

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	16
Program Memory Size	4KB (2K x 16)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f1230-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.4.3 RC_IDLE MODE

In RC_IDLE mode, the CPU is disabled but the peripherals continue to be clocked from the internal oscillator block using the INTOSC multiplexer. This mode allows for controllable power conservation during Idle periods.

From RC_RUN, this mode is entered by setting the IDLEN bit and executing a SLEEP instruction. If the device is in another Run mode, first set IDLEN, then set the SCS1 bit and execute SLEEP. Although its value is ignored, it is recommended that SCS0 also be cleared; this is to maintain software compatibility with future devices. The INTOSC multiplexer may be used to select a higher clock frequency by modifying the IRCF bits before executing the SLEEP instruction. When the clock source is switched to the INTOSC multiplexer, the primary oscillator is shut down and the OSTS bit is cleared.

If the IRCF bits are set to any non-zero value, or the INTSRC bit is set, the INTOSC output is enabled. The IOFS bit becomes set, after the INTOSC output becomes stable, after an interval of TIOBST (parameter 39, Table 23-10). Clocks to the peripherals continue while the INTOSC source stabilizes. If the IRCF bits were previously at a non-zero value, or INTSRC was set before the SLEEP instruction was executed and the INTOSC source was already stable, the IOFS bit will remain set. If the IRCF bits and INTSRC are all clear, the INTOSC output will not be enabled, the IOFS bit will remain clear and there will be no indication of the current clock source.

When a wake event occurs, the peripherals continue to be clocked from the INTOSC multiplexer. After a delay of TCSD following the wake event, the CPU begins executing code being clocked by the INTOSC multiplexer. The IDLEN and SCS bits are not affected by the wake-up. The INTRC source will continue to run if either the WDT or the Fail-Safe Clock Monitor is enabled.

4.5 Exiting Idle and Sleep Modes

An exit from Sleep mode or any of the Idle modes is triggered by an interrupt, a Reset or a WDT time-out. This section discusses the triggers that cause exits from power-managed modes. The clocking subsystem actions are discussed in each of the power-managed modes (see Section 4.2 "Run Modes", Section 4.3 "Sleep Mode" and Section 4.4 "Idle Modes").

4.5.1 EXIT BY INTERRUPT

Any of the available interrupt sources can cause the device to exit from an Idle mode or the Sleep mode to a Run mode. To enable this functionality, an interrupt source must be enabled by setting its enable bit in one of the INTCON or PIE registers. The exit sequence is initiated when the corresponding interrupt flag bit is set.

On all exits from Idle or Sleep modes by interrupt, code execution branches to the interrupt vector if the GIE/ GIEH bit (INTCON<7>) is set. Otherwise, code execution continues or resumes without branching (see **Section 11.0 "Interrupts"**).

A fixed delay of interval TCSD following the wake event is required when leaving Sleep and Idle modes. This delay is required for the CPU to prepare for execution. Instruction execution resumes on the first clock cycle following this delay.

4.5.2 EXIT BY WDT TIME-OUT

A WDT time-out will cause different actions depending on which power-managed mode the device is in when the time-out occurs.

If the device is not executing code (all Idle modes and Sleep mode), the time-out will result in an exit from the power-managed mode (see Section 4.2 "Run Modes" and Section 4.3 "Sleep Mode"). If the device is executing code (all Run modes), the time-out will result in a WDT Reset (see Section 20.2 "Watchdog Timer (WDT)").

The WDT timer and postscaler are cleared by executing a SLEEP or CLRWDT instruction, the loss of a currently selected clock source (if the Fail-Safe Clock Monitor is enabled) and modifying the IRCF bits in the OSCCON register if the internal oscillator block is the device clock source.

4.5.3 EXIT BY RESET

Normally, the device is held in Reset by the Oscillator Start-up Timer (OST) until the primary clock becomes ready. At that time, the OSTS bit is set and the device begins executing code. If the internal oscillator block is the new clock source, the IOFS bit is set instead.

The exit delay time from Reset to the start of code execution depends on both the clock sources before and after the wake-up and the type of oscillator if the new clock source is the primary clock. Exit delays are summarized in Table 4-2.

Code execution can begin before the primary clock becomes ready. If either the Two-Speed Start-up (see **Section 20.3 "Two-Speed Start-up"**) or Fail-Safe Clock Monitor (see **Section 20.4 "Fail-Safe Clock Monitor"**) is enabled, the device may begin execution as soon as the Reset source has cleared. Execution is clocked by the INTOSC multiplexer driven by the internal oscillator block. Execution is clocked by the internal oscillator block until either the primary clock becomes ready or a power-managed mode is entered before the primary clock becomes ready; the primary clock is then shut down.

5.6 Reset State of Registers

Most registers are unaffected by a Reset. Their status is unknown on POR and unchanged by all other Resets. The other registers are forced to a "Reset state" depending on the type of Reset that occurred.

Most registers are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. Status bits from the RCON register, \overline{RI} , \overline{TO} , \overline{PD} , \overline{POR} and \overline{BOR} , are set or cleared differently in different Reset situations, as indicated in Table 5-3. These bits are used in software to determine the nature of the Reset. Table 5-4 describes the Reset states for all of the Special Function Registers. These are categorized by Power-on and Brown-out Resets, Master Clear and WDT Resets and WDT wake-ups.

Condition	Program		RCC	N Reg	jister			STKPTR Register		
Condition	Counter	SBOREN	RI	то	PD	POR	BOR	STKFUL	STKUNF	
Power-on Reset	0000h	1	1	1	1	0	0	0	0	
RESET Instruction	0000h	u (2)	0	u	u	u	u	u	u	
Brown-out Reset	0000h	u (2)	1	1	1	u	0	u	u	
MCLR during Power-Managed Run Modes	0000h	_ປ (2)	u	1	u	u	u	u	u	
MCLR during Power-Managed Idle Modes and Sleep Mode	0000h	u (2)	u	1	0	u	u	u	u	
WDT Time-out during Full Power or Power-Managed Run Mode	0000h	_ປ (2)	u	0	u	u	u	u	u	
MCLR during Full Power Execution	0000h	ս (2)	u	u	u	u	u	u	u	
Stack Full Reset (STVREN = 1)	0000h	ս (2)	u	u	u	u	u	1	u	
Stack Underflow Reset (STVREN = 1)	0000h	ս (2)	u	u	u	u	u	u	1	
Stack Underflow Error (not an actual Reset, STVREN = 0)	0000h	ս (2)	u	u	u	u	u	u	1	
WDT Time-out during Power-Managed Idle or Sleep Modes	PC + 2	ս (2)	u	0	0	u	u	u	u	
Interrupt Exit from Power-Managed Modes	PC + 2 ⁽¹⁾	u (2)	u	u	0	u	u	u	u	

TABLE 5-3: STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION FOR RCON REGISTER

Legend: u = unchanged

Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bit is set, the PC is loaded with the interrupt vector (008h or 0018h).

2: Reset state is '1' for POR and unchanged for all other Resets when software BOR is enabled (BOREN1:BOREN0 Configuration bits = 01 and SBOREN = 1); otherwise, the Reset state is '0'.

6.1.2.2 Return Stack Pointer (STKPTR)

The STKPTR register (Register 6-1) contains the Stack Pointer value, the STKFUL (Stack Full) status bit and the STKUNF (Stack Underflow) status bits. The value of the Stack Pointer can be 0 through 31. The Stack Pointer increments before values are pushed onto the stack and decrements after values are popped off the stack. On Reset, the Stack Pointer value will be zero. The user may read and write the Stack Pointer value. This feature can be used by a Real-Time Operating System (RTOS) for return stack maintenance.

After the PC is pushed onto the stack 31 times (without popping any values off the stack), the STKFUL bit is set. The STKFUL bit is cleared by software or by a POR.

The action that takes place when the stack becomes full depends on the state of the STVREN (Stack Overflow Reset Enable) Configuration bit. (Refer to **Section 20.1 "Configuration Bits"** for a description of the device Configuration bits.) If STVREN is set (default), the 31st push will push the (PC + 2) value onto the stack, set the STKFUL bit and reset the device. The STKFUL bit will remain set and the Stack Pointer will be set to zero.

If STVREN is cleared, the STKFUL bit will be set on the 31st push and the Stack Pointer will increment to 31. Any additional pushes will not overwrite the 31st push and STKPTR will remain at 31.

When the stack has been popped enough times to unload the stack, the next pop will return a value of zero to the PC and sets the STKUNF bit, while the Stack Pointer remains at zero. The STKUNF bit will remain set until cleared by software or until a POR occurs.

Note:	Returning a value of zero to the PC on an							
	underflow has the effect of vectoring the							
	program to the Reset vector, where the							
	stack conditions can be verified and							
	appropriate actions can be taken. This is							
	not the same as a Reset, as the contents							
	of the SFRs are not affected.							

6.1.2.3 PUSH and POP Instructions

Since the Top-of-Stack is readable and writable, the ability to push values onto the stack and pull values off the stack, without disturbing normal program execution, is a desirable feature. The PIC18 instruction set includes two instructions, PUSH and POP, that permit the TOS to be manipulated under software control. TOSU, TOSH and TOSL can be modified to place data or a return address on the stack.

The PUSH instruction places the current PC value onto the stack. This increments the Stack Pointer and loads the current PC value onto the stack.

The POP instruction discards the current TOS by decrementing the Stack Pointer. The previous value pushed onto the stack then becomes the TOS value.

REGISTER 6-1: STKPTR: STACK POINTER REGISTER

KEGISTER 0	-I. SIRFI	IN. STACK P								
R/C-0	R/C-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
STKFUL ⁽¹⁾	STKUNF ⁽¹⁾	_	SP4	SP3	SP2	SP1	SP0			
bit 7							bit 0			
Legend:		C = Clearable	e bit							
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown				
bit 7	STKFUL: Sta	ck Full Flag bit	(1)							
	1 = Stack bec	ame full or ove	erflowed							
	0 = Stack has	not become fu	Ill or overflow	ed						
bit 6	STKUNF: Sta	ick Underflow F	-lag bit ⁽¹⁾							
	1 = Stack und	lerflow occurre	d							
	0 = Stack und	lerflow did not	occur							
bit 5	Unimplemen	ted: Read as '	0'							
bit 4-0	SP4:SP0: Sta	ack Pointer Loc	ation bits							

Note 1: Bit 7 and bit 6 are cleared by user software or by a POR.

6.4.3.1 FSR Registers and the INDF Operand

At the core of Indirect Addressing are three sets of registers: FSR0, FSR1 and FSR2. Each represents a pair of 8-bit registers, FSRnH and FSRnL. The four upper bits of the FSRnH register are not used so each FSR pair holds a 12-bit value. This represents a value that can address the entire range of the data memory in a linear fashion. The FSR register pairs, then, serve as pointers to data memory locations.

Indirect Addressing is accomplished with a set of Indirect File Operands, INDF0 through INDF2. These can be thought of as "virtual" registers: they are mapped in the SFR space but are not physically implemented. Reading or writing to a particular INDF register actually accesses its corresponding FSR register pair. A read from INDF1, for example, reads the data at the address indicated by FSR1H:FSR1L. Instructions that use the INDF registers as operands actually use the contents of their corresponding FSR as a pointer to the instruction's target. The INDF operand is just a convenient way of using the pointer.

Because Indirect Addressing uses a full 12-bit address, data RAM banking is not necessary. Thus, the current contents of the BSR and the Access RAM bit have no effect on determining the target address.

6.4.3.2 FSR Registers and POSTINC, POSTDEC, PREINC and PLUSW

In addition to the INDF operand, each FSR register pair also has four additional indirect operands. Like INDF, these are "virtual" registers that cannot be indirectly read or written to. Accessing these registers actually accesses the associated FSR register pair, but also performs a specific action on its stored value. They are:

- POSTDEC: accesses the FSR value, then automatically decrements it by 1 afterwards
- POSTINC: accesses the FSR value, then automatically increments it by 1 afterwards
- PREINC: increments the FSR value by 1, then uses it in the operation
- PLUSW: adds the signed value of the W register (range of -127 to 128) to that of the FSR and uses the new value in the operation.

In this context, accessing an INDF register uses the value in the FSR registers without changing them. Similarly, accessing a PLUSW register gives the FSR value offset by that in the W register; neither value is actually changed in the operation. Accessing the other virtual registers changes the value of the FSR registers.

Operations on the FSRs with POSTDEC, POSTINC and PREINC affect the entire register pair; that is, rollovers of the FSRnL register from FFh to 00h carry over to the FSRnH register. On the other hand, results of these operations do not change the value of any flags in the STATUS register (e.g., Z, N, OV, etc.).

FIGURE 6-7: INDIRECT ADDRESSING

PIC18F1230/1330

TABLE 10-1: PORTA I/O SUMMARY

Pin	Function	TRIS Setting	I/O	I/O Type	Description
RA0/AN0/INT0/	RA0	0	0	DIG	LATA<0> data output; not affected by analog input.
KBI0/CMP0		1	I	TTL	PORTA<0> data input; disabled when analog input enabled.
	AN0	1	I	ANA	Analog input 0.
	INT0	1	I	ST	External interrupt 0.
	KBI0	1	I	TTL	Interrupt-on-change pin.
	CMP0	1	I	ANA	Comparator 0 input.
RA1/AN1/INT1/	RA1	0	0	DIG	LATA<1> data output; not affected by analog input.
KBI1		1	Ι	TTL	PORTA<1> data input; disabled when analog input enabled.
	AN1	1	I	ANA	Analog input 1.
	INT1	1	I	ST	External interrupt 1.
	KBI1	1	I	TTL	Interrupt-on-change pin.
RA2/TX/CK	RA2	0	0	DIG	LATA<2> data output; not affected by analog input. Disabled when CVREF output enabled.
		1	Ι	TTL	PORTA<2> data input. Disabled when analog functions enabled; disabled when CVREF output enabled.
	TX	0	0	DIG	EUSART asynchronous transmit.
	СК	0	0	DIG	EUSART synchronous clock.
		1	Ι	ST	
RA3/RX/DT	RA3	0	0	DIG	LATA<3> data output; not affected by analog input.
		1	Ι	TTL	PORTA<3> data input; disabled when analog input enabled.
RA4/T0CKI/AN2/	RX	1	Ι	ANA	EUSART asynchronous receive.
	DT	0	0	DIG	EUSART synchronous data.
		1	Ι	TTL	
RA4/T0CKI/AN2/	RA4	0	0	DIG	LATA<4> data output.
VREF+		1	Ι	ST	PORTA<4> data input; default configuration on POR.
	TOCKI	1	Ι	ST	Timer0 external clock input.
	AN2	1	Ι	ANA	Analog input 2.
	VREF+	1	Ι	ANA	A/D reference voltage (high) input.
MCLR/VPP/RA5/	MCLR	1	Ι	ST	Master Clear (Reset) input. This pin is an active-low Reset to the device.
FLTA	Vpp	1	I	ANA	Programming voltage input.
	RA5	1	Ι	ST	Digital input.
RA4/T0CKI/AN2/ VREF+ MCLR/VPP/RA5/ FLTA RA6/OSC2/CLKO/	FLTA ⁽¹⁾	1	I	ST	Fault detect input for PWM.
RA6/OSC2/CLKO/	RA6	0	0	DIG	LATA<6> data output. Enabled in RCIO, INTIO2 and ECIO modes only.
T1OSO/T1CKI/AN3		1	I	ST	PORTA<6> data input. Enabled in RCIO, INTIO2 and ECIO modes only.
	OSC2	0	0	ANA	Oscillator crystal output or external clock source output.
	CLKO	0	0	ANA	Oscillator crystal output.
	T10SO ⁽²⁾	0	0	ANA	Timer1 oscillator output.
	T1CKI ⁽²⁾	1	Ι	ST	Timer1 clock input.
	AN3	1	I	ANA	Analog input 3.
RA7/OSC1/CLKI/	RA7	0	0	DIG	LATA<7> data output. Disabled in external oscillator modes.
T1OSI/FLTA		1	Ι	TTL	PORTA<7> data input. Disabled in external oscillator modes.
	OSC1	1	Ι	ANA	Oscillator crystal input or external clock source input.
	CLKI	1	Ι	ANA	External clock source input.
	T10SI ⁽²⁾	1	I	ANA	Timer1 oscillator input.
	FLTA ⁽¹⁾	1	Ι	ST	Fault detect input for PWM.

Legend: DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ANA = Analog level input/output; x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

Note 1: Placement of FLTA depends on the value of Configuration bit, FLTAMX, of CONFIG3H.

2: Placement of T1OSI and T1OSO/T1CKI depends on the value of Configuration bit, T1OSCMX, of CONFIG3H.

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
RBPU	INTEDG0	INTEDG1	INTEDG2	INTEDG3	TMR0IP	INT3IP	RBIP			
bit 7						•	bit 0			
Legend:										
R = Readable bit W = Writable bit U = Unimplemente				nented bit, read	d as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown			
bit 7	RBPU : PORT 1 = All PORT 0 = PORTB p	B Pull-up Enal B pull-ups are pull-ups are ena	ble bit disabled abled by indiv	idual port latch	values					
bit 6	INTEDG0: External Interrupt 0 Edge Select bit 1 = Interrupt on rising edge 0 = Interrupt on falling edge									
bit 5	INTEDG1: External Interrupt 1 Edge Select bit 1 = Interrupt on rising edge 0 = Interrupt on falling edge									
bit 4	INTEDG2: Ex 1 = Interrupt 0 = Interrupt	ternal Interrupt on rising edge on falling edge	2 Edge Sele	ct bit						
bit 3	INTEDG3: Ex 1 = Interrupt 0 = Interrupt	ternal Interrupt on rising edge on falling edge	3 Edge Seled	ct bit						
bit 2	TMR0IP: TMF 1 = High prio 0 = Low prior	R0 Overflow Int rity rity	errupt Priority	' bit						
bit 1	INT3IP: INT3 1 = High prio 0 = Low prior	External Interr rity rity	upt Priority bit	i						
bit 0	RBIP: RB Pol 1 = High prio 0 = Low prior	rt Change Inter rity ^r ity	rupt Priority b	it						
Note: In	terrupt flag bits a	are set when a	n interrupt co	ndition occurs,	regardless of	the state of its	corresponding			

REGISTER 11-2: INTCON2: INTERRUPT CONTROL REGISTER 2

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global interrupt enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

REGISTER 11-11: IPR2: PERIPHERAL INTERRUPT PRIORITY REGISTER 2

R/W-1	U-0	U-0	R/W-1	U-0	R/W-1	U-0	U-0		
OSCFIP	—	—	EEIP	—	LVDIP		—		
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit U = Unimplemen						l as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	nown		
bit 7	OSCFIP: Oscillator Fail Interrupt Priority bit								
	1 = High prior	rity							
	0 = Low prior	ity							
bit 6-5	Unimplement	ted: Read as '	כ'						
bit 4	EEIP: Data El	EPROM/Flash	Write Operation	on Interrupt Pr	iority bit				
	1 = High prior	rity							
	0 = Low prior	ity							
bit 3	Unimplement	ted: Read as '	כ'						
bit 2	LVDIP: Low-V	/oltage Detect	Interrupt Prior	ity bit					
	1 = High prior	rity							
	0 = Low prior	ity							
bit 1-0	Unimplement	ted: Read as '	כי						

REGISTER 11-12: IPR3: PERIPHERAL INTERRUPT PRIORITY REGISTER 3

U-0	U-0	U-0	R/W-1	U-0	U-0	U-0	U-0
—	—	—	PTIP	—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 7-5 Unimplemented: Read as '0'
- bit 4 **PTIP:** PWM Time Base Interrupt Priority bit
 - 1 = High priority
 - 0 = Low priority
- bit 3-0 Unimplemented: Read as '0'

			DA(4(1))	11.0		D /// 0	D/// 0				
0-0				0-0	R/W-U	R/W-U	R/W-U				
	PWMEN2	PWMEN1	PWMEN0		PMOD2	PMOD1	PMOD0				
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown				
bit 7	Unimplemen	ted: Read as '	0'								
bit 6-4	PWMEN2:PWMEN0: PWM Module Enable bits ⁽¹⁾										
	111 = All odd PWM I/O pins enabled for PWM output										
	110 = PWM1, PWM3 pins enabled for PWM output										
	10x = All PW	M I/O pins ena	bled for PWM	output							
	011 = PWM0	, PWM1, PWM	2 and PWM3	I/O pins enabl	ed for PWM out	put					
	010 = PVVM0	and PWM1 pil	is enabled for	PWM output							
	001 = PWMI	nodule disable	d: all PWM I/C) nins are den	eral nurnose I/O						
hit 3		ted: Read as '	∩'	phile are gen							
bit 2.0	DMOD2-DMC		∪ put Dair Mada	bito							
DIL 2-0				; DIIS							
	1 = PWM I/O) nin nair (PWN	10 PWM1) is i	in the Indepen	dent mode						
	0 = PWM I/O) pin pair (PWN	10, PWM1) is i	in the Complei	mentary mode						
	For PMOD1:		. ,		5						
	1 = PWM I/O) pin pair (PWN	12, PWM3) is i	in the Indepen	dent mode						
	0 = PWM I/O) pin pair (PWN	12, PWM3) is i	in the Complei	mentary mode						
	For PMOD2:										
	1 = PWM I/O	pin pair (PWN	14, PWM5) is i	in the Indepen	dent mode						
	0 = PWM I/O) pin pair (PWN	14, PWM5) is i	in the Complei	mentary mode						

REGISTER 14-3: PWMCON0: PWM CONTROL REGISTER 0

Note 1: Reset condition of PWMEN bits depends on the PWMPIN Configuration bit of CONFIG3L.

14.6 PWM Duty Cycle

PWM duty cycle is defined by the PDCx (PDCxL and PDCxH) registers. There are a total of three PWM Duty Cycle registers for four pairs of PWM channels. The Duty Cycle registers have 14-bit resolution by combining the six LSbs of PDCxH with the 8 bits of PDCxL. PDCx is a double-buffered register used to set the counting period for the PWM time base.

14.6.1 PWM DUTY CYCLE REGISTERS

There are three 14-bit Special Function Registers used to specify duty cycle values for the PWM module:

- PDC0 (PDC0L and PDC0H)
- PDC1 (PDC1L and PDC1H)
- PDC2 (PDC2L and PDC2H)

The value in each Duty Cycle register determines the amount of time that the PWM output is in the active state. The upper 12 bits of PDCx hold the actual duty cycle value from PTMRH/L<11:0>, while the lower two bits control which internal Q clock the duty cycle match will occur. This 2-bit value is decoded from the Q clocks, as shown in Figure 14-11, when the prescaler is 1:1 (PTCKPS<1:0> = 00).

In Edge-Aligned mode, the PWM period starts at Q1 and ends when the Duty Cycle register matches the PTMR register as follows. The duty cycle match is considered when the upper 12 bits of the PDCx are equal to the

PTMRH<7:0> PTMRL<7:0> PTMR<11:0> Q Clocks⁽¹⁾ PTMRH<3:0> PTMRL<7:0> <1:0> Unused Comparator Unused PDCxH<5:0> PDCxL<7:0> PDCx<13:0> PDCxH<7:0> PDCxL<7:0> Note 1: This value is decoded from the Q clocks: 00 = duty cycle match occurs on Q1 01 = duty cycle match occurs on Q2 10 = duty cycle match occurs on Q3 11 = duty cycle match occurs on Q4

FIGURE 14-11: DUTY CYCLE COMPARISON

PTMR and the lower 2 bits are equal to Q1, Q2, Q3 or Q4, depending on the lower two bits of the PDCx (when the prescaler is 1:1 or PTCKPS<1:0 > = 00).

Note:	When	the	prescaler	is	not	1:1			
	(PTCKF	PS<1:0	l> ≠ ~00),	the	duty (cycle			
	match	occurs	s at the C	ג 1C	ock of	the			
	instructi	on cy	cle when	the	PTMR	and			
	PDCx match occurs.								

Each compare unit has logic that allows override of the PWM signals. This logic also ensures that the PWM signals will complement each other (with dead-time insertion) in Complementary mode (see **Section 14.7** "**Dead-Time Generators**").

Note: To get the correct PWM duty cycle, always multiply the calculated PWM duty cycle value by four before writing it to the PWM Duty Cycle registers. This is due to the two additional LSBs in the PWM Duty Cycle registers which are compared against the internal Q clock for the PWM duty cycle match.

14.6.2 DUTY CYCLE REGISTER BUFFERS

The three PWM Duty Cycle registers are doublebuffered to allow glitchless updates of the PWM outputs. For each duty cycle block, there is a Duty Cycle Buffer register that is accessible by the user and a second Duty Cycle register that holds the actual compare value used in the present PWM period.

In Edge-Aligned PWM Output mode, a new duty cycle value will be updated whenever a PTMR match with the PTPER register occurs and PTMR is reset, as shown in Figure 14-12. Also, the contents of the duty cycle buffers are automatically loaded into the Duty Cycle registers when the PWM time base is disabled (PTEN = 0).

When the PWM time base is in the Continuous Up/ Down Count mode, new duty cycle values will be updated when the value of the PTMR register is zero and the PWM time base begins to count upwards. The contents of the duty cycle buffers are automatically loaded into the Duty Cycle registers when the PWM time base is disabled (PTEN = 0). Figure 14-13 shows the timings when the duty cycle update occurs for the Continuous Up/Down Count mode. In this mode, up to one entire PWM period is available for calculating and loading the new PWM duty cycle before changes take effect.

When the PWM time base is in the Continuous Up/ Down Count mode with double updates, new duty cycle values will be updated when the value of the PTMR register is zero and when the value of the PTMR register matches the value in the PTPER register. The contents of the duty cycle buffers are automatically loaded into the Duty Cycle registers during both of the previously described conditions. Figure 14-14 shows the duty cycle updates for Continuous Up/Down Count mode with double updates. In this mode, up to half of a PWM period is available for calculating and loading the new PWM duty cycle before changes take effect.

14.6.3 EDGE-ALIGNED PWM

Edge-aligned PWM signals are produced by the module when the PWM time base is in the Free-Running mode or the Single-Shot mode. For edge-aligned PWM outputs, the output for a given PWM channel has a period specified by the value loaded in PTPER and a duty cycle specified by the appropriate Duty Cycle register (see Figure 14-12). The PWM output is driven active at the beginning of the period (PTMR = 0) and is driven inactive when the value in the Duty Cycle register matches PTMR. A new cycle is started when PTMR matches the PTPER, as explained in the PWM period section.

If the value in a particular Duty Cycle register is zero, then the output on the corresponding PWM pin will be inactive for the entire PWM period. In addition, the output on the PWM pin will be active for the entire PWM period if the value in the Duty Cycle register is greater than the value held in the PTPER register.

FIGURE 14-13: DUTY CYCLE UPDATE TIMES IN CONTINUOUS UP/DOWN COUNT MODE

FIGURE 14-14: DUTY CYCLE UPDATE TIMES IN CONTINUOUS UP/DOWN COUNT MODE WITH DOUBLE UPDATES

14.6.4 CENTER-ALIGNED PWM

Center-aligned PWM signals are produced by the module when the PWM time base is configured in a Continuous Up/Down Count mode (see Figure 14-15). The PWM compare output is driven to the active state when the value of the Duty Cycle register matches the value of PTMR and the PWM time base is counting downwards (PTDIR = 1). The PWM compare output will be driven to the inactive state when the PWM time base is counting upwards (PTDIR = 0) and the value in the PTMR register matches the duty cycle value. If the value in a particular Duty Cycle register is zero, then the output on the corresponding PWM pin will be

inactive for the entire PWM period. In addition, the output on the PWM pin will be active for the entire PWM period if the value in the Duty Cycle register is equal to or greater than the value in the PTPER register.

Note: When the PWM is started in Center-Aligned mode, the PWM Time Base Period register (PTPER) is loaded into the PWM Time Base register (PTMR) and the PTMR is configured automatically to start down counting. This is done to ensure that all the PWM signals don't start at the same time.

FIGURE 14-15: START OF CENTER-ALIGNED PWM

	SYNC = 0, BRGH = 0, BRG16 = 0												
BAUD	Fosc = 40.000 MHz			Fosc = 20.000 MHz			Fosc = 10.000 MHz			Fos	Fosc = 8.000 MHz		
(К)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	
0.3	_	_	_	_		_	_	_	_	_	_		
1.2	—	—	—	1.221	1.73	255	1.202	0.16	129	1.201	-0.16	103	
2.4	2.441	1.73	255	2.404	0.16	129	2.404	0.16	64	2.403	-0.16	51	
9.6	9.615	0.16	64	9.766	1.73	31	9.766	1.73	15	9.615	-0.16	12	
19.2	19.531	1.73	31	19.531	1.73	15	19.531	1.73	7	—	_	_	
57.6	56.818	-1.36	10	62.500	8.51	4	52.083	-9.58	2	—	_	_	
115.2	125.000	8.51	4	104.167	-9.58	2	78.125	-32.18	1	—	_	_	

BAUD		SYNC = 0, BRGH = 0, BRG16 = 0									
BAUD	Fos	c = 4.000	MHz	Fos	c = 2.000	MHz	Fosc = 1.000 MHz				
(К)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)		
0.3	0.300	0.16	207	0.300	-0.16	103	0.300	-0.16	51		
1.2	1.202	0.16	51	1.201	-0.16	25	1.201	-0.16	12		
2.4	2.404	0.16	25	2.403	-0.16	12	_	_	—		
9.6	8.929	-6.99	6	_	_	—	—	_	—		
19.2	20.833	8.51	2	_	_	_	_	_	_		
57.6	62.500	8.51	0	_	_	_	_	_	_		
115.2	62.500	-45.75	0	_	_	—	_		—		

		SYNC = 0, BRGH = 1, BRG16 = 0											
BAUD RATE (K)	Fosc = 40.000 MHz			Fosc = 20.000 MHz		Fosc = 10.000 MHz			Fosc = 8.000 MHz				
	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	
0.3	_						_			_			
1.2	—	—	—	—	—	—	—	—	—	—	—	—	
2.4	—	_	_	—	_	_	2.441	1.73	255	2.403	-0.16	207	
9.6	9.766	1.73	255	9.615	0.16	129	9.615	0.16	64	9.615	-0.16	51	
19.2	19.231	0.16	129	19.231	0.16	64	19.531	1.73	31	19.230	-0.16	25	
57.6	58.140	0.94	42	56.818	-1.36	21	56.818	-1.36	10	55.555	3.55	8	
115.2	113.636	-1.36	21	113.636	-1.36	10	125.000	8.51	4	—	_	_	

		SYNC = 0, BRGH = 1, BRG16 = 0									
BAUD	Fosc = 4.000 MHz			Fos	c = 2.000	MHz	Fosc = 1.000 MHz				
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)		
0.3		_	_	_	_	_	0.300	-0.16	207		
1.2	1.202	0.16	207	1.201	-0.16	103	1.201	-0.16	51		
2.4	2.404	0.16	103	2.403	-0.16	51	2.403	-0.16	25		
9.6	9.615	0.16	25	9.615	-0.16	12	—	_	_		
19.2	19.231	0.16	12	—	_	_	_	_	_		
57.6	62.500	8.51	3	—	_	—	—	_	_		
115.2	125.000	8.51	1	—	_	—	—	_	_		

21.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB[®] IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C18 and MPLAB C30 C Compilers
 - MPLINK™ Object Linker/
 - MPLIB™ Object Librarian
 - MPLAB ASM30 Assembler/Linker/Library
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debugger
 - MPLAB ICD 2
- Device Programmers
 - PICSTART[®] Plus Development Programmer
 - MPLAB PM3 Device Programmer
 - PICkit[™] 2 Development Programmer
- Low-Cost Demonstration and Development Boards and Evaluation Kits

21.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- · High-level source code debugging
- Visual device initializer for easy register initialization
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as HI-TECH Software C Compilers and IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either assembly or C)
- One touch assemble (or compile) and download to PIC MCU emulator and simulator tools (automatically updates all project information)
- · Debug using:
 - Source files (assembly or C)
 - Mixed assembly and C
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

PIC18F1230/1330

SUB	LW	S	Subtract W from Literal							
Synta	ax:	S	UBLW	k						
Oper	ands:	0	$\leq k \leq 2$	55						
Oper	ation:	k	– (W) –	→ W						
Statu	s Affected:	Ν	I, OV, C	, DC, Z						
Enco	ding:	Γ	0000 1000 kkkk kkk							
Desc	ription	V	W is subtracted from the eight-bit literal 'k'. The result is placed in W.							
Word	ls:	1	1							
Cycle	es:	1								
QC	ycle Activity:									
	Q1		Q2	Q3			Q4			
	Decode	l lit	Read eral 'k'	ad Process I 'k' Data			rite to W			
Exan	nple 1:	S	UBLW	02h						
	Before Instruc W C After Instructio W C Z N	tion = on = = = =	01h ? 01h 1 ; 0	01h ? 01h 1 ; result is positive 0						
Exan	nple 2:	S	UBLW	02h						
	Before Instruc W C After Instructic W C Z N	tion = = n = = =	02h ? 00h 1 ; 1	result is z	ero					
Exan	nple <u>3:</u>	S	UBLW	02h						
	Before Instruc W C After Instructic W C Z N	tion = = n = = =	03h ? FFh 0 1	; (2's comp ; result is r	bleme negati	nt) ve				

SUB	WF		Subtract W from f						
Synta	ax:		SUBWF		f {,d {,a}}				
Oper	ands:		$\begin{array}{l} 0\leq f\leq 2\\ d\in [0,1\\ a\in [0,1] \end{array}$	255]]					
Oper	ation:		$(f) - (W) \rightarrow dest$						
Statu	s Affected:		N, OV, C, DC, Z						
Enco	ding:		0101 11da ffff ffff						
Description: Words:			Subtract W from register 'f' (2's complement method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 22.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.						
Word	ls:		1						
Cycle	Cycles:								
Q Cycle Activity:									
Q1			Q2		Q3	Q4			
	Decode		Read	,	Process	Write to			
		Γ	egister t		Data	destination			
Exan	nple 1:		SUBWF		REG, 1, 0				
	Before Instruc REG W C	tior = = =	1 3 2 ?						
	After Instructio	n_	1						
	W	=	2		rocult in positiv	10			
	Z	=	0	,	result is positiv	/e			
Even	N ania 2:	=	0		DEG 0 0				
Exan	<u>IIPIE Z.</u> Refore Instruc	tior	SUBWF		REG, 0, 0				
	REG W C	=	2 2 ?						
	After Instructio REG W C	on = = =	2 0 1		result is zero				
	Z	=	1						
Example 3:			U		PFG 1 0				
Before Instruction			ואססט		REG, 1, 0				
	REG W C	= = =	1 2 ?						
	After Instructio	n =	FEh	•7	2's compleme	nt)			
	W	=	2	,(
	Z	=	0	;	result is negati	ve			
	N	=	1						

TABLE 23-2: COMPARATOR SPECIFICATIONS

Operating Conditions: 3.0V < VDD < 5.5V, -40°C < TA < +125°C (unless otherwise stated).									
Param No.	Sym	Characteristics	Min	Тур	Мах	Units	Comments		
D300	VIOFF	Input Offset Voltage	_	±5.0	±10	mV			
D301	VICM	Input Common Mode Voltage	0		Vdd - 1.5	V			
D302	CMRR	Common Mode Rejection Ratio	55		_	dB			
D303	TRESP	Response Time ⁽¹⁾	—	150	400	ns	PIC18 F XXXX		
D303A			_	150	600	ns	PIC18 LF XXXX, Vdd = 2.0V		
D304	TMC2OV	Comparator Mode Change to Output Valid	—	—	10	μS			

Note 1: Response time measured with one comparator input at (VDD – 1.5)/2, while the other input transitions from Vss to VDD.

TABLE 23-3: VOLTAGE REFERENCE SPECIFICATIONS

Operating Conditions: 3.0V < VDD < 5.5V, -40°C < TA < +125°C (unless otherwise stated).									
Param No.	Sym	Characteristics	Min	Тур	Max	Units	Comments		
D310	VRES	Resolution	VDD/24	_	VDD/32	LSb			
D311	VRAA	Absolute Accuracy	—	_	1/2	LSb			
D312	VRur	Unit Resistor Value (R)	—	2k	—	Ω			
D310	TSET	Settling Time ⁽¹⁾	—	—	10	μS			

Note 1: Settling time measured while CVRR = 1 and CVR3:CVR0 transitions from '0000' to '1111'.

TABLE 23-4: LOW-VOLTAGE DETECT CHARACTERISTICS

Standard Operating Conditions (unless otherwise stated)								
Operating	temperature	-40°C \leq TA \leq +85°C for industrial						
		-40°C \leq TA \leq +125°C for extended						

Param No.	Sym	Characteristic			Тур	Max	Units	Conditions
D420		LVD Voltage on VDD	LVDL<3:0> = 0000	2.06	2.17	2.28	V	
		Transition High-to-Low	LVDL<3:0> = 0001	2.12	2.23	2.34	V	
			LVDL<3:0> = 0010	2.24	2.36	2.48	V	
			LVDL<3:0> = 0011	2.32	2.44	2.56	V	
			LVDL<3:0> = 0100	2.47	2.60	2.73	V	
			LVDL<3:0> = 0101	2.65	2.79	2.93	V	
			LVDL<3:0> = 0110	2.74	2.89	3.04	V	
			LVDL<3:0> = 0111	2.96	3.12	3.28	V	
			LVDL<3:0> = 1000	3.22	3.39	3.56	V	
			LVDL<3:0> = 1001	3.37	3.55	3.73	V	
			LVDL<3:0> = 1010	3.52	3.71	3.90	V	
			LVDL<3:0> = 1011	3.70	3.90	4.10	V	
			LVDL<3:0> = 1100	3.90	4.11	4.32	V	
			LVDL<3:0> = 1101	4.11	4.33	4.55	V	
			LVDL<3:0> = 1110	4.36	4.59	4.82	V	

23.4.2 TIMING CONDITIONS

The temperature and voltages specified in Table 23-5 apply to all timing specifications unless otherwise noted. Figure 23-5 specifies the load conditions for the timing specifications.

Note: Because of space limitations, the generic terms "PIC18FXXXX" and "PIC18LFXXXX" are used throughout this section to refer to the PIC18F1230/1330 and PIC18LF1230/1330 families of devices specifically and only those devices.

TABLE 23-5: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

	Standard Operating Conditions (unless otherwise stated)					
	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial					
	$-40^{\circ}C \le TA \le +125^{\circ}C$ for extended					
AC CHARACTERISTICS	Operating voltage VDD range as described in DC spec Section 23.1 and					
	Section 23.3.					
	LF parts operate for industrial temperatures only.					

FIGURE 23-5: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
F10	Fosc	Oscillator Frequency Range	4	_	10	MHz	HS mode only
F11	Fsys	On-Chip VCO System Frequency	16		40	MHz	HS mode only
F12	t _{rc}	PLL Start-up Time (Lock Time)	—		2	ms	
F13	ΔCLK	CLKO Stability (Jitter)	-2	_	+2	%	

TABLE 23-7: PLL CLOCK TIMING SPECIFICATIONS (VDD = 4.2V TO 5.5V)

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 23-8: AC CHARACTERISTICS: INTERNAL RC ACCURACY

Standa Operati	rd Operating Conditions (unless of ng temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ $-40^{\circ}C \le TA \le +125^{\circ}C$	otherwis for indu: C for exte	e state strial ended	d)			
Param No.	Device	Min	Тур	Max	Units	Cond	litions
	INTOSC Accuracy @ Freq = 8 MHz	, 4 MHz, 2	2 MHz, ′	1 MHz, 50	0 kHz, 2	250 kHz, 125 kHz, 31	kHz ⁽¹⁾
	PIC18LF1230/1330	-2	+/-1	2	%	+25°C	VDD = 2.7-3.3V
		-5	_	5	%	-10°C to +85°C	VDD = 2.7-3.3V
		-10	+/-1	10	%	-40°C to +85°C	VDD = 2.7-3.3V
	PIC18F1230/1330	-2	+/-1	2	%	+25°C	VDD = 4.5-5.5V
		-5	_	5	%	-10°C to +85°C	VDD = 4.5-5.5V
		-10	+/-1	10	%	-40°C to +85°C	VDD = 4.5-5.5V
	INTRC Accuracy @ Freq = 31 kHz ⁽²	2,3)					
	PIC18LF1230/1330	26.562	_	35.938	kHz	-40°C to +85°C	VDD = 2.7-3.3V
	PIC18F1230/1330	26.562	_	35.938	kHz	-40°C to +85°C	VDD = 4.5-5.5V

Legend: Shading of rows is to assist in readability of the table.

Note 1: Frequency calibrated at 25°C. OSCTUNE register can be used to compensate for temperature drift.

2: INTRC frequency after calibration.

3: Change of INTRC frequency as VDD changes.

PIC18F1230/1330

NOTES:

Associated Registers, Transmit 165	
Reception166	
Transmission164	
Synchronous Slave Mode167	
Associated Registers, Receive	
Associated Registers, Transmit	
Reception168	
Transmission167	
Extended Instruction Set	
ADDFSR	
ADDULNK	
and Using MPLAB Tools264	
CALLW	
Considerations for Use	
MOVSF259	
MOVSS	
PUSHL	
SUBFSR	
SUBULNK	
Syntax	
External Clock Input	

F

Fail-Safe Clock Monitor	. 191, 205
Exiting Operation	205
Interrupts in Power-Managed Modes	206
POR or Wake From Sleep	206
WDT During Oscillator Failure	205
Fast Register Stack	54
Firmware Instructions	
Flash Program Memory	71
Associated Registers	79
Control Registers	72
EECON1 and EECON2	72
TABLAT (Table Latch) Register	74
TBLPTR (Table Pointer) Register	74
Erase Sequence	76
Erasing	76
Operation During Code-Protect	79
Reading	75
Table Pointer	
Boundaries Based on Operation	74
Operations with TBLRD and TBLWT (tabl	e) 74
Table Pointer Boundaries	74
Table Reads and Table Writes	71
Write Sequence	77
Writing	77
Protection Against Spurious Writes	79
Unexpected Termination	79
Write Verify	79
FSCM. See Fail-Safe Clock Monitor.	

G

GOTO	236
GOTO	23

Н

Hardware Multiplier	
Introduction	
Operation	85
Performance Comparison	

L

I/O Ports	
ID Locations	191, 210
INCF	236
INCFSZ	237
In-Circuit Debugger	210
In-Circuit Serial Programming (ICSP)	101 210
Independent DW/M Mode	101, 210
Duty Cuele Assistment	407
	137
Output	137
Output, Channel Override	138
Indexed Literal Offset Addressing	
and Standard PIC18 Instructions	262
Indexed Literal Offset Mode	262
Indirect Addressing	66
INFSN7	237
INFONZ	231
Initialization Conditions for all Registers	47-50
Instruction Cycle	
Clocking Scheme	55
Flow/Pipelining	55
Instruction Set	215
ADDLW	221
	221
ADDWF (Indexed Literal Offset Mede)	263
	203
	222
ANDLW	222
ANDWF	223
BC	223
BCF	224
BN	224
BNC	225
DNO	225
	220
BNUV	220
BNZ	226
POV	
DOV	229
BRA	229 227
BRA BSF	229 227 227
BRA BSF BSF (Indexed Literal Offset Mode)	229 227 227 263
BCVBRA BSF BSF (Indexed Literal Offset Mode) BTESC	229 227 227 263 .228
BCV BRA BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSC	229 227 227 263 228 228
BOV BRA BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTFSS	229 227 263 228 228 228
BOV BRA BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTFSS BTG	229 227 263 228 228 228 229
BOV BRA BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ	
BOV BRA BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL	
BCV BRA BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF	
BCV BRA BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT	
BCVBRABSFBSF (Indexed Literal Offset Mode)BSF (Indexed Literal Offset Mode)BTFSCBTFSSBTGBTGBZCALLCLRFCLRWDTCOMFCOMF	
BOVBRABSFBSF (Indexed Literal Offset Mode)BSF (Indexed Literal Offset Mode)BTFSCBTFSSBTFSSBTGBZCALLCLRFCLRFCLRFCLRWDTCOMFCOMFCOMFCPESEQ	
BOV BRA BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTFSS BTG BZ CALL CLRF CLRF COMF CPFSEQ CPFSEQ CPESGT	
BOV BRA BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BTG BZ CALL CLRF CLRWDT COMF CPFSEQ CPFSGT CPFSIT	
BOV BRA BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF CPFSEQ CPFSEQ CPFSET	
BCV BRA BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF CPFSEQ CPFSEQ CPFSGT CPFSLT DAW	
BCV BRA BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF CPFSEQ CPFSEQ CPFSGT CPFSLT DAW DCFSNZ	
BCV BRA BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF CPFSEQ CPFSGT CPFSGT CPFSLT DAW DCFSNZ DECF	
BCV BRA BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF CPFSEQ CPFSEQ CPFSGT CPFSLT DAW DCFSNZ DECF DECFSZ	
BOV BRA BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF CPFSEQ CPFSGT CPFSLT DAW DCFSNZ DECF Extended Instruction Set	
BOV BRA BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF CPFSEQ CPFSEQ CPFSGT CPFSLT DAW DCFSNZ DECF DECFSZ Extended Instruction Set General Format Compatibility	
BCV BRA BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF CPFSEQ CPFSEQ CPFSGT CPFSLT DAW DCFSNZ DECF DECFSZ Extended Instruction Set General Format	
BCV BRA BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF CPFSEQ CPFSEQ CPFSGT CPFSGT CPFSLT DAW DCFSNZ DECF DECFSZ Extended Instruction Set General Format GOTO	
BCV BRA BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF CPFSEQ CPFSEQ CPFSGT CPFSGT CPFSLT DAW DCFSNZ DECF DECFSZ Extended Instruction Set General Format GOTO INCF	
BCV BRA BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CALL CALL CLRF CLRWDT COMF CPFSEQ CPFSEQ CPFSGT CPFSLT DAW DCFSNZ DECF DECFSZ Extended Instruction Set General Format GOTO INCF	
BOV BRA BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF CPFSEQ CPFSGT CPFSGT CPFSLT DAW DCFSNZ DECF Extended Instruction Set General Format GOTO INCF INCFSZ INFSNZ	
BOV BRA BSF	
BOV BRA BSFBSF (Indexed Literal Offset Mode)BSF (Indexed Literal Offset Mode)BSF (Indexed Literal Offset Mode)BSF (Indexed Literal Offset Mode)BTFSSBTFSSBTG BTFSSBTG BTGBZ CALL CALL CALL CLRF CLRWDT CALL CLRF CLRWDT COMF CPFSEQ CPFSEQ CPFSEQ CPFSEQ CPFSET DAW DCFSNZ DECF DECF DECF DECF DECF DECF DECF INCF INCF INCF INCF INCF INCF INCF INCF INCF INCF	
BOV BRA BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF CPFSEQ CPFSEQ CPFSGT CPFSLT DAW DCFSNZ DECF DECFSZ Extended Instruction Set General Format GOTO INCF INCFSZ INFSNZ IORLW IORWF	
BOV BRA BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF CPFSEQ CPFSEQ CPFSGT CPFSLT DAW DCFSNZ DECF DECFSZ Extended Instruction Set General Format GOTO INCF INCFSZ INFSNZ IORLW IORWF	
BOV BRA BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF CPFSEQ CPFSEQ CPFSGT CPFSLT DAW DCFSNZ DECF DECFSZ Extended Instruction Set General Format GOTO INCF INCFSZ INFSNZ IORLW IORWF IORWF	
BOV BRA BSFBSF (Indexed Literal Offset Mode)BSF (Indexed Literal Offset Mode)BSF (Indexed Literal Offset Mode)BSF (Indexed Literal Offset Mode)BTFSS BTG BZ CALL CALL CLRF CLRWDT COMF CPFSEQ CPFSEQ CPFSGT CPFSLT DAW DCFSNZ DECF DECFSZ Extended Instruction Set General Format GOTO INCF INCFSZ INFSNZ IORLW IORWF LFSR MOVFF MOVFF	