

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

-XF

PowerPC e500mc
4 Core, 32-Bit
1.3GHz
-
DDR3, DDR3L
No
-
10/100/1000Mbps (5), 10Gbps (1)
SATA 3Gbps (2)
USB 2.0 + PHY (2)
1.0V, 1.35V, 1.5V, 1.8V, 2.5V, 3.3V
0°C ~ 105°C (TA)
-
780-BFBGA, FCBGA
780-FCPBGA (23x23)
https://www.e-xfl.com/product-detail/nxp-semiconductors/p2041nsn7nnc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1 780 FC-PBGA Ball Layout Diagrams

These figures show the FC-PBGA ball map diagrams.

Figure 2. 780 BGA Ball Map Diagram (Top View)

Pin Assignments and Reset States

Table 1. Pin List by Bus (continued)

Signal	Signal Description	Package Pin Number	Pin Type	Power Supply	Note
MDQ29	Data	AC4	I/O	GV _{DD}	—
MDQ30	Data	AE1	I/O	GV _{DD}	—
MDQ31	Data	AE3	I/O	GV_{DD}	—
MDQ32	Data	AE16	I/O	GV_{DD}	—
MDQ33	Data	AD16	I/O	GV_{DD}	—
MDQ34	Data	AE19	I/O	GV _{DD}	—
MDQ35	Data	AD19	I/O	GV _{DD}	—
MDQ36	Data	AF15	I/O	GV _{DD}	—
MDQ37	Data	AF16	I/O	GV _{DD}	—
MDQ38	Data	AF18	I/O	GV _{DD}	—
MDQ39	Data	AF19	I/O	GV _{DD}	—
MDQ40	Data	AH23	I/O	GV _{DD}	—
MDQ41	Data	AG23	I/O	GV _{DD}	—
MDQ42	Data	AH27	I/O	GV _{DD}	—
MDQ43	Data	AG27	I/O	GV _{DD}	—
MDQ44	Data	AG21	I/O	GV _{DD}	
MDQ45	Data	AH22	I/O	GV _{DD}	—
MDQ46	Data	AH26	I/O	GV _{DD}	—
MDQ47	Data	AG26	I/O	GV _{DD}	—
MDQ48	Data	AF21	I/O	GV _{DD}	—
MDQ49	Data	AD21	I/O	GV _{DD}	—
MDQ50	Data	AF24	I/O	GV _{DD}	
MDQ51	Data	AD24	I/O	GV _{DD}	—
MDQ52	Data	AE20	I/O	GV _{DD}	—
MDQ53	Data	AD20	I/O	GV _{DD}	
MDQ54	Data	AD23	I/O	GV _{DD}	—
MDQ55	Data	AE25	I/O	GV _{DD}	—
MDQ56	Data	AF26	I/O	GV _{DD}	—
MDQ57	Data	AF27	I/O	GV _{DD}	—
MDQ58	Data	AD25	I/O	GV _{DD}	—
MDQ59	Data	AD26	I/O	GV_DD	—
MDQ60	Data	AG28	I/O	$\mathrm{GV}_{\mathrm{DD}}$	—
MDQ61	Data	AF25	I/O	GV_DD	—
MDQ62	Data	AD27	I/O	GV_DD	—

Pin Assignments and Reset States

Table 1. Pin List by Bus (continued)

Signal	Signal Description	Package Pin Number	Pin Type	Power Supply	Note
MDQS5	Data Strobe	AH24	I/O	$\mathrm{GV}_{\mathrm{DD}}$	
MDQS6	Data Strobe	AE22	I/O	GV_{DD}	
MDQS7	Data Strobe	AF28	I/O	GV_{DD}	
MDQS8	Data Strobe	AG3	I/O	GV_{DD}	
MBA0	Bank Select	AC16	0	GV _{DD}	
MBA1	Bank Select	AC15	0	GV _{DD}	
MBA2	Bank Select	AC8	0	GV_{DD}	
MA00	Address	AG16	0	GV_{DD}	
MA01	Address	AF12	0	GV _{DD}	
MA02	Address	AC12	0	GV_{DD}	
MA03	Address	AH11	0	GV _{DD}	
MA04	Address	AG11	0	GV _{DD}	
MA05	Address	AH10	0	GV_{DD}	
MA06	Address	AC11	0	GV_{DD}	
MA07	Address	AC10	0	GV_{DD}	
MA08	Address	AF10	0	GV_{DD}	
MA09	Address	AH9	0	GV _{DD}	
MA10	Address	AH16	0	GV_{DD}	
MA11	Address	AG9	0	GV_DD	
MA12	Address	AC9	0	GV _{DD}	
MA13	Address	AH20	0	GV_{DD}	
MA14	Address	AG8	0	GV_DD	
MA15	Address	AH7	0	GV_{DD}	
MWE	Write Enable	AH18	0	GV_{DD}	
MRAS	Row Address Strobe	AH17	0	$\mathrm{GV}_{\mathrm{DD}}$	
MCAS	Column Address Strobe	AH19	0	$\mathrm{GV}_{\mathrm{DD}}$	
MCSO	Chip Select	AC18	0	$\mathrm{GV}_{\mathrm{DD}}$	
MCS1	Chip Select	AC21	0	$\mathrm{GV}_{\mathrm{DD}}$	
MCS2	Chip Select	AG17	0	$\mathrm{GV}_{\mathrm{DD}}$	
MCS3	Chip Select	AG20	0	$\mathrm{GV}_{\mathrm{DD}}$	
MCKE0	Clock Enable	AB8	0	GV_DD	—
MCKE1	Clock Enable	AB7	0	GV_DD	—
MCKE2	Clock Enable	AH6	0	GV_DD	—
MCKE3	Clock Enable	AG6	0	GV_DD	

Pin Assignments and Reset States

Table 1.	Pin	List by	y Bus	(continued)
----------	-----	---------	-------	-------------

Signal	Signal Description	Package Pin Number	Pin Type	Power Supply	Note
LA19	Address	P3	I/O	BV _{DD}	31
LA20	Address	P2	I/O	BV _{DD}	31
LA21	Address	R3	I/O	BV _{DD}	31
LA22	Address	T1	I/O	BV _{DD}	31
LA23	Address	U1	I/O	BV _{DD}	3
LA24	Address	R6	I/O	BV _{DD}	3
LA25	Address	T5	I/O	BV_DD	31
LA26	Address	Т3	I/O	BV_DD	3, 29
LA27	Address	T2	0	BV_DD	—
LA28	Address	U5	I/O	BV_DD	—
LA29	Address	U3	I/O	BV_DD	—
LA30	Address	V1	I/O	BV_DD	—
LA31	Address	V3	I/O	BV_DD	—
LDP0	Data Parity	L3	I/O	BV_DD	—
LDP1	Data Parity	M1	I/O	BV_DD	—
LCSO	Chip Selects	R5	0	BV_DD	5
LCS1	Chip Selects	P7	0	BV_DD	5
LCS2	Chip Selects	U4	0	BV_DD	5
LCS3	Chip Selects	R1	0	BV_DD	5
LWE0	Write Enable	M6	0	BV_DD	—
LWE1	Write Enable	M3	0	BV_DD	—
LBCTL	Buffer Control	P1	0	BV_DD	—
LALE	Address Latch Enable	N6	I/O	BV_DD	—
LGPL0/LFCLE	UPM General Purpose Line 0/ LFCLE—FCM	L5	0	BV _{DD}	3, 4
LGPL1/LFALE	UPM General Purpose Line 1/ LFALE—FCM	K1	0	BV _{DD}	3, 4
LGPL2/LOE/LFRE	UPM General Purpose Line 2/ LOE_B—Output Enable	L6	0	BV_DD	3, 4
LGPL3/LFWP	UPM General Purpose Line 3/ LFWP_B—FCM	J3	0	BV_DD	3, 4
LGPL4/LGTA/LUPWAIT/LPBSE	UPM General Purpose Line 4/ LGTA_B—FCM	L2	I/O	BV _{DD}	36
LGPL5	UPM General Purpose Line 5 / Amux	J1	0	BV _{DD}	3, 4
LCLK0	Local Bus Clock	M4	0	BV _{DD}	—
LCLK1	Local Bus Clock	N7	0	BV _{DD}	

Signal	Signal Description	Package Pin Number	Pin Type	Power Supply	Note			
EC1_RXD1/TSEC_1588_TRIG_IN2	Receive Data	A27	I	LV _{DD}	25			
EC1_RXD0/TSEC_1588_TRIG_IN1	Receive Data	B28	I	LV _{DD}	25			
EC1_RX_DV/EC_XTRNL_RX_STMP1	Receive Data Valid	A25	I	LV _{DD}	25			
EC1_RX_CLK/EC_XTRNL_RX_STMP2	Receive Clock	C24	I	LV _{DD}	25			
	<u> </u>	II						
EC2_TXD3	Transmit Data	G28	0	LV _{DD}	—			
EC2_TXD2	Transmit Data	G26	0	LV _{DD}	—			
EC2_TXD1	Transmit Data	G27	0	LV _{DD}	—			
EC2_TXD0	Transmit Data	G25	0	LV _{DD}	—			
EC2_TX_EN	Transmit Enable	F28	0	LV _{DD}	15			
EC2_GTX_CLK	Transmit Clock Out (RGMII)	E28	0	LV _{DD}	24			
EC2_RXD3	Receive Data	D28	I	LV _{DD}	25			
EC2_RXD2	Receive Data	E27	I	LV _{DD}	25			
EC2_RXD1	Receive Data	E25	I	LV _{DD}	24, 25			
EC2_RXD0	Receive Data	F26	I	LV _{DD}	24, 25			
EC2_RX_DV	Receive Data Valid	D25	I	LV _{DD}	25			
EC2_RX_CLK	Receive Clock	F25	I	LV _{DD}	25			
	UART				<u>.</u>			
UART1_SOUT/GPIO8	Transmit Data	R23	0	OV_{DD}	24			
UART2_SOUT/GPIO9	Transmit Data	P26	0	OV_{DD}	24			
UART1_SIN/GPIO10	Receive Data	R26	I	OV_{DD}	24			
UART2_SIN/GPIO11	Receive Data	P27	I	OV_{DD}	24			
UART1_RTS/UART3_SOUT/GPIO12	Ready to Send	P24	0	OV_{DD}	24			
UART2_RTS/UART4_SOUT/GPIO13	Ready to Send	P25	0	OV_{DD}	24			
UART1_CTS/UART3_SIN/GPIO14	Clear to Send	R25	I	OV_{DD}	24			
UART2_CTS/UART4_SIN/GPIO15	Clear to Send	P23	I	OV_{DD}	24			
I ² C Interface								
IIC1_SCL	Serial Clock	AC25	I/O	OV_{DD}	2, 14			
IIC1_SDA	Serial Data	AC28	I/O	OV _{DD}	2, 14			
IIC2_SCL	Serial Clock	W25	I/O	OV_{DD}	2, 14			
IIC2_SDA	Serial Data	AA25	I/O	OV_{DD}	2, 14			
IIC3_SCL/GPIO16/M1DVAL/LB_DVAL/ DMA1_DACK0/SDHC_CD	Serial Clock	AB23	I/O	OV_{DD}	2, 14			

	Parameter	Symbol	Max Value	Unit	Note
eSPI, eSHDC, GPIO		CV _{DD}	-0.3 to 3.63 -0.3 to 2.75 -0.3 to 1.98	V	_
DDR3 and DDR3L DF	RAM I/O voltage	GV _{DD}	–0.3 to 1.65	V	—
Enhanced local bus I/	O voltage	BV _{DD}	-0.3 to 3.63 -0.3 to 2.75 -0.3 to 1.98	V	
SerDes core logic sup	oply and receivers	SV _{DD}	-0.3 to 1.1	V	—
Pad power supply for	SerDes transceivers	XV _{DD}	-0.3 to 1.98 -0.3 to 1.65	V	—
Ethernet I/O, Ethernet	t management interface 1 (EMI1), 1588, GPIO	LV _{DD}	-0.3 to 3.63 -0.3 to 2.75	V	3
USB PHY transceiver	supply voltage	USB_V _{DD} _3P3	-0.3 to 3.63	V	—
USB PHY PLL supply	voltage	USB_V _{DD} _1P0	-0.3 to 1.1	V	—
Low Power Security M	Ionitor Supply	V _{DD_LP}	-0.3 to 1.1	V	—
Input voltage ⁷	DDR3 and DDR3L DRAM signals	MV _{IN}	–0.3 to (GV _{DD} + 0.3)	V	2, 7
	DDR3 and DDR3L DRAM reference	MV _{REF} n	–0.3 to (GV _{DD} /2+ 0.3)	V	2, 7
	Ethernet signals, GPIO	LV _{IN}	–0.3 to (LV _{DD} + 0.3)	V	3, 7
	eSPI, eSHDC, GPIO	CVIN	–0.3 to (CV _{DD} + 0.3)	V	4, 7
	Enhanced local bus signals	BVIN	–0.3 to (BV _{DD} + 0.3)	V	5, 7
	DUART, I ² C, DMA, MPIC, GPIO, system control and power management, clocking, debug, I/O voltage select, and JTAG I/O voltage	OV _{IN}	–0.3 to (OV _{DD} + 0.3)	V	6, 7
	SerDes signals	XV _{IN}	–0.4 to (XV _{DD} + 0.3)	V	7
	USB PHY transceiver signals	USB_V _{IN} _3P3	-0.3 to (USB_V _{DD} _3P3 + 0.3)	V	7
Storage junction temp	perature range	T _{stg}	-55 to 150	°C	_

Table 2. Absolute Operating Conditions¹ (continued)

Power Mode	Core Freq (MHz)	Plat Freq (MHz)	DDR Data Rate (MT/s)	FM Freq (MHz)	V _{DD_CA_CB_PL} (V)	Junction Temp (°C)	Core & Platform Power ¹ (W)	V _{DD_CA_CB_PL} Power (W)	Core & Platform Power ¹ (W)	V _{DD_CA_CB_PL} Power (W)	SV _{DD} Power (W)	Note
			(,0)				Qua	ad Cores	Dual Cores			
Typical	667	534	1067	467	1.0	65	8.7	—	8.2	_	_	2, 3
Thermal						105	12.0	—	11.8	_	_	5, 7
Maximum							12.3	11.1	11.9	10.6	1.4	4, 6, 7

Table 6. Device Power Dissipation (continued)

Note:

- 1. Combined power of V_{DD_CA_CB_PL}, SVDD with the DDR controller and all SerDes banks active. Does not include I/O power.
- 2. Typical power assumes Dhrystone running with activity factor of 70% on all four cores, 80% on two cores and executing DMA on the platform with 90% activity factor.
- 3. Typical power based on nominal processed device.
- 4. Maximum power assumes Dhrystone running with activity factor at 100% on all cores and executing DMA on the platform with 100% activity factor.
- 5. Thermal power assumes Dhrystone running with activity factor of 70% on all four cores, 80% on two cores and executing DMA on the platform with 90% activity factor.
- 6. Maximum power provided for power supply design sizing.
- 7. Thermal and maximum power are based on worst case processed device.

This table shows the all I/O power supply estimated values.

Table 7. P2040 I/O Power Supply Estimated Values

Interface	Parameter	Symbol	Typical	Maximum	Unit	Notes
DDR3 64 Bits Per Controller	667 MT/s data rate	GVdd (1.5V)	0.705	1.764	W	1,2,5,6
	800 MT/s data rate		0.714	1.785		
	1066 MT/s data rate		0.731	1.827		
	1200 MT/s data rate		0.739	1.848		
	1333 MT/s data rate		0.747	1.869		
HSSI: PCI-e, SGMII, SATA, SRIO, Aurora, Debug, XAUI	x1, 1.25 G-baud	XVdd (1.5V)	0.078	0.087	W	1, 7
	x2, 1.25 G-baud		0.119	0.134		
	x4, 1.25 G-baud		0.202	0.226		
	x8, 1.25 G-baud		0.367	0.411		
	x1, 2.5/3.0/3.125/5.0 G-baud		0.088	0.099		
	x2, 2.5/3.0/3.125/5.0 G-baud		0.139	0.156		
	x4, 2.5/3.0/3.125/5.0 G-baud		0.241	0.270		
	x8, 2.5/3.0/3.125/5.0 G-baud		0.447	0.501		
dTSEC Per Controller	RGMII	LVdd (2.5V)	0.075	0.100	W	1,3,6

Table 21. DDR3L SDRAM Interface DC Electrical Characteristics (GV_{DD} = 1.35 V) (continued)

For recommended operating conditions, see Table 3.

|--|

Note:

- 1. GV_{DD} is expected to be within 50 mV of the DRAM's voltage supply at all times. The DRAM's and memory controller's voltage supply may or may not be from the same source.
- MV_{REF}n is expected to be equal to 0.5 × GV_{DD} and to track GV_{DD} DC variations as measured at the receiver. Peak-to-peak noise on MV_{REF}n may not exceed the MV_{REF}n DC level by more than ±1% of the DC value (that is, ±13.5 mV).
- V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made, and it is expected to be equal to MV_{REF}n with a min value of MV_{REF}n – 0.04 and a max value of MV_{REF}n + 0.04. V_{TT} should track variations in the DC level of MVREFn.
- 4. The voltage regulator for $MV_{REF}n$ must meet the specifications stated in Table 23.
- 5. Input capacitance load for DQ, DQS, and DQS are available in the IBIS models.
- 6. Output leakage is measured with all outputs disabled, 0 V \leq V_{OUT} \leq GV_{DD}.
- 7. Refer to the IBIS model for the complete output IV curve characteristics.
- 8. I_{OH} and I_{OL} are measured at $GV_{DD} = 1.283$ V

This table provides the DDR controller interface capacitance for DDR3 and DDR3L.

Table 22. DDR3 and DDR3L SDRAM Capacitance

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Мах	Unit	Note
Input/output capacitance: DQ, DQS, DQS	C _{IO}	6	8	pF	1, 2
Delta input/output capacitance: DQ, DQS, DQS	C _{DIO}	_	0.5	pF	1, 2

Note:

- 1. This parameter is sampled. GV_{DD} = 1.5 V ± 0.075 V (for DDR3), f = 1 MHz, T_A = 25 °C, V_{OUT} = $GV_{DD} \div 2$, V_{OUT} (peak-to-peak) = 0.150 V.
- 2. This parameter is sampled. $GV_{DD} = 1.35 \text{ V} 0.067 \text{ V} \div + 0.100 \text{ V}$ (for DDR3L), f = 1 MHz, T_A = 25 °C, V_{OUT} = $GV_{DD} \div 2$, V_{OUT} (peak-to-peak) = 0.167 V.

This table provides the current draw characteristics for MVREFn.

Table 23. Current Draw Characteristics for MVREFn

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Max	Unit	Note
Current draw for DDR3 SDRAM for MVREF <i>n</i>	MVREF <i>n</i>		500	μA	
Current draw for DDR3L SDRAM for MVREFn	MVREF <i>n</i>		500	μA	

2.9.2 DDR3 and DDR3L SDRAM Interface AC Timing Specifications

This section provides the AC timing specifications for the DDR SDRAM controller interface. The DDR controller supports DDR3 and DDR3L memories. Note that the required $GV_{DD}(typ)$ voltage is 1.5 V when interfacing to DDR3 SDRAM and the required $GV_{DD}(typ)$ voltage is 1.35 V when interfacing to DDR3L SDRAM.

2.10 eSPI

This section describes the DC and AC electrical specifications for the eSPI interface.

2.10.1 eSPI DC Electrical Characteristics

This table provides the DC electrical characteristics for the eSPI interface operating at $CV_{DD} = 3.3$ V.

Table 30. eSPI DC Electrical Characteristics (CV_{DD} = 3.3 V)

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Мах	Unit	Note
Input high voltage	V _{IH}	2.0	_	V	1
Input low voltage	V _{IL}		0.8	V	1
Input current ($V_{IN} = 0 V \text{ or } V_{IN} = CV_{DD}$)	I _{IN}		±40	μΑ	2
Output high voltage (CV _{DD} = min, I _{OH} = -2 mA)	V _{OH}	2.4	—	V	_
Output low voltage (CV _{DD} = min, I _{OL} = 2 mA)	V _{OL}	_	0.4	V	

Note:

1. The min V_{IL} and max V_{IH} values are based on the respective min and max CV_{IN} values found in Table 3.

2. The symbol V_{IN}, in this case, represents the CV_{IN} symbol referenced in Section 2.1.2, "Recommended Operating Conditions."

This table provides the DC electrical characteristics for the eSPI interface operating at $CV_{DD} = 2.5$ V.

Table 31. eSPI DC Electrical Characteristics (CV_{DD} = 2.5 V)

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Мах	Unit	Note
Input high voltage	V _{IH}	1.7	_	V	1
Input low voltage	V _{IL}	—	0.7	V	1
Input current ($V_{IN} = 0 V \text{ or } V_{IN} = CV_{DD}$)	I _{IN}	_	±40	μA	2
Output high voltage (CV _{DD} = min, I _{OH} = -1 mA)	V _{OH}	2.0	_	V	_
Output low voltage (CV _{DD} = min, I _{OL} = 1 mA)	V _{OL}		0.4	V	_

Note:

1. The min V_{IL} and max V_{IH} values are based on the respective min and max CV_{IN} values found in Table 3.

2. The symbol V_{IN}, in this case, represents the CV_{IN} symbol referenced in Section 2.1.2, "Recommended Operating Conditions."

This table provides the DC electrical characteristics for the eSPI interface operating at $CV_{DD} = 1.8$ V.

Table 32. eSPI DC Electrical Characteristics (CV_{DD} = 1.8 V)

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Max	Unit	Note
Input high voltage	V _{IH}	1.25	_	V	1
Input low voltage	V _{IL}	_	0.6	V	1

Table 32. eSPI DC Electrical Characteristics (CV_{DD} = 1.8 V) (continued)

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Max	Unit	Note
Input current ($V_{IN} = 0 V \text{ or } V_{IN} = CV_{DD}$)	I _{IN}	—	±40	μA	2
Output high voltage (CV _{DD} = min, I _{OH} = -0.5 mA)	V _{OH}	1.35	—	V	—
Output low voltage (CV _{DD} = min, I _{OL} = 0.5 mA)	V _{OL}	—	0.4	V	—

Note:

1. The min V_{IL} and max V_{IH} values are based on the respective min and max CV_{IN} values found in Table 3.

2. The symbol VIN, in this case, represents the CVIN symbol referenced in Section 2.1.2, "Recommended Operating Conditions."

2.10.2 eSPI AC Timing Specifications

This table provides the eSPI input and output AC timing specifications.

Table 33. eSPI AC Timing Specifications

For recommended operating conditions, see Table 3.

Parameter	Symbol ¹	Min	Мах	Unit	Note
SPI_MOSI output—Master data (internal clock) hold time	t _{NIKHOX}	2 + (t _{PLATFORM_CLK} *SPMO DE[HO_ADJ])		ns	2, 3
SPI_MOSI output—Master data (internal clock) delay	t _{NIKHOV} t _{NIKHOV}		5.68+(t _{PLATFORM_CLK} *S PMODE[HO_ADJ])	ns	2, 3
SPI_CS outputs—Master data (internal clock) hold time	t _{NIKHOX2}	0	—	ns	2
SPI_CS outputs—Master data (internal clock) delay	t _{NIKHOV2}	_	6.0	ns	2
eSPI inputs—Master data (internal clock) input setup time	t _{NIIVKH}	7		ns	—
eSPI inputs—Master data (internal clock) input hold time	t _{NIIXKH}	0	—	ns	—

Note:

 The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state) (reference)(state)} for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{NIKHOV} symbolizes the NMSI outputs internal timing (NI) for the time t_{SPI} memory clock reference (K) goes from the high state (H) until outputs (O) are valid (V).

- 2. Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are measured at the pin.
- The greater of the two output timings for t_{NIKHOX} and t_{NIKHOV} are used when SPCOM[RxDelay] of the eSPI command register is set. For example, the t_{NIKHOX} is 4.0 and t_{NIKHOV} is 7.0 if SPCOM[RxDelay] is set to be 1.

This figure provides the AC test load for the eSPI.

Figure 14. eSPI AC Test Load

2.13 USB

This section provides the AC and DC electrical specifications for the USB interface.

2.13.1 USB DC Electrical Characteristics

This table provides the DC electrical characteristics for the USB interface at $USB_VDD_3P3 = 3.3 V$.

Table 44. USB DC Electrical Characteristics (USB_V_{DD}_3P3 = 3.3 V)

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Max	Unit	Note
Input high voltage ¹	V _{IH}	2.0	—	V	1
Input low voltage	V _{IL}	—	0.8	V	1
Input current (USB_V _{IN} _3P3 = 0 V or USB_V _{IN} _3P3 = USB_V _{DD} _3P3)	I _{IN}	_	±40	μA	2
Output high voltage (USB_V _{DD} _3P3 = min, $I_{OH} = -2 \text{ mA}$)	V _{OH}	2.8	—	V	
Output low voltage (USB_V _{DD} _3P3 = min, I_{OL} = 2 mA)	V _{OL}	—	0.3	V	

Note:

- 1. The min V_{IL} and max V_{IH} values are based on the respective min and max USB_ V_{IN} _3P3 values found in Table 3.
- The symbol USB_V_{IN}_3P3, in this case, represents the USB_V_{IN}_3P3 symbol referenced in Section 2.1.2, "Recommended Operating Conditions."

2.13.2 USB AC Electrical Specifications

This table provides the USB clock input (USBn_CLKIN) AC timing specifications.

Table 45. USB_CLK_IN AC Timing Specifications

For recommended operating conditions, see Table 3.

Parameter	Condition	Symbol	Min	Тур	Max	Unit	Note
Frequency range	—	f _{USB_CLK_IN}	_	24	_	MHz	_
Rise/Fall time	Measured between 10% and 90%	t _{USRF}			6	ns	1
Clock frequency tolerance	_	t _{CLK_TOL}	-0.005	0	0.005	%	—
Reference clock duty cycle	Measured at 1.6 V	t _{CLK_DUTY}	40	50	60	%	—
Total input jitter/time interval error	RMS value measured with a second-order, high-pass filter of 500-kHz bandwidth	t _{CLK_PJ}	—	_	5	ps	—

Note:

1. System/board must be designed to ensure the input requirement to the device is achieved. Proper device operation is guaranteed for inputs meeting this requirement by design, simulation, characterization, or functional testing.

2.14 Enhanced Local Bus Interface

This section describes the DC and AC electrical specifications for the enhanced local bus interface.

2.14.1 Enhanced Local Bus DC Electrical Characteristics

This table provides the DC electrical characteristics for the enhanced local bus interface operating at $BV_{DD} = 3.3$ V.

Table 46. Enhanced Local Bus DC Electrical Characteristics (BV_{DD} = 3.3 V)

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Max	Unit	Note
Input high voltage	V _{IH}	2	_	V	1
Input low voltage	V _{IL}	—	0.8	V	1
Input current ($V_{IN} = 0$ V or $V_{IN} = BV_{DD}$)	I _{IN}	—	±40	μA	2
Output high voltage (BV _{DD} = min, I _{OH} = -2 mA)	V _{OH}	2.4	_	V	_
Output low voltage (BV _{DD} = min, I _{OL} = 2 mA)	V _{OL}	_	0.4	V	_

Note:

1. The min V_{IL} and max V_{IH} values are based on the respective min and max BV_{IN} values found in Table 3.

2. The symbol V_{IN}, in this case, represents the BV_{IN} symbol referenced in Section 2.1.2, "Recommended Operating Conditions."

This table provides the DC electrical characteristics for the enhanced local bus interface operating at $BV_{DD} = 2.5$ V.

Table 47. Enhanced Local Bus DC Electrical Characteristics (BV_{DD} = 2.5 V)

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Max	Unit	Note
Input high voltage	V _{IH}	1.7		V	1
Input low voltage	V _{IL}	_	0.7	V	1
Input current ($V_{IN} = 0 V \text{ or } V_{IN} = BV_{DD}$)	I _{IN}	_	±40	μA	2
Output high voltage (BV _{DD} = min, I _{OH} = -1 mA)	V _{OH}	2.0	—	V	_
Output low voltage (BV _{DD} = min, I _{OL} = 1 mA)	V _{OL}	_	0.4	V	_

Note:

1. The min $V_{IL} \text{and} \max V_{IH}$ values are based on the respective min and max BV_{IN} values found in Table 3

2. The symbol V_{IN}, in this case, represents the BV_{IN} symbol referenced in Section 2.1.2, "Recommended Operating Conditions."

2.17.2 JTAG AC Timing Specifications

This table provides the JTAG AC timing specifications as defined in Figure 25 through Figure 28.

Table 55. JTAG AC Timing Specifications

For recommended operating conditions, see Table 3.

Parameter	Symbol ¹	Min	Мах	Unit	Note
JTAG external clock frequency of operation	f _{JTG}	0	33.3	MHz	_
JTAG external clock cycle time	t _{JTG}	30	—	ns	—
JTAG external clock pulse width measured at OVDD/2 V	t _{JTKHKL}	15	—	ns	—
JTAG external clock rise and fall times	t _{JTGR} /t _{JTGF}	0	2	ns	—
TRST assert time	t _{TRST}	25	—	ns	2
Input setup times Boundary-scan USB only Boundary (except USB) TDI, TMS	^t jtdvkh	14 4 4	_	ns	_
Input hold times	t _{JTDXKH}	10	—	ns	_
Output valid times Boundary-scan data TDO	t _{jtkldv}	_	15 10	ns	3
Output hold times	t _{JTKLDX}	0	—	ns	3

Note:

The symbols used for timing specifications follow the pattern t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{JTDVKH} symbolizes JTAG device timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the t_{JTG} clock reference (K) going to the high (H) state or setup time. Also, t_{JTDXKH} symbolizes JTAG timing (JT) with respect to the time data input signals (D) reaching the invalid state (X) relative to the t_{JTG} clock reference (K) going to the high (H) state. Note that in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
</sub>

- 2. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.
- All outputs are measured from the midpoint voltage of the falling edge of t_{TCLK} to the midpoint of the signal in question. The output timings are measured at the pins. All output timings assume a purely resistive 50-Ω load. Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.

This figure provides the AC test load for TDO and the boundary-scan outputs of the device.

Figure 25. AC Test Load for the JTAG Interface

Figure 37. Differential Measurement Points for Rise and Fall Time

2.20.2.4 Spread Spectrum Clock

SD_REF_CLK1/SD_REF_CLK1 were designed to work with a spread spectrum clock (+0 to 0.5% spreading at 30–33 kHz rate is allowed), assuming both ends have same reference clock. For better results, a source without significant unintended modulation must be used.

SD_REF_CLK2/SD_REF_CLK2 were designed to work with a spread spectrum clock (+0 to 0.5% spreading at 30–33 kHz rate is allowed), assuming both ends have same reference clock and the industry protocol specifications supports it. For better results, a source without significant unintended modulation must be used.

2.20.3 SerDes Transmitter and Receiver Reference Circuits

This figure shows the reference circuits for SerDes data lane's transmitter and receiver.

• The use of active circuits in the receiver, often referred to as adaptive equalization.

2.20.5.3 Serial RapidIO Clocking Requirements for SD_REF_CLK*n* and SD_REF_CLK*n*

SerDes bank 1 (SD_REF_CLK1 and SD_REF_CLK1) may be used for various SerDes Serial RapidIO configurations based on the RCW configuration field SRDS_PRTCL. Serial RapidIO is not supported on SerDes banks 2.

For more information on these specifications, see Section 2.20.2, "SerDes Reference Clocks."

2.20.5.4 DC Requirements for Serial RapidIO

This section explains the DC requirements for the Serial RapidIO interface.

2.20.5.4.1 DC Serial RapidIO Timing Transmitter Specifications

LP-Serial transmitter electrical and timing specifications are stated in the text and tables of this section.

The differential return loss, S11, of the transmitter in each case is better than the following:

- $-10 \text{ dB for (Baud Frequency)} \div 10 < \text{Freq(f)} < 625 \text{ MHz}$
- $-10 \text{ dB} + 10\log(f \div 625 \text{ MHz}) \text{ dB}$ for $625 \text{ MHz} \le \text{Freq}(f) \le \text{Baud}$ Frequency

The reference impedance for the differential return loss measurements is $100-\Omega$ resistive. Differential return loss includes contributions from on-chip circuitry, chip packaging, and any off-chip components related to the driver. The output impedance requirement applies to all valid output levels.

It is recommended that the 20%–80% rise/fall time of the transmitter, as measured at the transmitter output, have a minimum value 60 ps in each case.

It is recommended that the timing skew at the output of an LP-Serial transmitter between the two signals that comprise a differential pair not exceed 20 ps at 2.50 GBaud and 15 ps at 3.125 GBaud and XX ps at 5 GBaud.

This table defines the transmitter DC specifications for Serial RapidIO operating at $XV_{DD} = 1.5$ V or 1.8 V.

Table 70. Serial RapidIO Transmitter DC Timing Specifications—2.5 GBaud, 3.125 GBaud, 5 GBaud

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Тур	Мах	Unit	Note
Output voltage	V _O	-0.40	_	2.30	V	1
Long-run differential output voltage	V _{DIFFPP}	800	_	1600	mV p-p	—
Short-run differential output voltage	V _{DIFFPP}	500	_	1000	mV p-p	—

Note:

1. Voltage relative to COMMON of either signal comprising a differential pair.

2.20.5.4.2 DC Serial RapidIO Receiver Specifications

LP-Serial receiver electrical and timing specifications are stated in the text and tables of this section.

Receiver input impedance results in a differential return loss better than 10 dB and a common mode return loss better than 6 dB from 100 MHz to $(0.8) \times (Baud Frequency)$. This includes contributions from on-chip circuitry, the chip package, and any off-chip components related to the receiver. AC coupling components are included in this requirement. The reference impedance for return loss measurements is 100- Ω resistive for differential return loss and 25- Ω resistive for common mode.

This table provides the differential receiver input AC characteristics for the SATA interface at Gen2i or 3.0 Gbits/s transmission. The AC timing specifications do not include RefClk jitter.

Table 86. Gen 2i/3G Receiver (Rx) AC Specifications

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Typical	Мах	Unit	Note
Unit Interval	T _{UI}	333.2167	333.3333	335.1167	ps	_
Total jitter $f_{C3dB} = f_{BAUD} \div 10$	U _{SATA_TXTJfB/10}			0.46	UI p-p	1
Total jitter $f_{C3dB} = f_{BAUD} \div 500$	U _{SATA_TXTJfB/500}	—		0.60	UI p-p	1
Total jitter $f_{C3dB} = f_{BAUD} \div 1667$	U _{SATA_TXTJfB/1667}			0.65	UI p-p	1
Deterministic jitter, $f_{C3dB} = f_{BAUD} \div 10$	U _{SATA_TXDJfB/10}			0.35	UI p-p	1
Deterministic jitter, $f_{C3dB} = f_{BAUD} \div 500$	U _{SATA_TXDJfB/500}	—		0.42	UI p-p	1
Deterministic jitter, $f_{C3dB} = f_{BAUD} \div 1667$	U _{SATA_TXDJfB/1667}			0.35	UI p-p	1

Note:

1. Measured at receiver.

2.20.8 SGMII Interface

Each SGMII port features a 4-wire AC-coupled serial link from the SerDes interface of the device, as shown in Figure 44, where C_{TX} is the external (on board) AC-coupled capacitor. Each output pin of the SerDes transmitter differential pair features 50- Ω output impedance. Each input of the SerDes receiver differential pair features 50- Ω on-die termination to XGND. The reference circuit of the SerDes transmitter and receiver is shown in Figure 39.

2.20.8.0.1 SGMII Clocking Requirements for SD_REF_CLKn and SD_REF_CLKn

When operating in SGMII mode, the EC_GTX_CLK125 clock is not required for this port. Instead, a SerDes reference clock is required on SD_REF_CLK[1:2] and SD_REF_CLK[1:2] pins. SerDes banks 1–2 may be used for SerDes SGMII configurations based on the RCW Configuration field SRDS_PRTCL.

For more information on these specifications, see Section 2.20.2, "SerDes Reference Clocks."

2.20.8.1 SGMII DC Electrical Characteristics

This section discusses the electrical characteristics for the SGMII interface.

2.20.8.1.1 SGMII Transmit DC Timing Specifications

This table describe the SGMII SerDes transmitter and receiver AC-coupled DC electrical characteristics for 1.25 GBaud. Transmitter DC characteristics are measured at the transmitter outputs (SD_TXn and $\overline{SD_TXn}$) as shown in Figure 45.

Table 87. SGMII DC Transmitter Electrical Characteristics (XV_{DD} = 1.5 V or 1.8 V)

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Тур	Max	Unit	Note
Output high voltage	V _{OH}	—		1.5 x IV _{OD} I _{-max}	mV	1
Output low voltage	V _{OL}	IV _{OD} I _{-min} /2	—		mV	1

Figure 46. SGMII AC Test/Measurement Load

2.20.8.2.3 SGMII Receiver AC Timing Specification

This table provides the SGMII receiver AC timing specifications. The AC timing specifications do not include RefClk jitter. Source synchronous clocking is not supported. Clock is recovered from the data.

Table 92. SGMII Receive AC Timing Specifications

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Тур	Мах	Unit	Note
Deterministic jitter tolerance	JD	0.37		—	UI p-p	1, 2
Combined deterministic and random jitter tolerance	JDR	0.55		—	UI p-p	1, 2
Total jitter tolerance	JT	0.65		—	UI p-p	1, 2, 3
Bit error ratio	BER			10 ⁻¹²		
Unit Interval: 1.25 GBaud	UI	800 – 100 ppm	800	800 + 100 ppm	ps	1
Unit Interval: 3.125 GBaud	UI	320 – 100 ppm	320	320 + 100 ppm	ps	1

Note:

- 1. Measured at receiver
- 2. Refer to RapidIO[™] 1×/4× LP Serial Physical Layer Specification for interpretation of jitter specifications.
- 3. Total jitter is composed of three components: deterministic jitter, random jitter, and single frequency sinusoidal jitter. The sinusoidal jitter may have any amplitude and frequency in the unshaded region of Figure 42. The sinusoidal jitter component is included to ensure margin for low frequency jitter, wander, noise, crosstalk and other variable system effects.

The sinusoidal jitter in the total jitter tolerance may have any amplitude and frequency in the unshaded region of Figure 42.

3 Hardware Design Considerations

This section discusses the hardware design considerations.

3.1 System Clocking

This section describes the PLL configuration of the device.

This device includes six PLLs, as follows:

• There are two selectable core cluster PLLs that generate a core clock from the externally supplied SYSCLK input. Core complex 0–1 and platform can select from CC1 PLL; core complex 2–3 can select from CC2 PLL. The frequency ratio between the core cluster PLLs and SYSCLK is selected using the configuration bits as described in Section 3.1.3,

Hardware Design Considerations

 ECn_GTX_CLK125 is a 125-MHz input clock on the dTSEC ports. If the dTSEC ports are not used for RGMII, the ECn_GTX_CLK125 input can be tied off to GND.

If RCW field I2C = 0b0100 or 0b0101 (RCW bits 354–357), the SDHC_WP and $\overline{SDHC_CD}$ input signals are enabled for external use. If SDHC_WP and $\overline{SDHC_CD}$ are selected and not used, they must be externally pulled low such that SDHC_WP = 0 (write enabled) and $\overline{SDHC_CD} = 0$ (card detected). If RCW field I2C \neq 0b0100 or 0b0101, thereby selecting either I2C3 or GPIO functionality, SDHC_WP and $\overline{SDHC_CD}$ are internally driven such that SDHC_WP = write enabled and $\overline{SDHC_CD} = card detected$ and the selected I2C3 or GPIO external pin functionality may be used.

TMP_DETECT pin and LP_TMP DETECT pin are active low input to the Security Monitor (refer to the "Secure Boot and Trust Architecture" chapter of the chip reference manual). If a tamper sensor is used, it must maintain the signal at the specified voltage until a tamper is detected. A 1K pulldown resistor strongly recommended. If Trust is used without tamper sensors, tie high.VDD_LP must be connected even if Low Power features aren't used. Otherwise, the LP_Section will generate internal errors that will prevent the high power trust section from reaching Trusted/Secure state.

3.6.1 Legacy JTAG Configuration Signals

Correct operation of the JTAG interface requires configuration of a group of system control pins as demonstrated in Figure 55. Care must be taken to ensure that these pins are maintained at a valid negated state under normal operating conditions as most have asynchronous behavior and spurious assertion will give unpredictable results.

Boundary-scan testing is enabled through the JTAG interface signals. The TRST signal is optional in the IEEE Std 1149.1 specification, but it is provided on all processors built on Power Architecture technology. The device requires TRST to be asserted during power-on reset flow to ensure that the JTAG boundary logic does not interfere with normal chip operation. While the TAP controller can be forced to the reset state using only the TCK and TMS signals, generally systems assert TRST during the power-on reset flow. Simply tying TRST to PORESET is not practical because the JTAG interface is also used for accessing the common on-chip processor (COP), which implements the debug interface to the chip.

The COP function of these processors allow a remote computer system (typically, a PC with dedicated hardware and debugging software) to access and control the internal operations of the processor. The COP interface connects primarily through the JTAG port of the processor, with some additional status monitoring signals. The COP port requires the ability to independently assert PORESET or TRST in order to fully control the processor. If the target system has independent reset sources, such as voltage monitors, watchdog timers, power supply failures, or push-button switches, then the COP reset signals must be merged into these signals with logic.

The arrangement shown in Figure 55 allows the COP port to independently assert **PORESET** or **TRST**, while ensuring that the target can drive **PORESET** as well.

The COP interface has a standard header, shown in Figure 54, for connection to the target system, and is based on the 0.025" square-post, 0.100" centered header assembly (often called a Berg header). The connector typically has pin 14 removed as a connector key.

The COP header adds many benefits such as breakpoints, watchpoints, register and memory examination/modification, and other standard debugger features. An inexpensive option can be to leave the COP header unpopulated until needed.

There is no standardized way to number the COP header; so emulator vendors have issued many different pin numbering schemes. Some COP headers are numbered top-to-bottom then left-to-right, while others use left-to-right then top-to-bottom. Still others number the pins counter-clockwise from pin 1 (as with an IC). Regardless of the numbering scheme, the signal placement recommended in Figure 54 is common to all known emulators.

3.6.1.1 Termination of Unused Signals

If the JTAG interface and COP header is not used, Freescale recommends the following connections:

TRST must be tied to PORESET through a 0 kΩ isolation resistor so that it is asserted when the system reset signal (PORESET) is asserted, ensuring that the JTAG scan chain is initialized during the power-on reset flow. Freescale recommends that the COP header be designed into the system as shown in Figure 55. If this is not possible, the

5 Security Fuse Processor

The device implements the QorIQ platform's Trust Architecture supporting capabilities such as secure boot. Use of the Trust Architecture features is dependent on programming fuses in the Security Fuse Processor (SFP). The details of the Trust Architecture and SFP can be found in the chip reference manual.

In order to program SFP fuses, the user is required to supply 1.5 V to the POV_{DD} pin per Section 2.2, "Power Up Sequencing." POV_{DD} should only be powered for the duration of the fuse programming cycle, with a per device limit of two fuse programming cycles. All other times POV_{DD} must be connected to GND. The sequencing requirements for raising and lowering POV_{DD} are shown in Figure 8. To ensure device reliability, fuse programming must be performed within the recommended fuse programming temperature range per Table 3.

Users not implementing the QorIQ platform's Trust Architecture features are not required to program fuses and should connect POV_{DD} to GND.

6 Ordering Information

Contact your local Freescale sales office or regional marketing team for ordering information.

6.1 Part Numbering Nomenclature

This table provides the Freescale QorIQ platform part numbering nomenclature. Not all possible combinations of part numbers implied by the part numbering scheme are supported. For a list of available part numbers, contact your Freescale Sales office. Each part number also contains a revision code which refers to the die mask revision number.

р	n	nn	n	x	t	е	n	С	d	r
Generation	Platform	Number of Cores	Derivative	Qual Status	Temp. Range	Encryption	Package Type	CPU Freq	DDR Data Rate	Die Revision
P = 45 nm	1–5	01 = 1 core 02 = 2 cores 04 = 4 cores	0–9	P = Prototype N = Industrial qualification	S = Std temp X = Extended temp (-40 to 105C)	E = SEC present N = SEC not present	1 = FC-PBGA Pb-free spheres 7 = FC-PBGA C4 and sphere Pb-free	F = 667 MHz H = 800 MHz K = 1000 MHz M = 1200 MHz	L = 1067 MT/s M = 1200 MT/s	A = Rev 1.0 B = Rev 1.1 C = Rev 2.0

Table 107. Part Numbering Nomenclature

6.2 Orderable Part Numbers Addressed by this Document

This table provides the Freescale orderable part numbers addressed by this document for the chip.

Revision History

6.2.1 Part Marking

Parts are marked as in the example shown in this figure.

Notes:

P2040NSE1MMB is the orderable part number. See Table 107 for details.

ATWLYYWW is the test traceability code.

MMMMMM is the mask number.

CCCCC is the country code.

YWWLAZ is the assembly traceability code.

Figure 64. Part Marking for FC-PBGA Device

7 Revision History

This table provides a revision history for this document.

Table 108. Revision History

Rev. Number	Date	Description
2	02/2013	 In Table 7, "P2040 I/O Power Supply Estimated Values," updated the USB power supply with USB_Vdd_3P3 and updated the typical value with "0.003" in the Others (Reset, System Clock, JTAG & Misc.) row. In Table 8, "Device AVDD Power Dissipation," removed V_{DD_LP} from table. Added Table 10, "VDD_LP Power Dissipation." In Table 53, "MPIC Input AC Timing Specifications," added Trust inputs AC timing and footnote 2. In Table 93, "Processor Clocking Specifications," updated footnote 8 with Rev 1.1 silicon. In Table 107, "Part Numbering Nomenclature," added "C" in the Die Revision collumn. In Section 6.2, "Orderable Part Numbers Addressed by this Document," added the device part numbers for Rev 2.0 silicon.