the total amount of skew consumed by the controller between MDQS[n] and any corresponding bit that is captured with MDQS[n]. This must be subtracted from the total timing budget.

 The amount of skew that can be tolerated from MDQS to a corresponding MDQ signal is called t_{DISKEW}. This can be determined by the following equation: t_{DISKEW} = ±(T ÷ 4 – abs(t_{CISKEW})) where T is the clock period and abs(t_{CISKEW}) is the absolute value of t_{CISKEW}.

Figure 9. DDR3 and DDR3L SDRAM Interface Input Timing Diagram

2.9.2.2 DDR3 and DDDR3L SDRAM Interface Output AC Timing Specifications

This table provides the DDR3/DDR3L SDRAM output AC timing specifications.

Table 27. DDR3 and DDR3L SDRAM Interface Output AC Timing Specifications

For recommended operating conditions, see Table 3.

Parameter	Symbol ¹	Min	Max	Unit	Note
MCK[n] cycle time	t _{MCK}	1.67	2.5	ns	2
ADDR/CMD output setup with respect to MCK	t _{DDKHAS}			ns	3
1200 MT/s data rate		0.675			
1066 MT/s data rate		0.744	—		
800 MT/s data rate		0.917	—		
ADDR/CMD output hold with respect to MCK	t _{DDKHAX}			ns	3
1200 MT/s data rate		0.675	—		
1066 MT/s data rate		0.744	—		
800 MT/s data rate		0.917	—		
MCS[n] output setup with respect to MCK	t _{DDKHCS}			ns	3
1200 MT/s data rate		0.675	—		
1066 MT/s data rate		0.744	—		
800 MT/s data rate		0.917	—		
MCS[n] output hold with respect to MCK	t _{DDKHCX}			ns	3
1200 MT/s data rate		0.675	—		
1066 MT/s data rate		0.744			
800 MT/s data rate		0.917			

2.10 eSPI

This section describes the DC and AC electrical specifications for the eSPI interface.

2.10.1 eSPI DC Electrical Characteristics

This table provides the DC electrical characteristics for the eSPI interface operating at $CV_{DD} = 3.3$ V.

Table 30. eSPI DC Electrical Characteristics (CV_{DD} = 3.3 V)

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Мах	Unit	Note
Input high voltage	V _{IH}	2.0	_	V	1
Input low voltage	V _{IL}		0.8	V	1
Input current ($V_{IN} = 0 V \text{ or } V_{IN} = CV_{DD}$)	I _{IN}		±40	μA	2
Output high voltage (CV _{DD} = min, I _{OH} = -2 mA)	V _{OH}	2.4	—	V	_
Output low voltage (CV _{DD} = min, I _{OL} = 2 mA)	V _{OL}	_	0.4	V	

Note:

1. The min V_{IL} and max V_{IH} values are based on the respective min and max CV_{IN} values found in Table 3.

2. The symbol V_{IN}, in this case, represents the CV_{IN} symbol referenced in Section 2.1.2, "Recommended Operating Conditions."

This table provides the DC electrical characteristics for the eSPI interface operating at $CV_{DD} = 2.5$ V.

Table 31. eSPI DC Electrical Characteristics (CV_{DD} = 2.5 V)

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Мах	Unit	Note
Input high voltage	V _{IH}	1.7	_	V	1
Input low voltage	V _{IL}	—	0.7	V	1
Input current ($V_{IN} = 0 V \text{ or } V_{IN} = CV_{DD}$)	I _{IN}	_	±40	μA	2
Output high voltage (CV _{DD} = min, I _{OH} = -1 mA)	V _{OH}	2.0	_	V	_
Output low voltage (CV _{DD} = min, I _{OL} = 1 mA)	V _{OL}		0.4	V	_

Note:

1. The min V_{IL} and max V_{IH} values are based on the respective min and max CV_{IN} values found in Table 3.

2. The symbol V_{IN}, in this case, represents the CV_{IN} symbol referenced in Section 2.1.2, "Recommended Operating Conditions."

This table provides the DC electrical characteristics for the eSPI interface operating at $CV_{DD} = 1.8$ V.

Table 32. eSPI DC Electrical Characteristics (CV_{DD} = 1.8 V)

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Max	Unit	Note
Input high voltage	V _{IH}	1.25	_	V	1
Input low voltage	V _{IL}	_	0.6	V	1

Table 41. IEEE 1588 DC Electrical Characteristics (LV_{DD} = 3.3 V) (continued)

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Мах	Unit	Note
Output low voltage (LV _{DD} = Min, I_{OL} = 1.0 mA)	V _{OL}	—	0.4	V	—

Note:

1. The symbol V_{IN} , in this case, represents the LV_{IN} symbol referenced in Table 2 and Table 3.

2. The min V_{IL} and max V_{IH} values are based on the respective LV_{IN} values found in Table 3.

This table shows the eTSEC IEEE 1588 DC electrical characteristics when operating at $LV_{DD} = 2.5$ V supply.

Table 42. IEEE 1588 DC Electrical Characteristics (LV_{DD} = 2.5 V)

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Max	Unit	Note
Input high voltage	V _{IH}	1.70	—	V	1
Input low voltage	V _{IL}	—	0.70	V	1
Input current ($LV_{IN} = 0 V \text{ or } LV_{IN} = LV_{DD}$)	I _{IH}		±40	μA	2
Output high voltage (LV _{DD} = min, I_{OH} = -1.0 mA)	V _{OH}	2.00	—	V	
Output low voltage (LV _{DD} = min, I_{OL} = 1.0 mA)	V _{OL}	—	0.40	V	

Note:

- 1. The min V_{IL} and max V_{IH} values are based on the respective min and max LV_{IN} values found in Table 3.
- 2. The symbol V_{IN}, in this case, represents the LV_{IN} symbols referenced in Table 2 and Table 3.

2.12.5 eTSEC IEEE Std 1588 AC Specifications

This table provides the eTSEC IEEE 1588 AC timing specifications.

Table 43. eTSEC IEEE 1588 AC Timing Specifications

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Тур	Мах	Unit	Note
TSEC_1588_CLK clock period	t _{T1588CLK}	6.4	_	$T_{RX_CLK} \times 7$	ns	1, 2
TSEC_1588_CLK duty cycle	t _{T1588CLKH} / t _{T1588CLK}	40	50	60	%	3
TSEC_1588_CLK peak-to-peak jitter	t _{T1588} CLKINJ	—	_	250	ps	_
Rise time eTSEC_1588_CLK (20%-80%)	t _{T1588CLKINR}	1.0	_	2.0	ns	_
Fall time eTSEC_1588_CLK (80%-20%)	t _{T1588CLKINF}	1.0	_	2.0	ns	
TSEC_1588_CLK_OUT clock period	t _{T1588CLKOUT}	$2 \times t_{T1588CLK}$	_	—	ns	
TSEC_1588_CLK_OUT duty cycle	t _{T1588CLKOTH} / t _{T1588CLKOUT}	30	50	70	%	-
TSEC_1588_PULSE_OUT	t _{T1588OV}	0.5	_	3.5	ns	_
TSEC_1588_TRIG_IN pulse width	t _{T1588} TRIGH	$2 \times t_{T1588CLK_MAX}$	—	—	ns	2

This table provides the DC electrical characteristics for the enhanced local bus interface operating at $BV_{DD} = 1.8$ V.

Table 48. Enhanced Local Bus DC Electrical Characteristics (BV_{DD} = 1.8 V)

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Мах	Unit	Note
Input high voltage	V _{IH}	1.25	—	V	1
Input low voltage	V _{IL}	—	0.6	V	1
Input current ($V_{IN} = 0 V \text{ or } V_{IN} = BV_{DD}$)	I _{IN}	—	±40	μA	2
Output high voltage (BV _{DD} = min, I _{OH} = -0.5 mA)	V _{OH}	1.35	_	V	—
Output low voltage (BV _{DD} = min, I _{OL} = 0.5 mA)	V _{OL}	—	0.4	V	—

Note:

1. The min V_{IL} and max V_{IH} values are based on the respective min and max BV_{IN} values found in Table 3.

2. The symbol V_{IN}, in this case, represents the BV_{IN} symbol referenced in Section 2.1.2, "Recommended Operating Conditions."

2.14.2 Enhanced Local Bus AC Timing Specifications

This section describes the AC timing specifications for the enhanced local bus interface.

This figure shows the eLBC AC test load.

Figure 20. Enhanced Local Bus AC Test Load

2.14.2.1 Local Bus AC Timing Specification

All output signal timings are relative to the falling edge of any LCLKs. The external circuit must use the rising edge of the LCLKs to latch the data.

All input timings except LGTA/LUPWAIT/LFRB are relative to the rising edge of LCLKs. LGTA/LUPWAIT/LFRB are relative to the falling edge of LCLKs.

This table provides the eLBC timing specifications.

Table 49. Enhanced Local Bus Timing Specifications

For recommended operating conditions, see Table 3.

Parameter	Symbol ¹	Min	Мах	Unit	Note
Local bus cycle time	t _{LBK}	15		ns	
Local bus duty cycle	t _{LBKH} /t _{LBK}	45	55	%	
LCLK[n] skew to LCLK[m]	t _{LBKSKEW}		150	ps	2
Input setup (except LGTA/LUPWAIT/LFRB)	t _{LBIVKH}	6	_	ns	—
Input hold (except LGTA/LUPWAIT/LFRB)	t _{LBIXKH}	1	_	ns	—

Table 49. Enhanced Local Bus Timing Specifications (continued)

For recommended operating conditions, see Table 3.

Parameter	Symbol ¹	Min	Мах	Unit	Note
Input setup (for LGTA/LUPWAIT/LFRB)	t _{LBIVKL}	6		ns	_
Input hold (for LGTA/LUPWAIT/LFRB)	t _{LBIXKL}	1	_	ns	—
Output delay (Except LALE)	t _{lbklov}	—	2.0	ns	_
Output hold (Except LALE)	t _{lbklox}	-3.5	_	ns	5
Local bus clock to output high impedance for LAD/LDP	t _{lbkloz}	—	2	ns	3
LALE output negation to LAD/LDP output transition (LATCH hold time)	t _{lbonot}	2 platform clock cycles - 1ns (LBCR[AHD] = 1)	_	ns	4
		4 platform clock cycles - 2 ns (LBCR[AHD] = 0)	_	1	

Note:

1. All signals are measured from $BV_{DD}/2$ of rising/falling edge of LCLK to $BV_{DD}/2$ of the signal in question.

2. Skew is measured between different LCLKs at BV_{DD}/2.

3. For purposes of active/float timing measurements, the high impedance or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.

- t_{LBONOT} is a measurement of the minimum time between the negation of LALE and any change in LAD. t_{LBONOT} is determined by LBCR[AHD]. The unit is the eLBC controller clock cycle, which is the internal clock that runs the local bus controller, not the external LCLK. After power on reset, LBCR[AHD] defaults to 0.
- 5. Output hold is negative, meaning that the output transition happens earlier than the falling edge of LCLK.

2.20.2.3 AC Requirements for SerDes Reference Clocks

This table lists AC requirements for the PCI Express, SGMII, Serial RapidIO, SATA and Aurora SerDes reference clocks to be guaranteed by the customer's application design.

Table 61. SD_REF_CLK*n* and SD_REF_CLK*n* Input Clock Requirements (SV_{DD} = 1.0 V)

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Тур	Мах	Unit	Note
SD_REF_CLK/SD_REF_CLK frequency range	t _{CLK_REF}	_	100/125/156.25	_	MHz	1
SD_REF_CLK/SD_REF_CLK clock frequency tolerance	^t CLK_TOL	-350	_	350	ppm	
SD_REF_CLK/SD_REF_CLK reference clock duty cycle	^t CLK_DUTY	40	50	60	%	4
SD_REF_CLK/SD_REF_CLK max deterministic peak-peak jitter at 10 ⁻⁶ BER	^t CLK_DJ	—	—	42	ps	_
SD_REF_CLK/SD_REF_CLK total reference clock jitter at 10 ⁻⁶ BER (peak-to-peak jitter at refClk input)	^t clk_tj	—	—	86	ps	2
SD_REF_CLK/SD_REF_CLK rising/falling edge rate	^t clkrr/ ^t clkfr	1	_	4	V/ns	3
Differential input high voltage	V _{IH}	200	—	_	mV	4
Differential input low voltage	V _{IL}	—	—	-200	mV	4
Rising edge rate (SD_REF_CLK <i>n</i>) to falling edge rate (SD_REF_CLK <i>n</i>) matching	Rise-Fall Matching	_	—	20	%	5, 6

Note:

1. Caution: Only 100, 125 and 156.25 have been tested. In-between values do not work correctly with the rest of the system.

2. Limits from PCI Express CEM Rev 2.0

 Measured from -200 mV to +200 mV on the differential waveform (derived from SD_REF_CLKn minus SD_REF_CLKn). The signal must be monotonic through the measurement region for rise and fall time. The 400 mV measurement window is centered on the differential zero crossing. See Figure 37.

- 4. Measurement taken from differential waveform
- 5. Measurement taken from single-ended waveform

6. Matching applies to rising edge for SD_REF_CLK*n* and falling edge rate for SD_REF_CLK*n*. It is measured using a 200 mV window centered on the median cross point where SD_REF_CLK*n* rising meets SD_REF_CLK*n* falling. The median cross point is used to calculate the voltage thresholds that the oscilloscope uses for the edge rate calculations. The rise edge rate of SD_REF_CLK*n* must be compared to the fall edge rate of SD_REF_CLK*n*, the maximum allowed difference should not exceed 20% of the slowest edge rate. See Figure 38.

Table 82. SATA Reference Clock Input Requirements (continued)

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Тур	Мах	Unit	Note
SD_REF_CLK/SD_REF_CLK cycle-to-cycle clock jitter (period jitter)	t _{CLK_CJ}	_	_	100	ps	2
SD_REF_CLK/SD_REF_CLK total reference clock jitter, phase jitter (peak-peak)	t _{CLK_PJ}	-50		+50	ps	2, 3, 4

Note:

1. Caution: Only 100, 125 MHz have been tested. In-between values do not work correctly with the rest of the system.

2. At RefClk input

3. In a frequency band from 150 kHz to 15 MHz at BER of 10^{-12}

4. Total peak-to-peak deterministic jitter must be less than or equal to 50 ps.

This figure shows the reference clock timing waveform.

Figure 43. Reference Clock Timing Waveform

2.20.7.3 AC Transmitter Output Characteristics

This table provides the differential transmitter output AC characteristics for the SATA interface at Gen1i or 1.5 Gbits/s transmission. The AC timing specifications do not include RefClk jitter.

Table 83. Gen1i/1.5 G Transmitter (Tx) AC Specifications

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Тур	Max	Unit	Note
Channel speed	t _{CH_SPEED}	—	1.5	_	Gbps	_
Unit Interval	Τ _{UI}	666.4333	666.6667	670.2333	ps	_
Total jitter data-data 5 UI	U _{SATA_TXTJ5UI}	—	—	0.355	UI p-p	1
Total jitter, data-data 250 UI	U _{SATA_TXTJ250UI}	—	—	0.47	UI p-p	1
Deterministic jitter, data-data 5 UI	U _{SATA_TXDJ5UI}	—	—	0.175	UI p-p	1
Deterministic jitter, data-data 250 UI	U _{SATA_TXDJ250UI}		_	0.22	UI p-p	1

3.1.2 Platform to SYSCLK PLL Ratio

This table shows the allowed platform clock-to-SYSCLK ratios.

The chip platform clock frequency is always below 666 MHz frequencies; set the RCW configuration field SYS_PLL_CFG = 0b01.

Binary Value of SYS_PLL_RAT	Platform:SYSCLK Ratio
0_0100	4:1
0_0101	5:1
0_0110	6:1
0_0111	7:1
0_1000	8:1
0_1001	9:1
All Others	Reserved

Table 94. Platform to SYSCLK PLL Ratios

3.1.3 e500mc Core Cluster to SYSCLK PLL Ratio

The clock ratio between SYSCLK and each of the two core cluster PLLs is determined at power up by the binary value of the RCW field CCn_PLL_RAT. This table describes the supported ratios. Note that a core cluster PLL frequency targeting 1 GHz and above must set RCW field CCn_PLL_CFG = 0b00 for frequency targeting below 1 GHz set CCn_PLL_CFG = 0b01.

This table lists the supported Core Cluster to SYSCLK ratios.

Binary Value of CCn_PLL_RAT	Core Cluster:SYSCLK Ratio
0_1000	8:1
0_1001	9:1
0_1010	10:1
0_1011	11:1
0_1100	12:1
0_1101	13:1
0_1110	14:1
0_1111	15:1
1_0000	16:1
1_0001	17:1
1_0010	18:1
All Others	Reserved

Table 95. e500mc Core Cluster PLL to SYSCLK Ratios

Hardware Design Considerations

Notes:

- 1. The COP port and target board must be able to independently assert PORESET and TRST to the processor in order to fully control the processor as shown here.
- 2. Populate this with a 10 Ω resistor for short-circuit/current-limiting protection.
- 3. The KEY location (pin 14) is not physically present on the COP header.
- 4. Although pin 12 is defined as a No-Connect, some debug tools may use pin 12 as an additional GND pin for improved signal integrity.
- 5. This switch is included as a precaution for BSDL testing. The switch must be closed to position A during BSDL testing to avoid accidentally asserting the TRST line. If BSDL testing is not being performed, this switch must be closed to position B.
- 6. Asserting HRESET causes a hard reset on the device.
- 7. This is an open-drain gate.

Figure 55. Legacy JTAG Interface Connection

			1
TX0+	1	2	VIO (VSense)
ТХ0-	3	4	тск
GND	5	6	TMS
TX1+	7	8	TDI
TX1-	9	10	TDO
GND	11	12	TRST
RX0+	13	14	Vendor I/O 0
RX0-	15	16	Vendor I/O 1
GND	17	18	Vendor I/O 2
RX1+	19	20	Vendor I/O 3
RX1-	21	22	RESET
GND	23	24	GND
TX2+	25	26	CLK+
TX2–	27	28	CLK-
GND	29	30	GND
TX3+	31	32	Vendor I/O 4
TX3–	33	34	Vendor I/O 5
GND	35	36	GND
RX2+	37	38	N/C
RX2-	39	40	N/C
GND	41	42	GND
RX3+	43	44	N/C
RX3-	45	46	N/C
GND	47	48	GND
TX4+	49	50	N/C
TX4–	51	52	N/C
GND	53	54	GND
TX5+	55	56	N/C
TX5–	57	58	N/C
GND	59	60	GND
TX6+	61	62	N/C
TX6–	63	64	N/C
GND	65	66	GND
TX7+	67	68	N/C
TX7–	69	70	N/C

Figure 57. Aurora 70 Pin Connector Duplex Pinout

3.6.3 Guidelines for High-Speed Interface Termination

This section provides the guidelines for when the SerDes interface is either entirely unused or partly unused.

3.6.3.1 SerDes Interface Entirely Unused

If the high-speed SerDes interface is not used at all, the unused pin must be terminated as described in this section.

The following pins must be left unconnected:

- SD_TX[7:2], SD_TX[13:10]
- <u>SD_TX</u>[7:2], <u>SD_TX</u>[13:10]
- SD_IMP_CAL_RX
- SD_IMP_CAL_TX

The following pins must be connected to SGND:

- SD_RX[7:2], SD_RX[13:10]
- <u>SD_RX</u>[13:10], <u>SD_RX</u>[13:10]
- SD_REF_CLK1, SD_REF_CLK2
- <u>SD_REF_CLK1</u>, <u>SD_REF_CLK2</u>

In the RCW configuration fields SRDS_LPD_B1 and SRDS_LPD_B2, all bits must be set to power down all the lanes in each bank.

RCW configuration field SRDS_EN may be cleared to power down the SerDes block for power saving. Setting RCW[SRDS_EN] = 0 power-downs the PLLs of both banks.

Additionally, software may configure SRDSBnRSTCTL[SDRD] = 1 for the unused banks to power down the SerDes bank PLLs to save power.

Note that both SV_{DD} and XV_{DD} must remain powered.

3.6.3.2 SerDes Interface Partly Unused

If only part of the high speed SerDes interface pins are used, the remaining high-speed serial I/O pins must be terminated as described in this section.

The following unused pins must be left unconnected:

- SD_TX[*n*]
- $\overline{\text{SD}_{TX}}[n]$

The following unused pins must be connected to SGND:

- SD_RX[*n*]
- $\overline{\text{SD}}_{RX}[n]$
- SD_REF_CLK1, <u>SD_REF_CLK1</u> (If entire SerDes bank 1 unused)
- SD_REF_CLK2, <u>SD_REF_CLK2</u> (If entire SerDes bank 2 unused)

In the RCW configuration field for each bank SRDS_LPD_B*n* with unused lanes, the respective bit for each unused lane must be set to power down the lane.

3.6.4 USB Controller Connections

This section details the hardware connections required for the USB controllers.

Ordering Information

Part Number	р	n	nn	n	x	t	е	n	С	d	r			
P2040NSE1FLB P2040NSE7FLC	Ρ	2	04 = 4 core	1	N = Industrial	S = Std temp	E = SEC present	1= FC-PBGA	F = 667 MHz	L = 1067 MT/s	B C			
P2040NSN1FLB P2040NSN7FLC					qualification	qualification	qualification	qualification		N = SEC not present	Pb-free spheres 7 =			
P2040NSE1HLB P2040NSE7HLC								E = SEC present	FC-PBGA C4 and sphere	H = 800 MHz				
P2040NSN1HLB P2040NSN7HLC							N = SEC not present	Pb-free						
P2040NSE1KLB P2040NSE7KLC							E = SEC Present		K = 1000 MHz					
P2040NSN1KLB P2040NSN7KLC							N = SEC not present							
P2040NSE1MMB P2040NSE7MMC							E = SEC Present		M = 1200 MHz	M = 1200 MT/s				
P2040NSN1MMB P2040NSN7MMC							N = SEC not present							
P2040NXE1FLB P2040NXE7FLC						X = Extended temp	E = SEC Present		F = 667 MHz	L = 1067 MT/s				
P2040NXN1FLB P2040NXN7FLC							N = SEC not present							
P2040NXE1MMB P2040NXE7MMC							E = SEC Present		M = 1200 MHz	M = 1200 MT/s				
P2040NXN1MMB P2040NXN7MMC							N = SEC not present							