

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Detuils	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	16
Program Memory Size	4KB (2K x 16)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f1230-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.7.1 OSCILLATOR CONTROL REGISTER

The OSCCON register (Register 3-2) controls several aspects of the device clock's operation, both in full power operation and in power-managed modes.

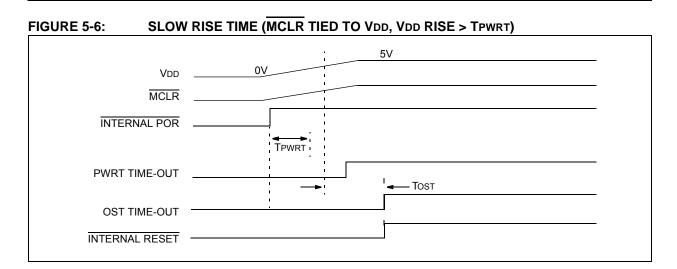
The System Clock Select bits, SCS1:SCS0, select the clock source. The available clock sources are the primary clock (defined by the FOSC3:FOSC0 Configuration bits), the secondary clock (Timer1 oscillator) and the internal oscillator block. The clock source changes immediately after one or more of the bits is written to, following a brief clock transition interval. The SCS bits are cleared on all forms of Reset.

The Internal Oscillator Frequency Select bits (IRCF2:IRCF0) select the frequency output of the internal oscillator block to drive the device clock. The choices are the INTRC source, the INTOSC source (8 MHz) or one of the frequencies derived from the INTOSC postscaler (31.25 kHz to 4 MHz). If the internal oscillator block is supplying the device clock, changing the states of these bits will have an immediate change on the internal oscillator's output. On device Resets, the default output frequency of the internal oscillator block is set at 1 MHz.

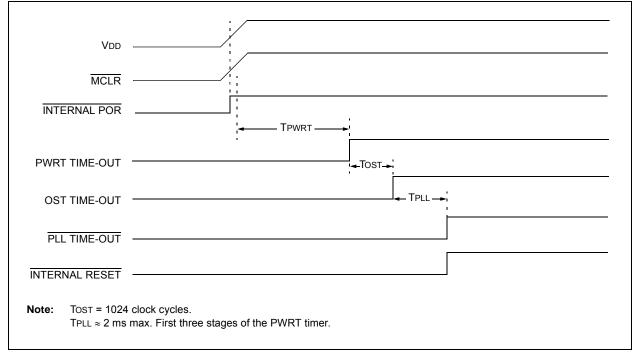
When a nominal output frequency of 31 kHz is selected (IRCF2:IRCF0 = 000), users may choose which internal oscillator acts as the source. This is done with the INTSRC bit in the OSCTUNE register (OSCTUNE<7>). Setting this bit selects INTOSC as a 31.25 kHz clock source by enabling the divide-by-256 output of the INTOSC postscaler. Clearing INTSRC selects INTRC (nominally 31 kHz) as the clock source.

This option allows users to select the tunable and more precise INTOSC as a clock source, while maintaining power savings with a very low clock speed. Regardless of the setting of INTSRC, INTRC always remains the clock source for features such as the Watchdog Timer and the Fail-Safe Clock Monitor.

The OSTS, IOFS and T1RUN bits indicate which clock source is currently providing the device clock. The OSTS bit indicates that the Oscillator Start-up Timer has timed out and the primary clock is providing the device clock in primary clock modes. The IOFS bit indicates when the internal oscillator block has stabilized and is providing the device clock in RC Clock modes. The T1RUN bit (T1CON<6>) indicates when the Timer1 oscillator is providing the device clock in secondary clock modes. In power-managed modes, only one of these three bits will be set at any time. If none of these bits are set, the INTRC is providing the clock or the internal oscillator block has just started and is not yet stable. The IDLEN bit determines if the device goes into Sleep mode or one of the Idle modes when the SLEEP instruction is executed.


The use of the flag and control bits in the OSCCON register is discussed in more detail in **Section 4.0** "**Power-Managed Modes**".

- Note 1: The Timer1 oscillator must be enabled to select the secondary clock source. The Timer1 oscillator is enabled by setting the T1OSCEN bit in the Timer1 Control register (T1CON<3>). If the Timer1 oscillator is not enabled, then any attempt to select a secondary clock source will be ignored.
 - 2: It is recommended that the Timer1 oscillator be operating and stable before selecting the secondary clock source or a very long delay may occur while the Timer1 oscillator starts.


3.7.2 OSCILLATOR TRANSITIONS

PIC18F1230/1330 devices contain circuitry to prevent clock "glitches" when switching between clock sources. A short pause in the device clock occurs during the clock switch. The length of this pause is the sum of two cycles of the old clock source and three to four cycles of the new clock source. This formula assumes that the new clock source is stable.

Clock transitions are discussed in greater detail in **Section 4.1.2 "Entering Power-Managed Modes"**.

FIGURE 5-7: TIME-OUT SEQUENCE ON POR W/PLL ENABLED (MCLR TIED TO VDD)

TABLE 5-4:	INITIA	LIZATIO	N CONDITIONS FOR					
Register		cable ices	Power-on Reset, Brown-out Reset	MCLR Resets, WDT Reset, RESET Instruction, Stack Resets	Wake-up via WDT or Interrupt			
TOSU	1230	1330	0 0000	0 0000	0 uuuu (3)			
TOSH	1230	1330	0000 0000	0000 0000	uuuu uuuu (3)			
TOSL	1230	1330	0000 0000	0000 0000	uuuu uuuu ⁽³⁾			
STKPTR	1230	1330	00-0 0000	uu-0 0000	uu-u uuuu (3)			
PCLATU	1230	1330	0 0000	0 0000	u uuuu			
PCLATH	1230	1330	0000 0000	0000 0000	uuuu uuuu			
PCL	1230	1330	0000 0000	0000 0000	PC + 2 ⁽²⁾			
TBLPTRU	1230	1330	00 0000	00 0000	uu uuuu			
TBLPTRH	1230	1330	0000 0000	0000 0000	uuuu uuuu			
TBLPTRL	1230	1330	0000 0000	0000 0000	uuuu uuuu			
TABLAT	1230	1330	0000 0000	0000 0000	uuuu uuuu			
PRODH	1230	1330	xxxx xxxx	uuuu uuuu	uuuu uuuu			
PRODL	1230	1330	xxxx xxxx	uuuu uuuu	uuuu uuuu			
INTCON	1230	1330	0000 000x	0000 000u	uuuu uuuu (1)			
INTCON2	1230	1330	1111 1111	1111 1111	uuuu uuuu (1)			
INTCON3	1230	1330	1100 0000	1100 0000	uuuu uuuu (1)			
INDF0	1230	1330	N/A	N/A	N/A			
POSTINC0	1230	1330	N/A	N/A	N/A			
POSTDEC0	1230	1330	N/A	N/A	N/A			
PREINC0	1230	1330	N/A	N/A	N/A			
PLUSW0	1230	1330	N/A	N/A	N/A			
FSR0H	1230	1330	0000	0000	uuuu			
FSR0L	1230	1330	xxxx xxxx	uuuu uuuu	uuuu uuuu			
WREG	1230	1330	xxxx xxxx	uuuu uuuu	uuuu uuuu			
INDF1	1230	1330	N/A	N/A	N/A			
POSTINC1	1230	1330	N/A	N/A	N/A			
POSTDEC1	1230	1330	N/A	N/A	N/A			
PREINC1	1230	1330	N/A	N/A	N/A			
PLUSW1	1230	1330	N/A	N/A	N/A			
FSR1H	1230	1330	0000	0000	uuuu			
FSR1L	1230	1330	xxxx xxxx	uuuu uuuu	uuuu uuuu			
BSR	1230	1330	0000	0000	uuuu			

 TABLE 5-4:
 INITIALIZATION CONDITIONS FOR ALL REGISTERS

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

- **2:** When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).
- **3:** When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.
- 4: See Table 5-3 for Reset value for specific condition.
- **5:** Bits 6 and 7 of PORTA, LATA and TRISA are enabled depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read as '0'.
- 6: Reset condition of PWMEN bits depends on the PWMPIN Configuration bit of CONFIG3L.

Pin	Function	TRIS Setting	MARY I/O	l/O Type	Description
		Setting			
RB0/PWM0	RB0	0	0	DIG	LATB<0> data output; not affected by analog input.
		1	I	TTL	PORTB<0> data input; weak pull-up when RBPU bit is cleared. Disabled when analog input enabled. ⁽¹⁾
	PWM0	0	0	DIG	PWM module output PWM0.
RB1PWM1	RB1	0	0	DIG	LATB<1> data output; not affected by analog input.
		1	Ι	TTL	PORTB<1> data input; weak pull-up when RBPU bit is cleared. Disabled when analog input enabled. ⁽¹⁾
	PWM1	0	0	DIG	PWM module output PWM1.
RB2/INT2/KBI2/	RB2	0	0	DIG	LATB<2> data output; not affected by analog input.
CMP2/T1OSO/ T1CKI		1	Ι	TTL	PORTB<2> data input; weak pull-up when $\overline{\text{RBPU}}$ bit is cleared. Disabled when analog input enabled. ⁽¹⁾
	INT2	1	Ι	ST	External interrupt 2 input.
	KBI2	1	Ι	TTL	Interrupt-on-change pin.
	CMP2	1	I	ANA	Comparator 2 input.
	T10SO ⁽²⁾	0	0	ANA	Timer1 oscillator output.
	T1CKI ⁽²⁾	1	Ι	ST	Timer1 clock input.
RB3/INT3/KBI3/	RB3	0	0	DIG	LATB<3> data output; not affected by analog input.
CMP1/T1OSI		1	Ι	TTL	PORTB<3> data input; weak pull-up when $\overline{\text{RBPU}}$ bit is cleared. Disabled when analog input enabled. ⁽¹⁾
	INT3	1	I	ST	External interrupt 3 input.
	KBI3	1	I	TTL	Interrupt-on-change pin.
	CMP1	1	Ι	ANA	Comparator 1 input.
	T10SI ⁽²⁾	1	Ι	ANA	Timer1 oscillator input.
RB4/PWM2	RB4	0	0	DIG	LATB<4> data output; not affected by analog input.
		1	Ι	TTL	PORTB<4> data input; weak pull-up when $\overline{\text{RBPU}}$ bit is cleared. Disabled when analog input enabled. ⁽¹⁾
	PWM2	0	0	DIG	PWM module output PWM2.
RB5/PWM3	RB5	0	0	DIG	LATB<5> data output.
		1	Ι	TTL	PORTB<5> data input; weak pull-up when RBPU bit is cleared.
	PWM3	0	0	DIG	PWM module output PWM3.
RB6/PWM4/PGC	RB6	0	0	DIG	LATB<6> data output.
		1	Ι	TTL	PORTB<6> data input; weak pull-up when RBPU bit is cleared.
	PWM4	0	0	DIG	PWM module output PWM4.
	PGC	1	Ι	ST	In-Circuit Debugger and ICSP™ programming clock pin.
RB7/PWM5/PGD	RB7	0	0	DIG	LATB<7> data output.
		1	Ι	TTL	PORTB<7> data input; weak pull-up when RBPU bit is cleared.
	PWM5	0	0	TTL	PWM module output PWM4.
	PGD	0	0	DIG	In-Circuit Debugger and ICSP programming data pin.

TABLE 10-3: PORTB I/O SUMMARY

Legend: DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ANA = Analog level input/output; x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

Note 1: Configuration on POR is determined by the PBADEN Configuration bit. Pins are configured as analog inputs by default when PBADEN is set and digital inputs when PBADEN is cleared.

2: Placement of T1OSI and T1OSO/T1CKI depends on the value of Configuration bit, T1OSCMX, of CONFIG3H.

11.1 INTCON Registers

The INTCON registers are readable and writable registers, which contain various enable, priority and flag bits.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global interrupt enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

REGISTER 11-1: INTCON: INTERRUPT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	GIE/GIEH: Global Interrupt Enable bit When IPEN = 0: 1 = Enables all unmasked interrupts 0 = Disables all interrupts When IPEN = 1: 1 = Enables all high-priority interrupts 0 = Disables all interrupts
bit 6	PEIE/GIEL: Peripheral Interrupt Enable bit <u>When IPEN = 0:</u> 1 = Enables all unmasked peripheral interrupts 0 = Disables all peripheral interrupts <u>When IPEN = 1:</u> 1 = Enables all low-priority peripheral interrupts 0 = Disables all low-priority peripheral interrupts
bit 5	TMR0IE: TMR0 Overflow Interrupt Enable bit 1 = Enables the TMR0 overflow interrupt 0 = Disables the TMR0 overflow interrupt
bit 4	INTOIE: INTO External Interrupt Enable bit 1 = Enables the INTO external interrupt 0 = Disables the INTO external interrupt
bit 3	RBIE: RB Port Change Interrupt Enable bit 1 = Enables the RB port change interrupt 0 = Disables the RB port change interrupt
bit 2	TMR0IF: TMR0 Overflow Interrupt Flag bit 1 = TMR0 register has overflowed (must be cleared in software) 0 = TMR0 register did not overflow
bit 1	INTOIF: INTO External Interrupt Flag bit 1 = The INTO external interrupt occurred (must be cleared in software) 0 = The INTO external interrupt did not occur
bit 0	RBIF: RB Port Change Interrupt Flag bit ⁽¹⁾ 1 = At least one of the RB7:RB4 pins changed state (must be cleared in software) 0 = None of the RB7:RB4 pins have changed state

Note 1: A mismatch condition will continue to set this bit. Reading PORTB will end the mismatch condition and allow the bit to be cleared.

13.4 Timer1 Interrupt

The TMR1 register pair (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The Timer1 interrupt, if enabled, is generated on overflow which is latched in interrupt flag bit, TMR1IF (PIR1<0>). This interrupt can be enabled/disabled by setting/clearing Timer1 interrupt enable bit, TMR1IE (PIE1<0>).

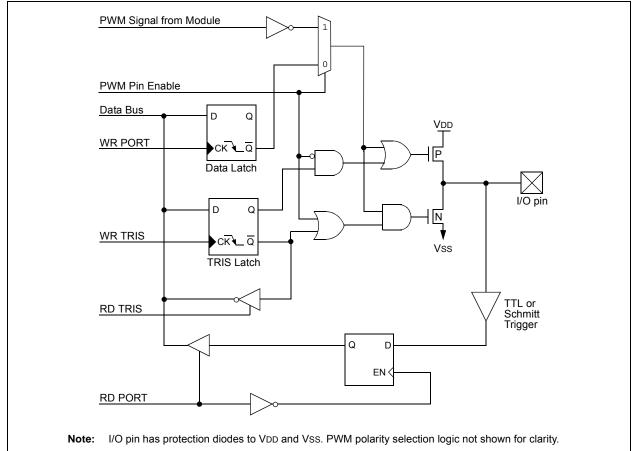
13.5 Timer1 16-Bit Read/Write Mode

Timer1 can be configured for 16-bit reads and writes (see Figure 13-2). When the RD16 control bit (T1CON<7>) is set, the address for TMR1H is mapped to a buffer register for the high byte of Timer1. A read from TMR1L will load the contents of the high byte of Timer1 into the Timer1 High Byte Buffer register. This provides the user with the ability to accurately read all 16 bits of Timer1 without having to determine whether a read of the high byte, followed by a read of the low byte, is valid due to a rollover between reads.

A write to the high byte of Timer1 must also take place through the TMR1H Buffer register. Timer1 high byte is updated with the contents of TMR1H when a write occurs to TMR1L. This allows a user to write all 16 bits to both the high and low bytes of Timer1 at once.

The high byte of Timer1 is not directly readable or writable in this mode. All reads and writes must take place through the Timer1 High Byte Buffer register. Writes to TMR1H do not clear the Timer1 prescaler. The prescaler is only cleared on writes to TMR1L.

13.6 Using Timer1 as a Real-Time Clock


Adding an external LP oscillator to Timer1 (such as the one described in **Section 13.2 "Timer1 Oscillator**"), gives users the option to include RTC functionality to their applications. This is accomplished with an inexpensive watch crystal to provide an accurate time base and several lines of application code to calculate the time. When operating in Sleep mode and using a battery or super capacitor as a power source, it can completely eliminate the need for a separate RTC device and battery backup.

The application code routine, RTCisr, shown in Example 13-1, demonstrates a simple method to increment a counter at one-second intervals using an Interrupt Service Routine. Incrementing the TMR1 register pair to overflow triggers the interrupt and calls the routine, which increments the seconds counter by one. Additional counters for minutes and hours are incremented as the previous counter overflow.

Since the register pair is 16 bits wide, counting up to overflow the register directly from a 32.768 kHz clock would take 2 seconds. To force the overflow at the required one-second intervals, it is necessary to preload it. The simplest method is to set the MSb of TMR1H with a BSF instruction. Note that the TMR1L register is never preloaded or altered; doing so may introduce cumulative error over many cycles.

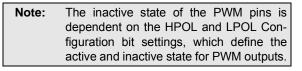
For this method to be accurate, Timer1 must operate in Asynchronous mode and the Timer1 overflow interrupt must be enabled (PIE1<0> = 1), as shown in the routine, RTCinit. The Timer1 oscillator must also be enabled and running at all times.

FIGURE 14-23: PWM I/O PIN BLOCK DIAGRAM

14.11.3 PWM OUTPUT PIN RESET STATES

The PWMPIN Configuration bit determines the PWM output pins to be PWM output pins, or digital I/O pins, after the device comes out of Reset. If the PWMPIN Configuration bit is unprogrammed (default), the PWMEN2:PWMEN0 control bits will be cleared on a device Reset. Consequently, all PWM outputs will be tri-stated and controlled by the corresponding PORT and TRIS registers. If the PWMPIN Configuration bit is programmed low, the PWMEN2:PWMEN0 control bits will be set to '100' on a device Reset:

All PWM pins will be enabled for PWM output and will have the output polarity defined by the HPOL and LPOL Configuration bits.


14.12 PWM Fault Input

There is one Fault input associated with the PWM module. The main purpose of the input Fault pin is to disable the PWM output signals and drive them into an inactive state. The action of the Fault input is performed

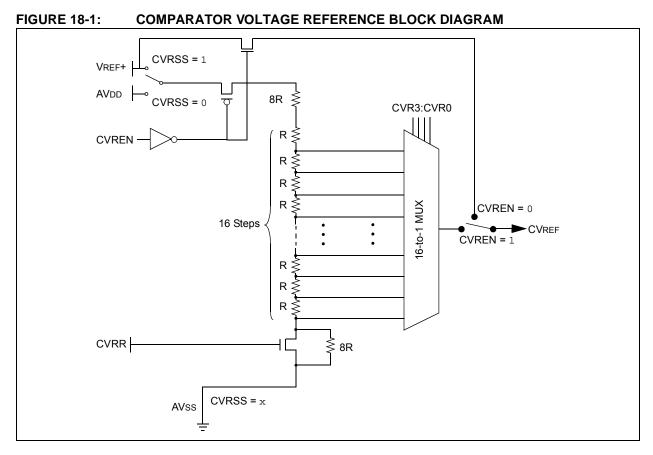
directly in hardware so that when a Fault occurs, it can be managed quickly and the PWMs outputs are put into an inactive state to save the power devices connected to the PWMs.

The PWM Fault input is \overline{FLTA} , which can come from I/O pins, the CPU or another module. The \overline{FLTA} pin is an active-low input so it is easy to "OR" many sources to the same input.

The FLTCONFIG register (Register 14-8) defines the settings of the FLTA input.

14.12.1 FAULT PIN ENABLE BIT

By setting the bit FLTAEN in the FLTCONFIG register, the corresponding Fault input is enabled. If FLTAEN bit is cleared, then the Fault input has no effect on the PWM module.


PIC18F1230/1330

NOTES:

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	47
_	ADIF RCIF TXIF CMP2IF CMP1IF CMP0IF TMR1IF							
_	- ADIE RCIE TXIE CMP2IE CMP1IE CMP0IE TMR1IE							
_	- ADIP RCIP TXIP CMP2IP CMP1IP CMP0IP TMR1IP							49
SPEN	SPEN RX9 SREN CREN ADDEN FERR OERR RX9D							
EUSART T	EUSART Transmit Register							48
CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	48
ABDOVF	ABDOVF RCIDL RXDTP TXCKP BRG16 — WUE ABDEN							48
EUSART Baud Rate Generator Register High Byte						48		
EUSART B	aud Rate G	enerator Re	gister Low	Byte				48
	GIE/GIEH — SPEN EUSART T CSRC ABDOVF EUSART B	GIE/GIEHPEIE/GIEL—ADIF—ADIE—ADIPSPENRX9EUSART Transmit RegCSRCTX9ABDOVFRCIDLEUSART Baud Rate G	GIE/GIEHPEIE/GIELTMR0IE—ADIFRCIF—ADIERCIE—ADIPRCIPSPENRX9SRENEUSART Transmit RegisterCSRCTX9CSRCTX9TXENABDOVFRCIDLRXDTPEUSART Baud Rate Generator RegisterCSRC	GIE/GIEHPEIE/GIELTMR0IEINT0IEOIE/GIEHPEIE/GIELTMR0IEINT0IEOIEADIFRCIFTXIFOIEADIERCIPTXIPOIEADIPRCIPTXIPSPENRX9SRENCRENEUSART Transmit RegisterCRENSYNCABDOVFRCIDLRXDTPTXCKPEUSART Bud Rate Generator Register HighCREN	GIE/GIEHPEIE/GIELTMR0IEINT0IERBIEADIFRCIFTXIFCMP2IFADIERCIETXIECMP2IEADIPRCIPTXIPCMP2IPSPENRX9SRENCRENADDENEUSARTTansmit RejsterSYNCSENDBABDOVFRCIDLRXDTPTXCKPBRG16	GIE/GIEHPEIE/GIELTMROIEINTOIERBIETMROIFADIFRCIFTXIFCMP2IFCMP1IFADIERCIETXIECMP2IECMP1IEADIPRCIPTXIPCMP2IPCMP1IPSPENRX9SRENCRENADDENFERREUSART Transmit RegisterSYNCSENDBBRGHABDOVFRCIDLRXDTPTXCKPBRG16EUSART BULRATESHARSHARSHAR	GIE/GIEHPEIE/GIELTMR0IEINT0IERBIETMR0IFINT0IFADIFRCIFTXIFCMP2IFCMP1IFCMP0IFADIERCIETXIECMP2IECMP1IECMP0IEADIPRCIPTXIPCMP2IPCMP1IPCMP0IPSPENRX9SRENCRENADDENFERROERREUSART Transmit RegisterSYNCSENDBBRGHTRMTABDOVFRCIDLRXDTPTXCKPBRG16WUEEUSART BUTSUBARTSUBARTSUBARTSUBARTSUBART	GIE/GIEHPEIE/GIELTMROIEINTOIERBIETMROIFINTOIFRBIFADIFRCIFTXIFCMP2IFCMP1IFCMP0IFTMR1IFADIERCIETXIECMP2IECMP1IECMP0IETMR1IFADIPRCIPTXIPCMP2IPCMP1IPCMP0IPTMR1IPSPENRX9SRENCRENADDENFERROERRRX9DEUSART Transmit RegisterSYNCSENDBBRGHTRMTTX9DABDOVFRCIDLRXDTPTXCKPBRG16WUEABDENEUSART But Rate Generator Register High Byte

TABLE 15-5: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Legend: — = unimplemented locations read as '0'. Shaded cells are not used for asynchronous transmission.

18.2 Voltage Reference Accuracy/Error

The full range of voltage reference cannot be realized due to the construction of the module. The transistors on the top and bottom of the resistor ladder network (Figure 18-1) keep CVREF from approaching the reference source rails. The voltage reference is derived from the reference source; therefore, the CVREF output changes with fluctuations in that source. The tested absolute accuracy of the voltage reference can be found in **Section 23.0 "Electrical Characteristics"**.

18.3 Operation During Sleep

When the device wakes up from Sleep through an interrupt or a Watchdog Timer time-out, the contents of the CVRCON register are not affected. To minimize current consumption in Sleep mode, the voltage reference should be disabled.

18.4 Effects of a Reset

A device Reset disables the voltage reference by clearing bit, CVREN (CVRCON<7>). This Reset selects the highvoltage range by clearing bit, CVRR (CVRCON<5>). The CVR value select bits are also cleared.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
CVRCON	CVREN	_	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	48
CMCON	C2OUT	C10UT	COOUT	_	-	CMEN2	CMEN1	CMEN0	48

TABLE 18-2: REGISTERS ASSOCIATED WITH COMPARATOR VOLTAGE REFERENCE

Legend: Shaded cells are not used with the comparator voltage reference.

19.5 Applications

In many applications, the ability to detect a drop below a particular threshold is desirable.

For general battery applications, Figure 19-3 shows a possible voltage curve. Over time, the device voltage decreases. When the device voltage reaches voltage VA, the LVD logic generates an interrupt at time TA. The interrupt could cause the execution of an ISR, which would allow the application to perform "housekeeping tasks" and perform a controlled shutdown before the device voltage exits the valid operating range at TB. The LVD, thus, would give the application a time window, represented by the difference between TA and TB, to safely exit.

19.6 Operation During Sleep

When enabled, the LVD circuitry continues to operate during Sleep. If the device voltage crosses the trip point, the LVDIF bit will be set and the device will wakeup from Sleep. Device execution will continue from the interrupt vector address if interrupts have been globally enabled.

19.7 Effects of a Reset

A device Reset forces all registers to their Reset state. This forces the LVD module to be turned off.

TABLE 19-1: REGISTERS ASSOCIATED WITH LOW-VOLTAGE DETECT MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
LVDCON	_		IRVST	LVDEN	LVDL3	LVDL2	LVDL1	LVDL0	48
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	47
PIR2	OSCFIF	—	—	EEIF	_	LVDIF	_	—	49
PIE2	OSCFIE	—	—	EEIE	_	LVDIE	_	—	49
IPR2	OSCFIP	_		EEIP	_	LVDIP	_	_	49

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the LVD module.

PIC18F1230/1330

REGISTER 20-1: CONFIG1H: CONFIGURATION REGISTER 1 HIGH (BYTE ADDRESS 300001h)

R/P-0	R/P-0	U-0	U-0	R/P-0	R/P-1	R/P-1	R/P-1
IESO	FCMEN			FOSC3	FOSC2	FOSC1	FOSC0
bit 7							bit (
Legend:							
R = Readable	e bit	P = Program	nable bit	U = Unimplen	nented bit, read	l as '0'	
	nen device is unp	•			ed from program		
		Jiogrammed		u Ononange	sa nom program		
bit 7	IESO: Interna	I/External Osc	illator Switcho	ver bit			
		Switchover me Switchover me					
bit 6	FCMEN: Fail-	Safe Clock Mo	nitor Enable b	pit			
		Clock Monitor Clock Monitor					
bit 5-4	Unimplemen	ted: Read as '	0'				
bit 3-0	FOSC3:FOS	C0: Oscillator S	Selection bits				
	101x = Exten 1001 = Intern 1000 = Intern 0111 = Exten 0110 = HS os 0101 = EC os 0100 = EC os	al oscillator blo nal RC oscillat scillator, PLL e scillator, port fu scillator, CLKO nal RC oscillat scillator scillator	or, CLKO func- ock, CLKO func- ock, port function, port function nabled (Clock unction on RA6 function on R	ction on RA6 nction on RA6, ion on RA6 and on on RA6 Frequency = 4 o A6		ו RA7	

REGISTER 20-9: CONFIG6L: CONFIGURATION REGISTER 6 LOW (BYTE ADDRESS 30000Ah)

U-0	U-0	U-0	U-0	U-0	U-0	R/C-1	R/C-1
—	—	—	—	—	—	WRT1	WRT0
bit 7							bit 0

Legend:		
R = Readable bit	C = Clearable bit	U = Unimplemented bit, read as '0'
-n = Value when device is un	programmed	u = Unchanged from programmed state

bit 7-2	Unimplemented: Read as '0'
bit 1	WRT1: Write Protection bit (Block 1 Code Memory Area)
	1 = Block 1 is not write-protected0 = Block 1 is write-protected
bit 0	WRT0: Write Protection bit (Block 0 Code Memory Area)
	1 = Block 0 is not write-protected0 = Block 0 is write-protected

REGISTER 20-10: CONFIG6H: CONFIGURATION REGISTER 6 HIGH (BYTE ADDRESS 30000Bh)

R/C-1	R/C-1	R-1	U-0	U-0	U-0	U-0	U-0
WRTD	WRTB	WRTC ⁽¹⁾	-	—	—	—	—
bit 7							bit 0

Legend:							
R = Read	able bit C = Clearable bit	U = Unimplemented bit, read as '0'					
-n = Value	e when device is unprogrammed	u = Unchanged from programmed state					
bit 7	pit 7 WRTD: Write Protection bit (Data EEPROM)						
	1 = Data EEPROM is not write-protect	sted					
	0 = Data EEPROM is write-protected						

bit 6	WR	TB:	Write	e I	Prote	ctio	n bit ((Boo	t E	Block Memory Area)
		-								

- 1 = Boot Block is not write-protected 0 = Boot Block is write-protected
- bit 5 WRTC: Write Protection bit (Configuration Registers)⁽¹⁾
 - 1 = Configuration registers are not write-protected
 - 0 = Configuration registers are write-protected
- bit 4-0 Unimplemented: Read as '0'

Note 1: This bit is read-only in normal execution mode; it can be written only in Program mode.

21.11 PICSTART Plus Development Programmer

The PICSTART Plus Development Programmer is an easy-to-use, low-cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. The PICSTART Plus Development Programmer supports most PIC devices in DIP packages up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus Development Programmer is CE compliant.

21.12 PICkit 2 Development Programmer

The PICkit[™] 2 Development Programmer is a low-cost programmer and selected Flash device debugger with an easy-to-use interface for programming many of Microchip's baseline, mid-range and PIC18F families of Flash memory microcontrollers. The PICkit 2 Starter Kit includes a prototyping development board, twelve sequential lessons, software and HI-TECH's PICC[™] Lite C compiler, and is designed to help get up to speed quickly using PIC[®] microcontrollers. The kit provides everything needed to program, evaluate and develop applications using Microchip's powerful, mid-range Flash memory family of microcontrollers.

21.13 Demonstration, Development and Evaluation Boards

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart[®] battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Check the Microchip web page (www.microchip.com) and the latest *"Product Selector Guide"* (DS00148) for the complete list of demonstration, development and evaluation kits.

PIC18F1230/1330

ADDWF	ADD W to Indexed (Indexed Literal Offset mode)								
Syntax:	ADDWF	[k] {,d}							
Operands:	$\begin{array}{l} 0 \leq k \leq 95 \\ d \in [0,1] \end{array}$	$0 \le k \le 95$							
Operation:	(W) + ((FSF	R2) + k) –	→ dest						
Status Affected:	N, OV, C, D	C, Z							
Encoding:	0010	01d0	kkkk	kkkk					
Description: The contents of W are added to the contents of the register indicated by FSR2, offset by the value 'k'. If 'd' is '0', the result is stored in W. I is '1', the result is stored back in register 'f'.									
Words:	1								
Cycles:	1								
Q Cycle Activity:									
Q1	Q2	Q3		Q4					
Decode	Read 'k'	Proce Data		Write to destination					
Example:	ADDWF	[OFST],	, 0						
Before Instructi	on								
W OFST FSR2 Contents of 0A2Ch After Instructior	= = = =	17h 2Ch 0A00h 20h							
W Contents of 0A2Ch	=	37h 20h							

			Offset n	node)
ax:	BSF [k],	b		
ands:	$\begin{array}{l} 0 \leq f \leq 95 \\ 0 \leq b \leq 7 \end{array}$			
ation:	$1 \rightarrow ((FS))$	R2) + k) <t< td=""><td>)></td><td></td></t<>)>	
is Affected:	None			
oding:	1000	bbb0	kkkk	kkkk
cription:		0		by FSR2,
ls:	1			
es:	1			
ycle Activity:				
Q1	Q2	Q	3	Q4
Decode	Read register 'f'			Write to estination
nple:	BSF	[FLAG_C)FST], 7	1
FLAG_OI FSR2 Contents of 0A0Ah After Instructio Contents	=ST = = n	= 0A00 = 55h	h	
	ax: ands: ation: as Affected: ding: cription: ds: es: ycle Activity: Q1 Decode nple: Before Instruct FLAG_OI FSR2 Contents of 0A0Ah After Instructio	Indexerax:BSF [k], $0 \le f \le 95$ $0 \le b \le 7$ adding: $0 \le f \le 95$ $0 \le b \le 7$ ation: $1 \rightarrow ((FS))$ as Affected:Nonebding: 1000 bription:Bit 'b' of the offset by the offset by the offset by the dis:as:1bes:1ycle Activity:Q1Q1Q2DecodeRead register 'f'nple:BSFBefore Instruction FLAG_OFST contents of 0A0AhAfter Instruction ContentsAfter Instruction Contents	(Indexed Literalax:BSF[k], brands: $0 \le f \le 95$ $0 \le b \le 7$ ration: $1 \rightarrow ((FSR2) + k) < b$ as Affected:Nonevoling: 1000 bbb0bription:Bit 'b' of the register offset by the value 'dis:1es:1es:1ycle Activity:Q1Q2Q2Q3DecodeRead register 'f'DecodeRead register 'f'Before Instruction FSR2 of 0A0Ah= 0Ah s5hAfter Instruction Contents of 0A0Ah= 55h	(Indexed Literal Offset nax:BSF[k], bax:0 \leq f \leq 950 \leq b \leq 7ration:1 \rightarrow ((FSR2) + k) < b>as Affected:Nonebding:1000bbb0kkkkbription:Bit 'b' of the register indicated offset by the value 'k', is set.ds:1es:1ycle Activity:Q1Q2Q1Q2Q3DecodeRead register 'f'Process Datanple:BSF[FLAG_OFST], 7Before Instruction FSR2=0A00h Contents of 0A0Ah=S5hAfter Instruction Contents=

SETI	F	Set Index (Indexed		Offset	t m	ode)				
Synta	IX:	SETF [k]								
Opera	ands:	$0 \leq k \leq 95$								
Opera	ation:	$FFh \to ((F$	SR2) + k)							
Status	s Affected:	None								
Enco	ding:	0110	1000	kkk.	k	kkkk				
Desci	ription:		The contents of the register indicated by FSR2, offset by 'k', are set to FFh.							
Word	s:	1	1							
Cycle	s:	1	1							
Q Cy	cle Activity:									
_	Q1	Q2	Q3	6		Q4				
	Decode	Read 'k'	Proce Dat			Write egister				
Exam	iple:	SETF	[OFST]	·						
I	Before Instruc OFST FSR2 Contents	= 20 = 0/	Ch A00h							

of 0A2Ch	=	00h
After Instruction		
Contents of 0A2Ch	=	FFh

23.2 DC Characteristics: Power-Down and Supply Current PIC18F1230/1330 (Industrial) PIC18LF1230/1330 (Industrial)

PIC18LF1 (Indus		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial										
PIC18F12 (Indus		ard Ope ing tem	•	Conditions (unless otherwise $-40^{\circ}C \le TA \le +85^{\circ}C$ for ir $-40^{\circ}C \le TA \le +125^{\circ}C$ for	ndustrial							
Param No.	Device	Тур	Max	Units	Conditions							
	Power-Down Current (IPD) ⁽¹⁾											
	PIC18LF1230/1330	100	742	nA	-40°C							
		0.1	0.742	μΑ	+25°C	VDD = 2.0V (Sleep mode)						
		0.2	4.80	μΑ	+85°C							
	PIC18LF1230/1330	0.1	1.20	μΑ	-40°C							
		0.1	1.20	μΑ	+25°C	VDD = 3.0V (Sleep mode)						
		0.3	7.80	μΑ	+85°C							
	All devices	0.1	7.79	μΑ	-40°C							
		0.1	7.79	μA	+25°C	VDD = 5.0V						
		0.4	14.8	μA	+85°C	(Sleep mode)						
	Extended devices only	10	119	μA	+125°C							

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or VSS;

MCLR = VDD; WDT enabled/disabled as specified.

3: Low-power Timer1 oscillator selected.

4: BOR and LVD enable internal band gap reference. With both modules enabled, current consumption will be less than the sum of both specifications.

					/		
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
F10	Fosc	Oscillator Frequency Range	4	—	10	MHz	HS mode only
F11	Fsys	On-Chip VCO System Frequency	16	_	40	MHz	HS mode only
F12	t _{rc}	PLL Start-up Time (Lock Time)	—	—	2	ms	
F13	ΔCLK	CLKO Stability (Jitter)	-2	_	+2	%	

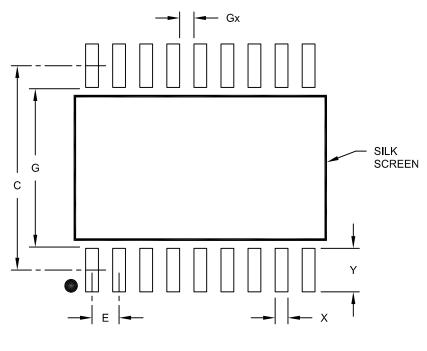
TABLE 23-7: PLL CLOCK TIMING SPECIFICATIONS (VDD = 4.2V TO 5.5V)

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 23-8: AC CHARACTERISTICS: INTERNAL RC ACCURACY

	Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended										
Param No.	Device	ice Min Typ Max Units Conditions									
	INTOSC Accuracy @ Freq = 8 MHz, 4 MHz, 2 MHz, 1 MHz, 500 kHz, 250 kHz, 125 kHz, 31 kHz ⁽¹⁾										
	PIC18LF1230/1330	-2	+/-1	2	%	+25°C	VDD = 2.7-3.3V				
		-5	—	5	%	-10°C to +85°C	VDD = 2.7-3.3V				
		-10	+/-1	10	%	-40°C to +85°C	VDD = 2.7-3.3V				
	PIC18F1230/1330	-2	+/-1	2	%	+25°C	VDD = 4.5-5.5V				
		-5	_	5	%	-10°C to +85°C	VDD = 4.5-5.5V				
		-10	+/-1	10	%	-40°C to +85°C	VDD = 4.5-5.5V				
	INTRC Accuracy @ Freq = 31 kHz ⁽²	2,3)					•				
	PIC18LF1230/1330	26.562	_	35.938	kHz	-40°C to +85°C	VDD = 2.7-3.3V				
	PIC18F1230/1330	26.562	_	35.938	kHz	-40°C to +85°C	VDD = 4.5-5.5V				

Legend: Shading of rows is to assist in readability of the table.


Note 1: Frequency calibrated at 25°C. OSCTUNE register can be used to compensate for temperature drift.

2: INTRC frequency after calibration.

3: Change of INTRC frequency as VDD changes.

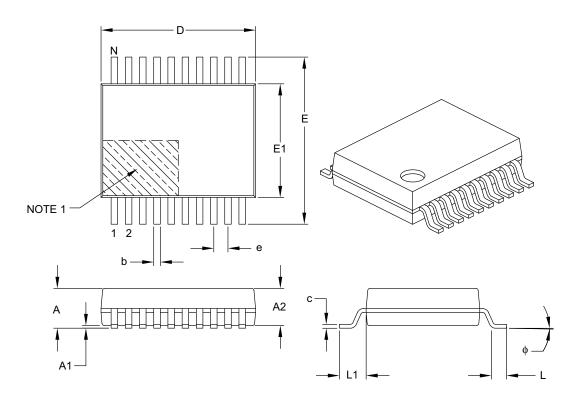
18-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	N	IILLIMETER	S
Dimensior	l Limits	MIN	NOM	MAX
Contact Pitch	E		1.27 BSC	
Contact Pad Spacing	С		9.40	
Contact Pad Width	X			0.60
Contact Pad Length	Y			2.00
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7.40		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2105A

20-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX	
Number of Pins	Ν		20		
Pitch	е	0.65 BSC			
Overall Height	А	-	-	2.00	
Molded Package Thickness	A2	1.65	1.75	1.85	
Standoff	A1	0.05	-	-	
Overall Width	E	7.40	7.80	8.20	
Molded Package Width	E1	5.00	5.30	5.60	
Overall Length	D	6.90	7.20	7.50	
Foot Length	L	0.55	0.75	0.95	
Footprint	L1		1.25 REF		
Lead Thickness	С	0.09	-	0.25	
Foot Angle	¢	0°	4°	8°	
Lead Width	b	0.22	_	0.38	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-072B

Associated Registers, Transmit 165	
Reception	
Transmission164	
Synchronous Slave Mode167	
Associated Registers, Receive	
Associated Registers, Transmit 167	
Reception168	
Transmission167	
Extended Instruction Set	
ADDFSR	
ADDULNK	
and Using MPLAB Tools264	
CALLW	
Considerations for Use	
MOVSF259	
MOVSS	
PUSHL	
SUBFSR	
SUBULNK	
Syntax	
External Clock Input	

F

Fail-Safe Clock Monitor	. 191, 205
Exiting Operation	205
Interrupts in Power-Managed Modes	206
POR or Wake From Sleep	206
WDT During Oscillator Failure	205
Fast Register Stack	54
Firmware Instructions	
Flash Program Memory	71
Associated Registers	79
Control Registers	
EECON1 and EECON2	72
TABLAT (Table Latch) Register	74
TBLPTR (Table Pointer) Register	74
Erase Sequence	76
Erasing	76
Operation During Code-Protect	79
Reading	75
Table Pointer	
Boundaries Based on Operation	74
Operations with TBLRD and TBLWT (tabl	
Table Pointer Boundaries	74
Table Reads and Table Writes	71
Write Sequence	77
Writing	
Protection Against Spurious Writes	79
Unexpected Termination	79
Write Verify	79
FSCM. See Fail-Safe Clock Monitor.	

G

Н

Hardware Multiplier	
Introduction	
Operation	85
Performance Comparison	

L

I/O Ports	
ID Locations	191, 210
INCF	236
INCFSZ	237
In-Circuit Debugger	210
In-Circuit Serial Programming (ICSP)	
Independent PWM Mode	101, 210
Duty Cycle Assignment	407
	137
Output	
Output, Channel Override	138
Indexed Literal Offset Addressing	
and Standard PIC18 Instructions	262
Indexed Literal Offset Mode	262
Indirect Addressing	
INFSNZ	
Initialization Conditions for all Registers	
Instruction Cycle	
Clocking Scheme	55
Flow/Pipelining	55
Instruction Set	215
ADDLW	221
ADDWF	
ADDWF (Indexed Literal Offset Mode)	
ADDWFC	
ANDLW	
ANDWF	223
BC	223
BCF	224
BN	224
BNC	
BNN	
BNOV	
BNZ	226
BOV	
DOV	229
BRA	
	227
BRA BSF	227 227
BRA BSF BSF (Indexed Literal Offset Mode)	227 227 263
BRA BSF BSF (Indexed Literal Offset Mode) BTFSC	227 227 263 228
BRA BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS	227 227 263 228 228
BRA BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG	227 227 263 228 228 229
BRA	227 227 263 228 228 229 230
BRA BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG	227 227 263 228 228 229 230
BRA	227 263 228 228 228 229 230 230
BRA BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL	
BRA BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT	
BRA BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF	
BRA BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF CPFSEQ	
BRA BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF CPFSEQ CPFSGT	
BRA BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF CPFSEQ CPFSGT CPFSLT	
BRA BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF CPFSEQ CPFSGT CPFSLT DAW	
BRA BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF CPFSEQ CPFSEQ CPFSGT CPFSLT DAW DCFSNZ	
BRA BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF CPFSEQ CPFSGT CPFSLT DAW	
BRA BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF CPFSEQ CPFSEQ CPFSGT CPFSLT DAW DCFSNZ	
BRA BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF CPFSEQ CPFSGT CPFSLT DAW DCFSNZ DECF DECFSZ	
BRA BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF CPFSEQ CPFSGT CPFSLT DAW DCFSNZ DECF DECFSZ Extended Instruction Set	
BRA BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF CPFSEQ CPFSGT CPFSLT DAW DCFSNZ DECF DECFSZ Extended Instruction Set General Format	
BRA BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF CPFSEQ CPFSGT CPFSLT DAW DCFSNZ DECF Extended Instruction Set GOTO	
BRA BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF CPFSEQ CPFSGT CPFSLT DAW DCFSNZ DECF Extended Instruction Set GOTO INCF	
BRA BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF CPFSEQ CPFSGT CPFSLT DAW DCFSNZ DECF DECFSZ Extended Instruction Set General Format GOTO INCF	
BRA BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF CPFSEQ CPFSGT CPFSLT DAW DCFSNZ DECF DECFSZ Extended Instruction Set General Format GOTO INCF INCFSZ	
BRA BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF CPFSEQ CPFSGT CPFSLT DAW DCFSNZ DECF DECFSZ Extended Instruction Set General Format GOTO INCF	
BRA BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF CPFSEQ CPFSGT CPFSLT DAW DCFSNZ DECF DECFSZ Extended Instruction Set General Format GOTO INCF INCFSZ	
BRA BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF CPFSEQ CPFSGT CPFSLT DAW DCFSNZ DECF Extended Instruction Set General Format GOTO INCF INCFSZ INCFSNZ IORLW IORWF	
BRA BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF CPFSEQ CPFSGT CPFSQT DCFSNZ DECF DECFSZ Extended Instruction Set General Format GOTO INCF INCFSZ INCFSNZ IORUW IORWF LFSR	
BRA BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF CPFSEQ CPFSST DAW DCFSNZ DECF DECFSZ Extended Instruction Set GoTO INCF INCFSZ INCFSNZ IORWF LFSR MOVF	
BRA BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF CPFSEQ CPFSGT CPFSQT DCFSNZ DECF DECFSZ Extended Instruction Set General Format GOTO INCF INCFSZ INCFSNZ IORUW IORWF LFSR	