

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e500mc
Number of Cores/Bus Width	4 Core, 32-Bit
Speed	1.2GHz
Co-Processors/DSP	-
RAM Controllers	DDR3, DDR3L
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (5), 10Gbps (1)
SATA	SATA 3Gbps (2)
USB	USB 2.0 + PHY (2)
Voltage - I/O	1.0V, 1.35V, 1.5V, 1.8V, 2.5V, 3.3V
Operating Temperature	-40°C ~ 105°C (TA)
Security Features	-
Package / Case	· ·
Supplier Device Package	780-FCPBGA (23x23)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=p2041nxn1mmb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Assignments and Reset States

Table	1.	Pin	List	bv	Bus ((continued)
			_	~,		

Signal	Signal Description	Package Pin Number	Pin Type	Power Supply	Note
МСКО	Clock	AD14	0	GV _{DD}	—
MCK1	Clock	AE13	0	GV _{DD}	—
MCK2	Clock	AG13	0	$\mathrm{GV}_{\mathrm{DD}}$	
МСКЗ	Clock	AG14	0	$\mathrm{GV}_{\mathrm{DD}}$	
МСКО	Clock Complements	AE14	0	GV _{DD}	
MCK1	Clock Complements	AD13	0	GV _{DD}	
MCK2	Clock Complements	AH13	0	GV _{DD}	
МСКЗ	Clock Complements	AH14	0	GV _{DD}	
MODT0	On Die Termination	AC19	0	$\mathrm{GV}_{\mathrm{DD}}$	
MODT1	On Die Termination	AD22	0	GV _{DD}	
MODT2	On Die Termination	AG18	0	GV _{DD}	
MODT3	On Die Termination	AH21	0	GV _{DD}	
MDIC0	Driver Impedance Calibration	AG12	I/O	GV _{DD}	16
MDIC1	Driver Impedance Calibration	AE12	I/O	GV _{DD}	16
Local Bus Controller Interface					
LAD00	Muxed Data/Address	J6	I/O	BV _{DD}	3
LAD01	Muxed Data/Address	J4	I/O	BV_DD	3
LAD02	Muxed Data/Address	K2	I/O	BV_DD	3
LAD03	Muxed Data/Address	K4	I/O	BV_DD	3
LAD04	Muxed Data/Address	L1	I/O	BV_DD	3
LAD05	Muxed Data/Address	J5	I/O	BV_DD	3
LAD06	Muxed Data/Address	N5	I/O	BV_DD	3
LAD07	Muxed Data/Address	N2	I/O	BV_DD	3
LAD08	Muxed Data/Address	N3	I/O	BV_DD	3
LAD09	Muxed Data/Address	N1	I/O	BV_DD	3
LAD10	Muxed Data/Address	P4	I/O	BV_DD	3
LAD11	Muxed Data/Address	R7	I/O	BV_DD	3
LAD12	Muxed Data/Address	T4	I/O	BV_DD	3
LAD13	Muxed Data/Address	U2	I/O	BV_DD	3
LAD14	Muxed Data/Address	Т6	I/O	BV_DD	3
LAD15	Muxed Data/Address	T7	I/O	BV _{DD}	3
LA16	Address	K6	I/O	BV _{DD}	31
LA17	Address	К3	I/O	BV _{DD}	31
LA18	Address	P6	I/O	BV _{DD}	31

Table 2. Absolute Operating Conditions¹ (continued)

Parameter	Symbol	Max Value	Unit	Note
Note:				

- 1. Functional operating conditions are given in Table 3. Absolute maximum ratings are stress ratings only; functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.
- Caution: MV_{IN} must not exceed GV_{DD} by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- 3. Caution: LV_{IN} must not exceed LV_{DD} by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- 4. **Caution:** CV_{IN} must not exceed CV_{DD} by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- 5. Caution: BV_{IN} must not exceed BV_{DD} by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- 6. **Caution:** OV_{IN} must not exceed OV_{DD} by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- 7. (C,X,B,G,L,O)V_{IN} may overshoot (for V_{IH}) or undershoot (for V_{IL}) to the voltages and maximum duration shown in Figure 7.
- Ethernet MII Management Interface 2 pins function as open drain I/Os. The interface conforms to 1.2 V nominal voltage levels. LV_{DD} must be powered to use this interface.
- 9. Supply voltage specified at the voltage sense pin. Voltage input pins must be regulated to provide specified voltage at the sense pin.
- 10.Core Group A and Platform supply (VDD_CA_PL) and Core Group B supply (VDD_CB) were separate supplies in Rev1.0, they are tied together in Rev1.1.

2.1.2 Recommended Operating Conditions

This table provides the recommended operating conditions for this device. Note that proper device operation outside these conditions is not guaranteed.

Parameter	Symbol	Recommended Value	Unit	Note
Core Group A (cores 0–1) and platform supply voltage (Silicon Rev 1.0)	V _{DD_CA_PL}	1.0 ± 50 mV	V	4, 5
Core Group B (cores 2–3) supply voltage (Silicon Rev 1.0)	V _{DD_CB}	1.0 ± 50 mV	V	4, 5
Core Group A (cores 0–1), Core Group B (cores 2–3) and platform supply voltage (Silicon Rev 1.1)	V _{DD_CA_CB_PL}	1.0 ± 50 mV	V	4, 5
PLL supply voltage (core, platform, DDR)	AV _{DD}	1.0 ± 50 mV	V	—
PLL supply voltage (SerDes)	AV _{DD_SRDS}	1.0 ± 50 mV	V	
Fuse programming override supply	POV _{DD}	1.5 ± 75 mV	V	2
DUART, I ² C, DMA, MPIC, GPIO, system control and power management, clocking, debug, I/O voltage select, and JTAG I/O voltage	OV _{DD}	3.3 ± 165 mV	V	_
eSPI, eSDHC, GPIO	CV _{DD}	3.3 ± 165 mV 2.5 ± 125 mV 1.8 ± 90 mV	V	_
DDR DRAM I/O voltage DDR3 DDR3L	GV _{DD}	1.5 ± 75 mV 1.35 ± 67 mV	V	

Table 3. Recommended Operating Conditions

WARNING

Incorrect voltage select settings can lead to irreversible device damage. See Section 3.2, "Supply Power Default Setting."

NOTE

From a system standpoint, if any of the I/O power supplies ramp prior to the $V_{DD_CA_CB_PL}$ supplies, the I/Os associated with that I/O supply may drive a logic one or zero during power-up, and extra current may be drawn by the device.

2.3 Power Down Requirements

The power-down cycle must complete such that power supply values are below 0.4 V before a new power-up cycle can be started.

If performing secure boot fuse programming per Section 2.2, "Power Up Sequencing," it is required that $POV_{DD} = GND$ before the system is power cycled (PORESET assertion) or powered down ($V_{DD_CA_CB_PL}$ ramp down) per the required timing specified in Table 5.

 $V_{DD_CA_CB_PL}$ and USB_ V_{DD} _1P0 must be ramped down simultaneously. USB_ V_{DD} _1P8_DECAP should starts ramping down only after USB_ V_{DD} _3P3 is below 1.65 V.

2.4 Power Characteristics

This table shows the power dissipations of the $V_{DD_CA_CB_PL}$ supply for various operating platform clock frequencies versus the core and DDR clock frequencies.

Power Mode	Core Freq (MHz)	Plat Freq (MHz)	DDR Data Rate (MT/s)	FM Freq (MHz)	V _{DD_CA_CB_PL} (V)	Junction Temp (°C)	Core & Platform Power ¹ (W)	V _{DD_CA_CB_PL} Power (W)	Core & Platform Power ¹ (W)	V _{DD_CA_CB_PL} Power (W)	SV _{DD} Power (W)	Note
							Qua	ad Cores	Du	al Cores		
Typical	1200	600	1200	500	1.0	65	10.3	—	9.8	—	_	2, 3
Thermal						105	14.2	_	13.8	—	_	5, 7
Maximum							14.8	13.5	14.0	12.8	1.4	4, 6, 7
Typical	1000	533	1067	467	1.0	65	9.2	_	8.6	—	_	2, 3
Thermal						105	12.5	_	12.1	—	_	5, 7
Maximum							13.0	11.7	12.3	11.0	1.4	4, 6, 7
Typical	800	534	1067	467	1.0	65	9.0	_	8.4	—	_	2, 3
Thermal						105	12.2	_	12.0	_		5, 7
Maximum							12.6	11.4	12.1	10.9	1.4	4, 6, 7

Table 6. Device Power Dissipation

2.9.1 DDR3 and DDR3L SDRAM Interface DC Electrical Characteristics

This table provides the recommended operating conditions for the DDR SDRAM controller when interfacing to DDR3 SDRAM.

Table 20. DDR3 SDRAM Interface DC Electrical Characteristics (GV_{DD} = 1.5 V)

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Мах	Unit	Note
I/O reference voltage	MV _{REF} n	$0.49 imes GV_{DD}$	$0.51 imes GV_{DD}$	V	1, 2, 3, 4
Input high voltage	V _{IH}	MV _{REF} <i>n</i> + 0.100	GV _{DD}	V	5
Input low voltage	V _{IL}	GND	MV _{REF} <i>n</i> – 0.100	V	5
I/O leakage current	I _{OZ}	-50	50	μA	6

Note:

- 1. GV_{DD} is expected to be within 50 mV of the DRAM's voltage supply at all times. The DRAM's and memory controller's voltage supply may or may not be from the same source.
- MV_{REF}n is expected to be equal to 0.5 × GV_{DD} and to track GV_{DD} DC variations as measured at the receiver. Peak-to-peak noise on MV_{REF}n may not exceed the MV_{REF}n DC level by more than ±1% of the DC value (that is, ±15mV).
- 3. V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made, and it is expected to be equal to MV_{REF}*n* with a min value of MV_{REF}*n* 0.04 and a max value of MV_{REF}*n* + 0.04. V_{TT} should track variations in the DC level of MV_{REF}*n*.
- 4. The voltage regulator for $MV_{REF}n$ must meet the specifications stated in Table 23.
- 5. Input capacitance load for DQ, DQS, and DQS are available in the IBIS models.
- 6. Output leakage is measured with all outputs disabled, 0 V \leq V_{OUT} \leq GV_{DD}.

This table provides the recommended operating conditions for the DDR SDRAM controller when interfacing to DDR3L SDRAM.

Table 21. DDR3L SDRAM Interface DC Electrical Characteristics (GV_{DD} = 1.35 V)

Parameter	Symbol	Min	Мах	Unit	Note
I/O reference voltage	MV _{REF} n	$0.49 imes GV_{DD}$	$0.51 imes GV_{DD}$	V	1, 2, 3, 4
Input high voltage	V _{IH}	MV _{REF} n + 0.090	GV _{DD}	V	5
Input low voltage	V _{IL}	GND	MV _{REF} n – 0.090	V	5
I/O leakage current	I _{OZ}	-50	50	μA	6
Output high current (V _{OUT} = 0.641 V)	I _{ОН}		-23.8	mA	7, 8
Output low current (V _{OUT} = 0.641 V)	I _{OL}	23.8	—	mA	7, 8

2.11.2 DUART AC Electrical Specifications

This table provides the AC timing parameters for the DUART interface.

Table 35. DUART AC Timing Specifications

For recommended operating conditions, see Table 3.

Parameter	Value	Unit	Note
Minimum baud rate	f _{PLAT} /(2 × 1,048,576)	baud	1
Maximum baud rate	$f_{PLAT}/(2 \times 16)$	baud	1, 2
Oversample rate	16	_	3

Note:

- 1. f_{PLAT} refers to the internal platform clock.
- 2. The actual attainable baud rate is limited by the latency of interrupt processing.
- 3. The middle of a start bit is detected as the eighth sampled 0 after the 1-to-0 transition of the start bit. Subsequent bit values are sampled every 16th sample.

2.12 Ethernet: Data path Three-Speed Ethernet (dTSEC), Management Interface, IEEE Std 1588

This section provides the AC and DC electrical characteristics for the data path three-speed Ethernet controller, the Ethernet Management Interface, and the IEEE Std 1588 interface.

2.12.1 SGMII Timing Specifications

See Section 2.20.8, "SGMII Interface."

2.12.2 RGMII Timing Specifications

This section discusses the electrical characteristics for the MII and RGMII interfaces.

2.12.2.1 RGMII DC Electrical Characteristics

This table shows the RGMII DC electrical characteristics when operating at $LV_{DD} = 2.5$ V supply.

Table 36. RGMII DC Electrical Characteristics (LV_{DD} = 2.5 V)

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Max	Unit	Note
Input high voltage	V _{IH}	1.70	—	V	1
Input low voltage	V _{IL}		0.70	V	1
Input current ($LV_{IN} = 0 V \text{ or } LV_{IN} = LV_{DD}$)	I _{IH}	—	±40	μA	2
Output high voltage (LV _{DD} = min, $I_{OH} = -1.0 \text{ mA}$)	V _{OH}	2.00	—	V	
Output low voltage (LV _{DD} = min, I _{OL} = 1.0 mA)	V _{OL}	—	0.40	V	

Note:

1. The min V_{IL} and max V_{IH} values are based on the respective min and max LV_{IN} values found in Table 3.

2. The symbol V_{IN}, in this case, represents the LV_{IN} symbols referenced in Table 2 and Table 3.

Table 43. eTSEC IEEE 1588 AC Timing Specifications (continued)

For recommended operating conditions, see Table 3.

|--|

Note:

- T_{RX_CLK} is the maximum clock period of eTSEC receiving clock selected by TMR_CTRL[CKSEL]. See the chip reference manual for a description of TMR_CTRL registers.
- The maximum value of t_{T1588CLK} is not only defined by the value of T_{RX_CLK}, but also defined by the recovered clock. For example, for 10/100/1000 Mbps modes, the maximum value of t_{T1588CLK} is 2800, 280, and 56 ns, respectively.
- 3. It needs to be at least two times the clock period of the clock selected by TMR_CTRL[CKSEL]. See the chip reference manual for a description of TMR_CTRL registers.

This figure shows the data and command output AC timing diagram.

Note: The output delay is counted starting at the rising edge if t_{T1588CLKOUT} is noninverting. Otherwise, it is counted starting at the falling edge.

Figure 18. eTSEC IEEE 1588 Output AC Timing

This figure shows the data and command input AC timing diagram.

Figure 19. eTSEC IEEE 1588 Input AC Timing

This figure shows how the AC timing diagram applies to GPCM. The same principle applies to UPM and FCM.

¹ t_{addr} is programmable and determined by LCRR[EADC] and ORx[EAD].

 2 t_{arcs} , t_{awcs} , t_{aoe} , t_{rc} , t_{oen} , t_{awe} , t_{wc} , t_{wen} are determined by ORx. See the chip reference manual.

Figure 22. GPCM Output Timing Diagram

2.15 Enhanced Secure Digital Host Controller (eSDHC)

This section describes the DC and AC electrical specifications for the eSDHC interface.

2.15.1 eSDHC DC Electrical Characteristics

This table provides the eSDHC electrical characteristics.

Table 50. eSDHC Interface DC Electrical Characteristics

Characteristic	Symbol	Condition	Min	Мах	Unit	Note
Input high voltage	V _{IH}		$0.625 \times CV_{DD}$	—	V	1
Input low voltage	V _{IL}	_	—	$0.25\times CV_{DD}$	V	1
Input/output leakage current	I _{IN} /I _{OZ}		-50	50	μA	—
Output high voltage	V _{OH}	I _{OH} = −100 μA at CV _{DD} min	$0.75 \times CV_{DD}$		V	_

VM = Midpoint Voltage (OV_{DD}/2)

Figure 24. eSDHC Data and Command Input/Output Timing Diagram Referenced to Clock

2.16 Multicore Programmable Interrupt Controller (MPIC) Specifications

This section describes the DC and AC electrical specifications for the multicore programmable interrupt controller.

2.16.1 MPIC DC specifications

This table provides the DC electrical characteristics for the MPIC interface.

Table 52. MPIC DC Electrical Characteristics (OV_{DD} = 3.3 V)

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Мах	Unit	Note
Input high voltage	V _{IH}	2.0	_	V	1
Input low voltage	V _{IL}	_	0.8	V	1
Input current ($OV_{IN} = 0$ V or $OV_{IN} = OV_{DD}$)	I _{IN}	_	±40	μΑ	2
Output high voltage ($OV_{DD} = min, I_{OH} = -2 mA$)	V _{OH}	2.4		V	_
Output low voltage (OV _{DD} = min, I_{OL} = 2 mA)	V _{OL}	—	0.4	V	—

This figure provides the JTAG clock input timing diagram.

Figure 28. Boundary-Scan Timing Diagram

2.18 I²C

This section describes the DC and AC electrical characteristics for the I²C interface.

2.18.1 I²C DC Electrical Characteristics

This table provides the DC electrical characteristics for the I²C interfaces.

Table 56. I²C DC Electrical Characteristics (OV_{DD} = 3.3 V)

Parameter	Symbol	Min	Max	Unit	Note
Input high voltage	V _{IH}	2		V	1
Input low voltage	V _{IL}		0.8	V	1
Output low voltage (OV _{DD} = min, I _{OL} = 2 mA)	V _{OL}	0	0.4	V	2

— For an external AC-coupled connection, there is no common mode voltage requirement for the clock driver. Because the external AC-coupling capacitor blocks the DC level, the clock driver and the SerDes reference clock receiver operate in different common mode voltages. The SerDes reference clock receiver in this connection scheme has its common mode voltage set to SGND. Each signal wire of the differential inputs is allowed to swing below and above the common mode voltage (SGND). This figure shows the SerDes reference clock input requirement for AC-coupled connection scheme.

Figure 35. Differential Reference Clock Input DC Requirements (External AC-Coupled)

- Single-Ended Mode
 - The reference clock can also be single-ended. The SD_REF_CLKn input amplitude (single-ended swing) must be between 400 mV and 800 mV peak-peak (from V_{MIN} to V_{MAX}) with SD_REF_CLKn either left unconnected or tied to ground.
 - The SD_REF_CLKn input average voltage must be between 200 and 400 mV. Figure 36 shows the SerDes reference clock input requirement for single-ended signaling mode.
 - To meet the input amplitude requirement, the reference clock inputs may need to be DC- or AC-coupled externally. For the best noise performance, the reference of the clock could be DC- or AC-coupled into the unused phase (SD_REF_CLKn) through the same source impedance as the clock input (SD_REF_CLKn) in use.

Figure 36. Single-Ended Reference Clock Input DC Requirements

2.20.6.1.3 Aurora Receiver DC Electrical Characteristics

This table provides the Aurora receiver DC electrical characteristics (XVDD = 1.5 V or 1.8 V).

Table 75. Aurora Receiver DC Electrical Characteristics (XV_{DD} = 1.5 V or 1.8 V)

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Typical	Мах	Unit	Note
Differential input voltage	V _{IN}	120	900	1200	mV p-p	1

Note:

1. Measured at receiver

2.20.6.2 Aurora AC Timing Specifications

This section describes the AC timing specifications for Aurora.

2.20.6.2.1 Aurora AC Clocking Requirements for SD_REF_CLK*n* and SD_REF_CLK*n*

Only SerDes bank 2(SD_REF_CLK2 and SD_REF_CLK2) may be used for SerDes Aurora configurations based on the RCW configuration field SRDS_PRTCL. Aurora is not supported on SerDes banks 1.

2.20.6.2.2 Aurora Transmitter AC Timing Specifications

This table defines the Aurora transmitter AC timing specifications. RefClk jitter is not included.

Table 76. Aurora Transmitter AC Timing Specifications

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Typical	Мах	Unit
Deterministic jitter	J _D	_	—	0.17	UI p-p
Total jitter	J _T		_	0.35	UI p-p
Unit Interval: 2.5 GBaud	UI	400 – 100 ppm	400	400 + 100 ppm	ps
Unit Interval: 3.125 GBaud	UI	320 – 100 ppm	320	320 + 100 ppm	ps
Unit Interval: 5.0 GBaud	UI	200 – 100 ppm	200	200 + 100 ppm	ps

2.20.6.2.3 Aurora Receiver AC Timing Specifications

This table defines the Aurora receiver AC timing specifications. RefClk jitter is not included.

Table 77. Aurora Receiver AC Timing Specifications

Parameter	Symbol	Min	Typical	Мах	Unit	Note
Deterministic jitter tolerance	J _D	0.37	_	—	UI p-p	1
Combined deterministic and random jitter tolerance	J _{DR}	0.55			UI p-p	1
Total jitter tolerance	J _T	0.65	—	—	UI p-p	1, 2
Bit error rate	BER	_		10 ⁻¹²		

Table 77. Aurora Receiver AC Timing Specifications (continued)

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Typical	Max	Unit	Note
Unit Interval: 2.5 GBaud	UI	400 – 100 ppm	400	400 + 100 ppm	ps	
Unit Interval: 3.125 GBaud	UI	320 – 100 ppm	320	320 + 100 ppm	ps	
Unit Interval: 5.0 GBaud	UI	200 – 100 ppm	200	200 + 100 ppm	ps	

Note:

1. Measured at receiver

2. Total jitter is composed of three components: deterministic jitter, random jitter, and single frequency sinusoidal jitter. The sinusoidal jitter may have any amplitude and frequency in the unshaded region of Figure 42. The sinusoidal jitter component is included to ensure margin for low frequency jitter, wander, noise, crosstalk and other variable system effects.

2.20.7 Serial ATA (SATA)

This section describes the DC and AC electrical specifications for the serial ATA (SATA) interface.

2.20.7.1 SATA DC Electrical Characteristics

This section describes the DC electrical characteristics for SATA.

2.20.7.1.1 SATA DC Transmitter Output Characteristics

This table provides the DC differential transmitter output DC characteristics for the SATA interface at Gen1i or 1.5 Gbits/s transmission.

Table 78. Gen1i/1.5G Transmitter (Tx) DC Specifications (XV_{DD} = 1.5 V or 1.8 V)

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Тур	Мах	Unit	Note
Tx differential output voltage	V _{SATA_TXDIFF}	400		600	mV p-p	1
Tx differential pair impedance	Z _{SATA_TXDIFFIM}	85	100	115	Ω	2

Note:

1. Terminated by 50 Ω load.

2. DC impedance

This table provides the differential transmitter output DC characteristics for the SATA interface at Gen2i or 3.0 Gbits/s transmission.

Table 79. Gen 2i/3G Transmitter (Tx) DC Specifications (XV_{DD} = 1.5 V or 1.8 V)

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Тур	Max	Unit	Note
Tx diff output voltage	V _{SATA_TXDIFF}	400	—	700	mV p-p	1
Tx differential pair impedance	Z _{SATA_TXDIFFIM}	85	100	115	Ω	

Note:

1. Terminated by 50 Ω load.

This table provides the differential receiver input AC characteristics for the SATA interface at Gen2i or 3.0 Gbits/s transmission. The AC timing specifications do not include RefClk jitter.

Table 86. Gen 2i/3G Receiver (Rx) AC Specifications

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Typical	Мах	Unit	Note
Unit Interval	T _{UI}	333.2167	333.3333	335.1167	ps	_
Total jitter $f_{C3dB} = f_{BAUD} \div 10$	U _{SATA_TXTJfB/10}			0.46	UI p-p	1
Total jitter $f_{C3dB} = f_{BAUD} \div 500$	U _{SATA_TXTJfB/500}	—	—	0.60	UI p-p	1
Total jitter $f_{C3dB} = f_{BAUD} \div 1667$	U _{SATA_TXTJfB/1667}			0.65	UI p-p	1
Deterministic jitter, $f_{C3dB} = f_{BAUD} \div 10$	U _{SATA_TXDJfB/10}			0.35	UI p-p	1
Deterministic jitter, $f_{C3dB} = f_{BAUD} \div 500$	U _{SATA_TXDJfB/500}	—	—	0.42	UI p-p	1
Deterministic jitter, $f_{C3dB} = f_{BAUD} \div 1667$	U _{SATA_TXDJfB/1667}			0.35	UI p-p	1

Note:

1. Measured at receiver.

2.20.8 SGMII Interface

Each SGMII port features a 4-wire AC-coupled serial link from the SerDes interface of the device, as shown in Figure 44, where C_{TX} is the external (on board) AC-coupled capacitor. Each output pin of the SerDes transmitter differential pair features 50- Ω output impedance. Each input of the SerDes receiver differential pair features 50- Ω on-die termination to XGND. The reference circuit of the SerDes transmitter and receiver is shown in Figure 39.

2.20.8.0.1 SGMII Clocking Requirements for SD_REF_CLK*n* and SD_REF_CLK*n*

When operating in SGMII mode, the EC_GTX_CLK125 clock is not required for this port. Instead, a SerDes reference clock is required on SD_REF_CLK[1:2] and SD_REF_CLK[1:2] pins. SerDes banks 1–2 may be used for SerDes SGMII configurations based on the RCW Configuration field SRDS_PRTCL.

For more information on these specifications, see Section 2.20.2, "SerDes Reference Clocks."

2.20.8.1 SGMII DC Electrical Characteristics

This section discusses the electrical characteristics for the SGMII interface.

2.20.8.1.1 SGMII Transmit DC Timing Specifications

This table describe the SGMII SerDes transmitter and receiver AC-coupled DC electrical characteristics for 1.25 GBaud. Transmitter DC characteristics are measured at the transmitter outputs (SD_TXn and $\overline{SD_TXn}$) as shown in Figure 45.

Table 87. SGMII DC Transmitter Electrical Characteristics (XV_{DD} = 1.5 V or 1.8 V)

Parameter	Symbol	Min	Тур	Мах	Unit	Note
Output high voltage	V _{OH}	—		1.5 x IV _{OD} I _{-max}	mV	1
Output low voltage	V _{OL}	IV _{OD} I _{-min} /2	—		mV	1

Figure 46. SGMII AC Test/Measurement Load

2.20.8.2.3 SGMII Receiver AC Timing Specification

This table provides the SGMII receiver AC timing specifications. The AC timing specifications do not include RefClk jitter. Source synchronous clocking is not supported. Clock is recovered from the data.

Table 92. SGMII Receive AC Timing Specifications

For recommended operating conditions, see Table 3.

Parameter	Symbol	Min	Тур	Мах	Unit	Note
Deterministic jitter tolerance	JD	0.37		—	UI p-p	1, 2
Combined deterministic and random jitter tolerance	JDR	0.55		—	UI p-p	1, 2
Total jitter tolerance	JT	0.65		—	UI p-p	1, 2, 3
Bit error ratio	BER			10 ⁻¹²		
Unit Interval: 1.25 GBaud	UI	800 – 100 ppm	800	800 + 100 ppm	ps	1
Unit Interval: 3.125 GBaud	UI	320 – 100 ppm	320	320 + 100 ppm	ps	1

Note:

- 1. Measured at receiver
- 2. Refer to RapidIO[™] 1×/4× LP Serial Physical Layer Specification for interpretation of jitter specifications.
- 3. Total jitter is composed of three components: deterministic jitter, random jitter, and single frequency sinusoidal jitter. The sinusoidal jitter may have any amplitude and frequency in the unshaded region of Figure 42. The sinusoidal jitter component is included to ensure margin for low frequency jitter, wander, noise, crosstalk and other variable system effects.

The sinusoidal jitter in the total jitter tolerance may have any amplitude and frequency in the unshaded region of Figure 42.

3 Hardware Design Considerations

This section discusses the hardware design considerations.

3.1 System Clocking

This section describes the PLL configuration of the device.

This device includes six PLLs, as follows:

• There are two selectable core cluster PLLs that generate a core clock from the externally supplied SYSCLK input. Core complex 0–1 and platform can select from CC1 PLL; core complex 2–3 can select from CC2 PLL. The frequency ratio between the core cluster PLLs and SYSCLK is selected using the configuration bits as described in Section 3.1.3,

Hardware Design Considerations

Notes:

- 1. The COP port and target board must be able to independently assert PORESET and TRST to the processor in order to fully control the processor as shown here.
- 2. Populate this with a 10 Ω resistor for short-circuit/current-limiting protection.
- 3. The KEY location (pin 14) is not physically present on the COP header.
- 4. Although pin 12 is defined as a No-Connect, some debug tools may use pin 12 as an additional GND pin for improved signal integrity.
- 5. This switch is included as a precaution for BSDL testing. The switch must be closed to position A during BSDL testing to avoid accidentally asserting the TRST line. If BSDL testing is not being performed, this switch must be closed to position B.
- 6. Asserting HRESET causes a hard reset on the device.
- 7. This is an open-drain gate.

Figure 55. Legacy JTAG Interface Connection

Hardware Design Considerations

3.6.2 Aurora Configuration Signals

Correct operation of the Aurora interface requires configuration of a group of system control pins as demonstrated in Figure 56 and Figure 57. Care must be taken to ensure that these pins are maintained at a valid negated state under normal operating conditions as most have asynchronous behavior and spurious assertion will give unpredictable results.

Freescale recommends that the Aurora 22 pin duplex connector be designed into the system as shown in Figure 58 or the 70 pin duplex connector be designed into the system as shown in Figure 59.

If the Aurora interface is not used, Freescale recommends the legacy COP header be designed into the system as described in Section 3.6.1.1, "Termination of Unused Signals."

Figure 56. Aurora 22 Pin Connector Duplex Pinout

5 Security Fuse Processor

The device implements the QorIQ platform's Trust Architecture supporting capabilities such as secure boot. Use of the Trust Architecture features is dependent on programming fuses in the Security Fuse Processor (SFP). The details of the Trust Architecture and SFP can be found in the chip reference manual.

In order to program SFP fuses, the user is required to supply 1.5 V to the POV_{DD} pin per Section 2.2, "Power Up Sequencing." POV_{DD} should only be powered for the duration of the fuse programming cycle, with a per device limit of two fuse programming cycles. All other times POV_{DD} must be connected to GND. The sequencing requirements for raising and lowering POV_{DD} are shown in Figure 8. To ensure device reliability, fuse programming must be performed within the recommended fuse programming temperature range per Table 3.

Users not implementing the QorIQ platform's Trust Architecture features are not required to program fuses and should connect POV_{DD} to GND.

6 Ordering Information

Contact your local Freescale sales office or regional marketing team for ordering information.

6.1 Part Numbering Nomenclature

This table provides the Freescale QorIQ platform part numbering nomenclature. Not all possible combinations of part numbers implied by the part numbering scheme are supported. For a list of available part numbers, contact your Freescale Sales office. Each part number also contains a revision code which refers to the die mask revision number.

р	n	nn	n	x	t	е	n	С	d	r
Generation	Platform	Number of Cores	Derivative	Qual Status	Temp. Range	Encryption	Package Type	CPU Freq	DDR Data Rate	Die Revision
P = 45 nm	1–5	01 = 1 core 02 = 2 cores 04 = 4 cores	0–9	P = Prototype N = Industrial qualification	S = Std temp X = Extended temp (-40 to 105C)	E = SEC present N = SEC not present	1 = FC-PBGA Pb-free spheres 7 = FC-PBGA C4 and sphere Pb-free	F = 667 MHz H = 800 MHz K = 1000 MHz M = 1200 MHz	L = 1067 MT/s M = 1200 MT/s	A = Rev 1.0 B = Rev 1.1 C = Rev 2.0

Table 107. Part Numbering Nomenclature

6.2 Orderable Part Numbers Addressed by this Document

This table provides the Freescale orderable part numbers addressed by this document for the chip.

Ordering Information

Part Number	р	n	nn	n	x	t	е	n	С	d	r
P2040NSE1FLB P2040NSE7FLC	Ρ	2	04 = 4 core	1	N = Industrial	S = Std temp	E = SEC present	1= FC-PBGA	F = 667 MHz	L = 1067 MT/s	B C
P2040NSN1FLB P2040NSN7FLC					qualification		N = SEC not present	Pb-free spheres 7 =			
P2040NSE1HLB P2040NSE7HLC							E = SEC present	FC-PBGA C4 and sphere	H = 800 MHz		
P2040NSN1HLB P2040NSN7HLC							N = SEC not present	Pb-free			
P2040NSE1KLB P2040NSE7KLC							E = SEC Present		K = 1000 MHz		
P2040NSN1KLB P2040NSN7KLC							N = SEC not present				
P2040NSE1MMB P2040NSE7MMC							E = SEC Present		M = 1200 MHz	M = 1200 MT/s	
P2040NSN1MMB P2040NSN7MMC							N = SEC not present				
P2040NXE1FLB P2040NXE7FLC						X = Extended temp	E = SEC Present		F = 667 MHz	L = 1067 MT/s	
P2040NXN1FLB P2040NXN7FLC							N = SEC not present				
P2040NXE1MMB P2040NXE7MMC							E = SEC Present		M = 1200 MHz	M = 1200 MT/s	
P2040NXN1MMB P2040NXN7MMC							N = SEC not present				

Revision History

6.2.1 Part Marking

Parts are marked as in the example shown in this figure.

Notes:

P2040NSE1MMB is the orderable part number. See Table 107 for details.

ATWLYYWW is the test traceability code.

MMMMMM is the mask number.

CCCCC is the country code.

YWWLAZ is the assembly traceability code.

Figure 64. Part Marking for FC-PBGA Device

7 Revision History

This table provides a revision history for this document.

Table 108. Revision History

Rev. Number	Date	Description
2	02/2013	 In Table 7, "P2040 I/O Power Supply Estimated Values," updated the USB power supply with USB_Vdd_3P3 and updated the typical value with "0.003" in the Others (Reset, System Clock, JTAG & Misc.) row. In Table 8, "Device AVDD Power Dissipation," removed V_{DD_LP} from table. Added Table 10, "VDD_LP Power Dissipation." In Table 53, "MPIC Input AC Timing Specifications," added Trust inputs AC timing and footnote 2. In Table 93, "Processor Clocking Specifications," updated footnote 8 with Rev 1.1 silicon. In Table 107, "Part Numbering Nomenclature," added "C" in the Die Revision collumn. In Section 6.2, "Orderable Part Numbers Addressed by this Document," added the device part numbers for Rev 2.0 silicon.

Rev. Number	Date	Description
1	09/2012	 In Table 1, "Pin List by Bus", added note for pin V_{DD_LP} Updated Table 8, "Device AVDD Power Dissipation". In Table 12, "SYSCLK DC Electrical Characteristics (OV_{DD} = 3.3 V)", updated the input current max value and added input capacitance max value. In Table 51, "eSDHC AC Timing Specifications", updated input setup times from 5 ns to 2.5 ns. In Section 3.1.6.2, "Minimum Platform Frequency Requirements for High-Speed Interfaces", updated the note that the "PCI Express link width" refers to "a single port". In Section 4.1, "Package Parameters for the FC-PBGA", updated the solder ball composition and module height. In Section 4.2, "Mechanical Dimensions of the FC-PBGA", updated the figure for the mechanical dimensions. In Section 3.6, "Connection Recommendations", removed the sentence "If no aspect of Trust Architecture is to be used, all Trust Architecture pins can be tied to GND."
0	06/2012	Initial public release