

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	16
Program Memory Size	4KB (2K x 16)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f1230-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pi	Pin Number			Buffer			
Pin Name	PDIP, SOIC	SSOP	QFN	Pin Type	Туре	Description		
Vss	5	5	3	Р		Ground reference for logic and I/O pins.		
Vdd	14	16	19	Р	_	Positive supply for logic and I/O pins.		
AVss	5	6	5	Р	_	Ground reference for A/D Converter module.		
AVdd	14	15	17	Р	—	Positive supply for A/D Converter module.		
NC	_	_	2, 4, 6, 11, 14, 18, 22, 25	_	_	No Connect.		
Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output								

TABLE 1-2:PIC18F1230/1330 PINOUT I/O DESCRIPTIONS (CONTINUED)

ST = Schmitt Trigger input with CMOS levels

I = Input P = Power

O = Output

Note 1: Placement of FLTA depends on the value of Configuration bit, FLTAMX, of CONFIG3H.

2: Placement of T1OSI and T1OSO/T1CKI depends on the value of Configuration bit, T1OSCMX, of CONFIG3H.

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on Page:
TOSU	—	—	—	Top-of-Stack	Upper Byte (T	OS<20:16>)			0 0000	47, 52
TOSH	Top-of-Stack	High Byte (TC	S<15:8>)						0000 0000	47, 52
TOSL	Top-of-Stack	Low Byte (TO	S<7:0>)						0000 0000	47, 52
STKPTR	STKFUL ⁽⁵⁾	STKUNF ⁽⁵⁾	_	SP4	SP0	00-0 0000	47, 53			
PCLATU	_	_	_	Holding Regi	ster for PC<20	:16>			0 0000	47, 52
PCLATH	Holding Regi	ster for PC<15	:8>						0000 0000	47, 52
PCL	PC Low Byte	(PC<7:0>)							0000 0000	47, 52
TBLPTRU	—	—	bit 21	Program Mer	nory Table Poi	nter Upper By	te (TBLPTR<20	D:16>)	00 0000	47, 74
TBLPTRH	Program Mer	Program Memory Table Pointer High Byte (TBLPTR<15:8>)								47, 74
TBLPTRL	Program Mer	nory Table Poi	nter Low Byte	e (TBLPTR<7:0)>)				0000 0000	47, 74
TABLAT	Program Mer	nory Table Lat	ch						0000 0000	47, 74
PRODH	Product Regi	ster High Byte							xxxx xxxx	47, 85
PRODL	Product Regi	Product Register Low Byte							xxxx xxxx	47, 85
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	x000 0000x	47, 95
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	INTEDG3	TMR0IP	INT3IP	RBIP	1111 1111	47, 96
INTCON3	INT2IP	INT1IP	INT3IE	INT2IE	INT1IE	INT3IF	INT2IF	INT1IF	1100 0000	47, 97
INDF0	Uses content	Uses contents of FSR0 to address data memory – value of FSR0 not changed (not a physical register)								47, 66
POSTINC0	Uses contents of FSR0 to address data memory – value of FSR0 post-incremented (not a physical register)							register)	N/A	47, 66
POSTDEC0	Uses content	Uses contents of FSR0 to address data memory – value of FSR0 post-decremented (not a physical register)							N/A	47, 66
PREINC0	Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register)							register)	N/A	47, 66
PLUSW0		Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) – value of FSR0 offset by W							N/A	47, 66
FSR0H	—	—		_	Indirect Data	Memory Addre	ess Pointer 0 H	igh Byte	0000	47, 66
FSR0L	Indirect Data	Memory Addr	ess Pointer 0	Low Byte					xxxx xxxx	47, 66
WREG	Working Reg	ister							xxxx xxxx	47, 54
INDF1	Uses content	s of FSR1 to a	iddress data n	nemory – valu	e of FSR1 not	changed (not	a physical regis	ster)	N/A	47, 66
POSTINC1	Uses content	s of FSR1 to a	iddress data n	nemory – valu	e of FSR1 pos	t-incremented	(not a physical	register)	N/A	47, 66
POSTDEC1	Uses content	s of FSR1 to a	iddress data n	nemory – valu	e of FSR1 pos	t-decremented	l (not a physica	l register)	N/A	47, 66
PREINC1	Uses content	s of FSR1 to a	iddress data n	nemory – valu	e of FSR1 pre-	incremented (not a physical r	register)	N/A	47, 66
PLUSW1	Uses content value of FSR		iddress data n	nemory – valu	e of FSR1 pre-	incremented (not a physical r	register) –	N/A	47, 66
FSR1H	—	—	—	—	Indirect Data	Memory Addre	ess Pointer 1 H	igh Byte	0000	47, 66
FSR1L	Indirect Data	Memory Addr	ess Pointer 1	Low Byte					xxxx xxxx	47, 66
BSR	_	_	_	_	Bank Select F	Register			0000	47, 57
INDF2	Uses content	s of FSR2 to a	iddress data n	nemory – valu	e of FSR2 not	changed (not	a physical regis	ster)	N/A	48, 66
POSTINC2	Uses content	s of FSR2 to a	iddress data n	nemory – valu	e of FSR2 pos	-incremented	(not a physical	register)	N/A	48, 66
POSTDEC2	Uses content	s of FSR2 to a	iddress data n	nemory – valu	e of FSR2 pos	t-decremented	l (not a physica	l register)	N/A	48, 66
PREINC2	Uses content	s of FSR2 to a	iddress data n	nemory – valu	e of FSR2 pre-	incremented (not a physical r	egister)	N/A	48, 66
PLUSW2	Uses content value of FSR		iddress data n	nemory – valu	e of FSR2 pre-	incremented (not a physical r	register) –	N/A	48, 66
FSR2H	_	—	_	_	Indirect Data	Memory Addr	ess Pointer 2 H	igh Byte	0000	48, 66
FSR2L	Indirect Data Memory Address Pointer 2 Low Byte								xxxx xxxx	48, 66

TABLE 6-2: REGISTER FILE SUMMARY (PIC18F1230/1330)

Note 1: The SBOREN bit is only available when the BOREN1:BOREN0 Configuration bits = 01; otherwise, it is disabled and reads as '0'. See Section 5.4 "Brown-out Reset (BOR)".

2: The PLLEN bit is only available in specific oscillator configurations; otherwise, it is disabled and reads as '0'. See Section 3.6.4 "PLL in INTOSC Modes".

The RA5 bit is only available when Master Clear Reset is disabled (MCLRE Configuration bit = 0); otherwise, RA5 reads as 3: '0'. This bit is read-only.

4: RA6/RA7 and their associated latch and direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

5: Bit 7 and bit 6 are cleared by user software or by a POR.

6: Reset condition of PWMEN bits depends on the PWMPIN Configuration bit of CONFIG3L.

7: This bit has no effect if the Configuration bit, WDTEN, is enabled.

PIC18F1230/1330

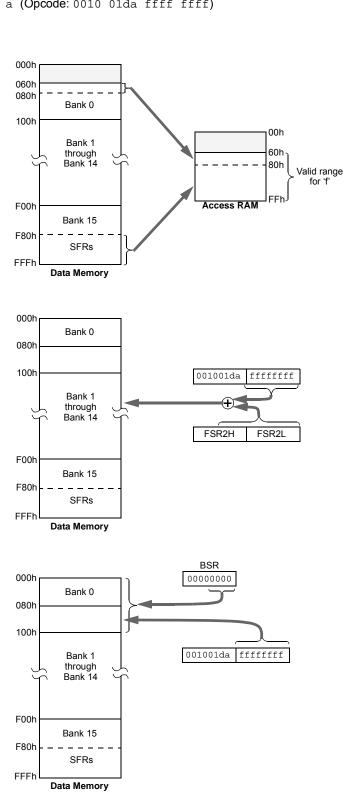
FIGURE 6-8: COMPARING ADDRESSING OPTIONS FOR BIT-ORIENTED AND BYTE-ORIENTED INSTRUCTIONS (EXTENDED INSTRUCTION SET ENABLED)

EXAMPLE INSTRUCTION: ADDWF, f, d, a (Opcode: 0010 01da ffff ffff)

When 'a' = 0 and $f \ge 60h$:

The instruction executes in Direct Forced mode. 'f' is interpreted as a location in the Access RAM between 060h and 0FFh. This is the same as locations 060h to 07Fh (Bank 0) and F80h to FFFh (Bank 15) of data memory.

Locations below 60h are not available in this addressing mode.


When 'a' = 0 and $f \le 5Fh$:

The instruction executes in Indexed Literal Offset mode. 'f' is interpreted as an offset to the address value in FSR2. The two are added together to obtain the address of the target register for the instruction. The address can be anywhere in the data memory space.

Note that in this mode, the correct syntax is now: ADDWF [k], d where 'k' is the same as 'f'.

When 'a' = 1 (all values of f):

The instruction executes in Direct mode (also known as Direct Long mode). 'f' is interpreted as a location in one of the 16 banks of the data memory space. The bank is designated by the Bank Select Register (BSR). The address can be in any implemented bank in the data memory space.

REGISTER 7-1:	EECON1: EEPROM CONTROL REGISTER 1
---------------	-----------------------------------

R/W-x	R/W-x	U-0	R/W-0	R/W-x	R/W-0	R/S-0	R/S-0
EEPGD	CFGS	—	FREE	WRERR ⁽¹⁾	WREN	WR	RD
bit 7							bit 0

Legend:	S = Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	EEPGD: Flash Program or Data EEPROM Memory Select bit
	1 = Access Flash program memory
	0 = Access data EEPROM memory
bit 6	CFGS: Flash Program/Data EEPROM or Configuration Select bit
	1 = Access Configuration registers
	0 = Access Flash program or data EEPROM memory
bit 5	Unimplemented: Read as '0'
bit 4	FREE: Flash Row Erase Enable bit
	 1 = Erase the program memory row addressed by TBLPTR on the next WR command (cleared by completion of erase operation)
	0 = Perform write-only
bit 3	WRERR: Flash Program/Data EEPROM Error Flag bit ⁽¹⁾
	 1 = A write operation is prematurely terminated (any Reset during self-timed programming in normal operation, or an improper write attempt)
	0 = The write operation completed
bit 2	WREN: Flash Program/Data EEPROM Write Enable bit
	1 = Allows write cycles to Flash program/data EEPROM
	0 = Inhibits write cycles to Flash program/data EEPROM
bit 1	WR: Write Control bit
	 1 = Initiates a data EEPROM erase/write cycle or a program memory erase cycle or write cycle. (The operation is self-timed and the bit is cleared by hardware once write is complete. The WR bit can only be set (not cleared) in software.)
	0 = Write cycle to the EEPROM is complete
bit 0	RD: Read Control bit
	 1 = Initiates an EEPROM read. (Read takes one cycle. RD is cleared in hardware. The RD bit can only be set (not cleared) in software. RD bit cannot be set when EEPGD = 1 or CFGS = 1.)
	0 = Does not initiate an EEPROM read
	(hap a WRERR assure the EERCR and CECS hits are not cleared. This allows tracing of the array

Note 1: When a WRERR occurs, the EEPGD and CFGS bits are not cleared. This allows tracing of the error condition.

7.2.2 TABLAT – TABLE LATCH REGISTER

The Table Latch (TABLAT) is an 8-bit register mapped into the SFR space. The Table Latch register is used to hold 8-bit data during data transfers between program memory and data RAM.

7.2.3 TBLPTR – TABLE POINTER REGISTER

The Table Pointer (TBLPTR) register addresses a byte within the program memory. The TBLPTR is comprised of three SFR registers: Table Pointer Upper Byte, Table Pointer High Byte and Table Pointer Low Byte (TBLPTRU:TBLPTRH:TBLPTRL). These three registers join to form a 22-bit wide pointer. The low-order 21 bits allow the device to address up to 2 Mbytes of program memory space. The 22nd bit allows access to the device ID, the user ID and the Configuration bits.

The Table Pointer register, TBLPTR, is used by the TBLRD and TBLWT instructions. These instructions can update the TBLPTR in one of four ways based on the table operation. These operations are shown in Table 7-1. These operations on the TBLPTR only affect the low-order 21 bits.

7.2.4 TABLE POINTER BOUNDARIES

TBLPTR is used in reads, writes and erases of the Flash program memory.

When a TBLRD is executed, all 22 bits of the TBLPTR determine which byte is read from program memory into TABLAT.

When the timed write to program memory begins (via the WR bit), the 19 MSbs of the TBLPTR (TBLPTR<21:3>) determine which program memory block of 8 bytes is written to. The Table Pointer register's three LSBs (TBLPTR<2:0>) are ignored. For more detail, see Section 7.5 "Writing to Flash Program Memory".

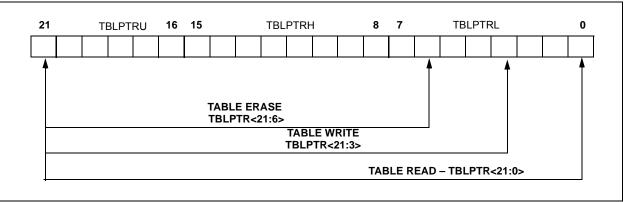

When an erase of program memory is executed, the 16 MSbs of the Table Pointer register (TBLPTR<21:6>) point to the 64-byte block that will be erased. The Least Significant bits (TBLPTR<5:0>) are ignored.

Figure 7-3 describes the relevant boundaries of TBLPTR based on Flash program memory operations.

TABLE 7-1:	TABLE POINTER OPERATIONS WITH TBLRD AND TBLWT INSTRUCTIONS
------------	--

Example	Operation on Table Pointer						
TBLRD* TBLWT*	TBLPTR is not modified						
TBLRD*+ TBLWT*+	TBLPTR is incremented after the read/write						
TBLRD*- TBLWT*-	TBLPTR is decremented after the read/write						
TBLRD+* TBLWT+*	TBLPTR is incremented before the read/write						

FIGURE 7-3: TABLE POINTER BOUNDARIES BASED ON OPERATION

R/W-	1 R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
INT2I	P INT1IP	INT3IE	INT2IE	INT1IE	INT3IF	INT2IF	INT1IF					
bit 7						·	bit (
Legend:												
R = Read		W = Writable			mented bit, read							
-n = Valu	e at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown					
bit 7	INT2IP: INT	2 External Interr	upt Priority bi	t								
	1 = High pri											
	0 = Low prie	ority										
bit 6	INT1IP: INT	1 External Interr	upt Priority bi	t								
	1 = High pri											
	0 = Low prie	•										
bit 5		INT3IE: INT3 External Interrupt Enable bit										
		 1 = Enables the INT3 external interrupt 0 = Disables the INT3 external interrupt 										
bit 4		INT2IE: INT2 External Interrupt Enable bit										
		1 = Enables the INT2 external interrupt										
	0 = Disable	0 = Disables the INT2 external interrupt										
bit 3		1 External Interr	•	t								
		 1 = Enables the INT1 external interrupt 0 = Disables the INT1 external interrupt 										
bit 2		3 External Interr	•									
DIL Z		3 external inter		(must be clear	ed in software)							
		3 external inter			cu in soltware)							
bit 1	INT2IF: INT	2 External Interr	upt Flag bit									
		1 = The INT2 external interrupt occurred (must be cleared in software)										
	0 = The INT2 external interrupt did not occur											
bit 0	INT1IF: INT1 External Interrupt Flag bit											
		 1 = The INT1 external interrupt occurred (must be cleared in software) 0 = The INT1 external interrupt did not occur 										
			מאר מום חטר טר	JUUI								
Note:	Interrupt flag bits											
	enable bit or the						errupt flag bit					
	are clear prior to	enabling an inte	errupt. This fea	ature allows for	sonware pollir	ıg.						

REGISTER 11-3: INTCON3: INTERRUPT CONTROL REGISTER 3

R/W-0	U-0	U-0	R/W-0	U-0	R/W-0	U-0	U-0		
OSCFIE		—	EEIE	—	LVDIE	—			
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'									
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown									
bit 7 bit 6-5	1 = Enabled 0 = Disabled	illator Fail Inter ted: Read as '0	·						
bit 4	EEIE: Data EEPROM/Flash Write Operation Interrupt Enable bit 1 = Enabled 0 = Disabled								
bit 3	Unimplement	ted: Read as 'd)'						
bit 2	LVDIE: Low-Voltage Detect Interrupt Enable bit								
	1 = Enabled 0 = Disabled								
bit 1-0	Unimplement	ted: Read as 'd)'						

REGISTER 11-9: PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3

U-0	U-0	U-0	R/W-0	U-0	U-0	U-0	U-0
—	—	—	PTIE	—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 7-5 Unimplemented: Read as '0'
- bit 4 PTIE: PWM Time Base Interrupt Enable bit
 - 1 = PWM enabled
 - 0 = PWM disabled
- bit 3-0 Unimplemented: Read as '0'

11.5 RCON Register

Γ.

The RCON register contains flag bits which are used to determine the cause of the last Reset or wake-up from Idle or Sleep modes. RCON also contains the IPEN bit which enables interrupt priorities.

The operation of the SBOREN bit and the Reset flag bits is discussed in more detail in **Section 5.1 "RCON Register"**.

REGISTER 11-13: RCON: RESET CONTROL REGISTER

R/W-0	R/W-1 ⁽¹⁾	U-0	R/W-1	R-1	R-1	R/W-0 ⁽²⁾	R/W-0
IPEN	SBOREN	_	RI	TO	PD	POR	BOR
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	IPEN: Interrupt Priority Enable bit 1 = Enable priority levels on interrupts 0 = Disable priority levels on interrupts (PIC16CXXX Compatibility mode)
bit 6	SBOREN: BOR Software Enable bit ⁽¹⁾
	For details of bit operation, see Register 5-1.
bit 5	Unimplemented: Read as '0'
bit 4	RI: RESET Instruction Flag bit
	For details of bit operation, see Register 5-1.
bit 3	TO: Watchdog Time-out Flag bit
	For details of bit operation, see Register 5-1.
bit 2	PD: Power-Down Detection Flag bit
	For details of bit operation, see Register 5-1.
bit 1	POR: Power-on Reset Status bit ⁽²⁾
	For details of bit operation, see Register 5-1.
bit 0	BOR: Brown-out Reset Status bit
	For details of bit operation, see Register 5-1.

- Note 1: If SBOREN is enabled, its Reset state is '1'; otherwise, it is '0'. See Register 5-1 for additional information.
 - 2: The actual Reset value of POR is determined by the type of device Reset. See Register 5-1 for additional information.

13.0 TIMER1 MODULE

The Timer1 timer/counter module has the following features:

- 16-bit timer/counter (two 8-bit registers; TMR1H and TMR1L)
- Readable and writable (both registers)
- · Internal or external clock select
- Interrupt on overflow from FFFFh to 0000h
- · Status of system clock operation

Figure 13-1 is a simplified block diagram of the Timer1 module.

Register 13-1 details the Timer1 Control register. This register controls the operating mode of the Timer1 module and contains the Timer1 Oscillator Enable bit (T1OSCEN). Timer1 can be enabled or disabled by setting or clearing control bit, TMR1ON (T1CON<0>).

The Timer1 oscillator can be used as a secondary clock source in power-managed modes. When the T1RUN bit is set, the Timer1 oscillator provides the system clock. If the Fail-Safe Clock Monitor is enabled and the Timer1 oscillator fails while providing the system clock, polling the T1RUN bit will indicate whether the clock is being provided by the Timer1 oscillator or another source.

Timer1 can also be used to provide Real-Time Clock (RTC) functionality to applications with only a minimal addition of external components and code overhead.

REGISTER 13-1: T1CON: TIMER1 CONTROL REGISTER

R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N
bit 7							bit 0

Legend:									
R = Readab	le bit	W = Writable bit	U = Unimplemented bit,	read as '0'					
-n = Value a	t POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					
bit 7	RD16: 1	6-Bit Read/Write Mode Enabl	le bit						
	1 = Ena	bles register read/write of Tin	ner1 in one 16-bit operation						
	0 = Ena	bles register read/write of Tin	ner1 in two 8-bit operations						
bit 6	T1RUN:	Timer1 System Clock Status	bit						
		rice clock is derived from Time							
		rice clock is derived from anot							
bit 5-4		S1:T1CKPS0: Timer1 Input C	lock Prescale Select bits						
		11 = 1:8 Prescale value							
		10 = 1:4 Prescale value 01 = 1:2 Prescale value							
		Prescale value							
bit 3	T1OSCE	T1OSCEN: Timer1 Oscillator Enable bit							
	1 = Time	1 = Timer1 oscillator is enabled							
		er1 oscillator is shut off							
		-	esistor are turned off to elimin	ate power drain.					
bit 2		: Timer1 External Clock Inpu	t Synchronization Select bit						
	-	$\frac{MR1CS = 1}{2}$	- inn4						
		ot synchronize external clock chronize external clock input	input						
		When $TMR1CS = 0$:							
	This bit i	s ignored. Timer1 uses the in	ternal clock when TMR1CS =	0.					
bit 1	TMR1CS	S: Timer1 Clock Source Select	ct bit						
	1 = Exte	ernal clock from T1OSO/T1Cl	<i (on="" edge)<sup="" rising="" the="">(1)</i>						
	0 = Inte	rnal clock (Fosc/4)							
bit 0	TMR10	N: Timer1 On bit							
		ıbles Timer1 os Timer1							
Note 1. Pla	coment of T1	OSI and T1OSO/T1CKI depen	ids on the value of the Configur	ation bit. T1OSCMX. of CONFIG					

Note 1: Placement of T1OSI and T1OSO/T1CKI depends on the value of the Configuration bit, T1OSCMX, of CONFIG3H.

14.5 PWM Period

The PWM period is defined by the PTPER register pair (PTPERL and PTPERH). The PWM period has 12-bit resolution by combining 4 LSBs of PTPERH and 8 bits of PTPERL. PTPER is a double-buffered register used to set the counting period for the PWM time base.

The PTPER buffer contents are loaded into the PTPER register at the following times:

- Free-Running and Single-Shot modes: When the PTMR register is reset to zero after a match with the PTPER register.
- Continuous Up/Down Count modes: When the PTMR register is zero. The value held in the PTPER buffer is automatically loaded into the PTPER register when the PWM time base is disabled (PTEN = 0). Figure 14-9 and Figure 14-10 indicate the times when the contents of the PTPER buffer are loaded into the actual PTPER register.

The PWM period can be calculated from the following formulas:

EQUATION 14-1: PWM PERIOD FOR FREE-RUNNING MODE

 $T_{PWM} = \frac{(PTPER + 1) \times PTMRPS}{FOSC/4}$

EQUATION 14-2: PWM PERIOD FOR CONTINUOUS UP/DOWN COUNT MODE

 $TPWM = \frac{(2 \text{ x PTPER}) \text{ x PTMRPS}}{\frac{FOSC}{4}}$

The PWM frequency is the inverse of period; or

EQUATION 14-3: PWM FREQUENCY

 $PWM Frequency = \frac{1}{PWM Period}$

The maximum resolution (in bits) for a given device oscillator and PWM frequency can be determined from the following formula:

EQUATION 14-4: PWM RESOLUTION

Resolution =
$$\frac{\log\left(\frac{\text{Fosc}}{\text{Fpwm}}\right)}{\log(2)}$$

The PWM resolutions and frequencies are shown for a selection of execution speeds and PTPER values in Table 14-2. The PWM frequencies in Table 14-2 are calculated for Edge-Aligned PWM mode. For Center-Aligned mode, the PWM frequencies will be approximately one-half the values indicated in this table.

TABLE 14-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS

PWM Frequency = 1/TPWM								
Fosc	MIPS	PTPER Value	PWM Resolution	PWM Frequency				
40 MHz	10	0FFFh	14 bits	2.4 kHz				
40 MHz	10	07FFh	13 bits	4.9 kHz				
40 MHz	10	03FFh	12 bits	9.8 kHz				
40 MHz	10	01FFh	11 bits	19.5 kHz				
40 MHz	10	FFh	10 bits	39.0 kHz				
40 MHz	10	7Fh	9 bits	78.1 kHz				
40 MHz	10	3Fh	8 bits	156.2 kHz				
40 MHz	10	1Fh	7 bits	312.5 kHz				
40 MHz	10	0Fh	6 bits	625 kHz				
25 MHz	6.25	0FFFh	14 bits	1.5 kHz				
25 MHz	6.25	03FFh	12 bits	6.1 kHz				
25 MHz	6.25	FFh	10 bits	24.4 kHz				
10 MHz	2.5	0FFFh	14 bits	610 Hz				
10 MHz	2.5	03FFh	12 bits	2.4 kHz				
10 MHz	2.5	FFh	10 bits	9.8 kHz				
5 MHz	1.25	0FFFh	14 bits	305 Hz				
5 MHz	1.25	03FFh	12 bits	1.2 kHz				
5 MHz	1.25	FFh	10 bits	4.9 kHz				
4 MHz	1	0FFFh	14 bits	244 Hz				
4 MHz	1	03FFh	12 bits	976 Hz				
4 MHz	1	FFh	10 bits	3.9 kHz				
4 IVIFIZ			aned opera					

Note: For center-aligned operation, PWM frequencies will be approximately 1/2 the value indicated in the table.

14.6 PWM Duty Cycle

PWM duty cycle is defined by the PDCx (PDCxL and PDCxH) registers. There are a total of three PWM Duty Cycle registers for four pairs of PWM channels. The Duty Cycle registers have 14-bit resolution by combining the six LSbs of PDCxH with the 8 bits of PDCxL. PDCx is a double-buffered register used to set the counting period for the PWM time base.

14.6.1 PWM DUTY CYCLE REGISTERS

There are three 14-bit Special Function Registers used to specify duty cycle values for the PWM module:

- PDC0 (PDC0L and PDC0H)
- PDC1 (PDC1L and PDC1H)
- PDC2 (PDC2L and PDC2H)

The value in each Duty Cycle register determines the amount of time that the PWM output is in the active state. The upper 12 bits of PDCx hold the actual duty cycle value from PTMRH/L<11:0>, while the lower two bits control which internal Q clock the duty cycle match will occur. This 2-bit value is decoded from the Q clocks, as shown in Figure 14-11, when the prescaler is 1:1 (PTCKPS<1:0> = 00).

In Edge-Aligned mode, the PWM period starts at Q1 and ends when the Duty Cycle register matches the PTMR register as follows. The duty cycle match is considered when the upper 12 bits of the PDCx are equal to the

PTMRH<7:0> PTMRL<7:0> PTMR<11:0> Q Clocks⁽¹⁾ PTMRH<3:0> PTMRL<7:0> <1:0> Unused Comparator Unused PDCxH<5:0> PDCxL<7:0> PDCx<13:0> PDCxH<7:0> PDCxL<7:0> Note 1: This value is decoded from the Q clocks: 00 = duty cycle match occurs on Q1 01 = duty cycle match occurs on Q2 10 = duty cycle match occurs on Q3 11 = duty cycle match occurs on Q4

FIGURE 14-11: DUTY CYCLE COMPARISON

PTMR and the lower 2 bits are equal to Q1, Q2, Q3 or Q4, depending on the lower two bits of the PDCx (when the prescaler is 1:1 or PTCKPS<1:0 > = 00).

Note:	When	the	prescaler	is	not	1:1
	(PTCKI	PS<1:0)> ≠ ~00),	the	duty	cycle
	match	occurs	s at the Q	1 cl	ock o	f the
	instruct	ion cy	cle when	the	PTMR	and
	PDCx r	natch o	occurs.			

Each compare unit has logic that allows override of the PWM signals. This logic also ensures that the PWM signals will complement each other (with dead-time insertion) in Complementary mode (see **Section 14.7** "**Dead-Time Generators**").

Note: To get the correct PWM duty cycle, always multiply the calculated PWM duty cycle value by four before writing it to the PWM Duty Cycle registers. This is due to the two additional LSBs in the PWM Duty Cycle registers which are compared against the internal Q clock for the PWM duty cycle match.

		SYNC = 0, BRGH = 0, BRG16 = 1											
BAUD RATE	Fosc	Fosc = 40.000 MHz Fosc =			c = 20.000 MHz		Fosc = 10.000 MHz			Fosc = 8.000 MHz			
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	
0.3	0.300	0.00	8332	0.300	0.02	4165	0.300	0.02	2082	0.300	-0.04	1665	
1.2	1.200	0.02	2082	1.200	-0.03	1041	1.200	-0.03	520	1.201	-0.16	415	
2.4	2.402	0.06	1040	2.399	-0.03	520	2.404	0.16	259	2.403	-0.16	207	
9.6	9.615	0.16	259	9.615	0.16	129	9.615	0.16	64	9.615	-0.16	51	
19.2	19.231	0.16	129	19.231	0.16	64	19.531	1.73	31	19.230	-0.16	25	
57.6	58.140	0.94	42	56.818	-1.36	21	56.818	-1.36	10	55.555	3.55	8	
115.2	113.636	-1.36	21	113.636	-1.36	10	125.000	8.51	4	_	—	—	

TABLE 15-3:	BAUD RATES FOR	ASYNCHRONOUS MODES	(CONTINUED)
-------------	-----------------------	--------------------	-------------

BAUD	Fosc = 4.000 MHz			Fos	c = 2.000	MHz	Fos	Fosc = 1.000 MHz		
RATE (K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	
0.3	0.300	0.04	832	0.300	-0.16	415	0.300	-0.16	207	
1.2	1.202	0.16	207	1.201	-0.16	103	1.201	-0.16	51	
2.4	2.404	0.16	103	2.403	-0.16	51	2.403	-0.16	25	
9.6	9.615	0.16	25	9.615	-0.16	12	—	_	_	
19.2	19.231	0.16	12	—	_	_	—	_	_	
57.6	62.500	8.51	3	—	_	_	—	_	_	
115.2	125.000	8.51	1	—	_		_	—	_	

	SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1											
BAUD RATE	Fosc	= 40.000) MHz	Fosc	Fosc = 20.000 MHz		Fosc = 10.000 MHz			Fosc = 8.000 MHz		
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)
0.3	0.300	0.00	33332	0.300	0.00	16665	0.300	0.00	8332	0.300	-0.01	6665
1.2	1.200	0.00	8332	1.200	0.02	4165	1.200	0.02	2082	1.200	-0.04	1665
2.4	2.400	0.02	4165	2.400	0.02	2082	2.402	0.06	1040	2.400	-0.04	832
9.6	9.606	0.06	1040	9.596	-0.03	520	9.615	0.16	259	9.615	-0.16	207
19.2	19.193	-0.03	520	19.231	0.16	259	19.231	0.16	129	19.230	-0.16	103
57.6	57.803	0.35	172	57.471	-0.22	86	58.140	0.94	42	57.142	0.79	34
115.2	114.943	-0.22	86	116.279	0.94	42	113.636	-1.36	21	117.647	-2.12	16

		SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1										
BAUD RATE	Fosc = 4.000 MHz			Fos	Fosc = 2.000 MHz			Fosc = 1.000 MHz				
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)			
0.3	0.300	0.01	3332	0.300	-0.04	1665	0.300	-0.04	832			
1.2	1.200	0.04	832	1.201	-0.16	415	1.201	-0.16	207			
2.4	2.404	0.16	415	2.403	-0.16	207	2.403	-0.16	103			
9.6	9.615	0.16	103	9.615	-0.16	51	9.615	-0.16	25			
19.2	19.231	0.16	51	19.230	-0.16	25	19.230	-0.16	12			
57.6	58.824	2.12	16	55.555	3.55	8	—	_	—			
115.2	111.111	-3.55	8	—	_	_	_	_	—			

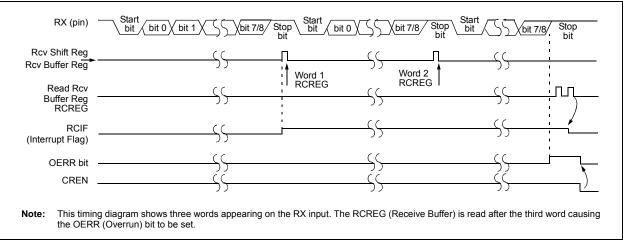


TABLE 15-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	47
PIR1	—	ADIF	RCIF	TXIF	CMP2IF	CMP1IF	CMP0IF	TMR1IF	49
PIE1		ADIE	RCIE	TXIE	CMP2IE	CMP1IE	CMP0IE	TMR1IE	49
IPR1		ADIP	RCIP	TXIP	CMP2IP	CMP1IP	CMP0IP	TMR1IP	49
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	48
RCREG	EUSART F	Receive Regis	ster						48
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	48
BAUDCON	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	—	WUE	ABDEN	48
SPBRGH	EUSART Baud Rate Generator Register High Byte								
SPBRG	EUSART E	aud Rate Ge	enerator Reg	gister Low E	Byte				48

Legend: — = unimplemented locations read as '0'. Shaded cells are not used for asynchronous reception.

15.2.4 AUTO-WAKE-UP ON SYNC BREAK CHARACTER

During Sleep mode, all clocks to the EUSART are suspended. Because of this, the Baud Rate Generator is inactive and a proper byte reception cannot be performed. The auto-wake-up feature allows the controller to wake-up due to activity on the RX/DT line while the EUSART is operating in Asynchronous mode.

The auto-wake-up feature is enabled by setting the WUE bit (BAUDCON<1>). Once set, the typical receive sequence on RX/DT is disabled and the EUSART remains in an Idle state, monitoring for a wake-up event independent of the CPU mode. A wake-up event consists of a high-to-low transition on the RX/DT line. (This coincides with the start of a Sync Break or a Wake-up Signal character for the LIN/J2602 protocol.)

Following a wake-up event, the module generates an RCIF interrupt. The interrupt is generated synchronously to the Q clocks in normal operating modes (Figure 15-8) and asynchronously if the device is in Sleep mode (Figure 15-9). The interrupt condition is cleared by reading the RCREG register.

The WUE bit is automatically cleared once a low-tohigh transition is observed on the RX line following the wake-up event. At this point, the EUSART module is in Idle mode and returns to normal operation. This signals to the user that the Sync Break event is over.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CVREN	0-0	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0			
	—	CVKK	CVRSS	CVR3	CVR2	CVRI				
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	hit	U = Unimpler	mented bit, read	1 as '0'				
-n = Value at POR (1' = Bit is set (0' = Bit is cleared x = Bit is unknown										
bit 7	CVREN: Com	parator Voltag	e Reference I	Enable bit						
1 = CVREF circuit powered on										
	0 = CVREF circuit powered down									
bit 6	Unimplemented: Read as '0'									
bit 5	CVRR: Comparator VREF Range Selection bit									
				step size (low r	•					
	0 = 0.25 CVR	SRC to 0.75 C	VRSRC, with C	VRSRC/32 step	size (high rang	le)				
bit 4	CVRSS: Com When CVRR	•	Source Select	ion bit						
				RC = (VREF+) –	(Δ\/ SS)					
			•	RC = AVDD - AV	· /					
	When CVRR									
				r voltage refere	ence bypassed					
		ence is provide								
bit 3-0		•	REF Value Se	lection bits (0 ≤	(CVR3:CVR0)	≤ 15)				
	When CVRR									
	CVREF = ((CV When CVRR									
	CVREF = (CVF		R3:CVR0)/32) • (CVRSRC)						
				, ()						

REGISTER 18-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

CPFSGT	Compare	Compare f with W, Skip if f > W						
Syntax:	CPFSGT	f {,a}						
Operands:	0 ≤ f ≤ 255 a ∈ [0,1]							
Operation:	(f) – (W), skip if (f) > ((\\\)						
	(unsigned c	. ,						
Status Affected:	None							
Encoding:		010a fff	f ffff					
Description:	0110 010a ffff ffff Compares the contents of data memory location 'f' to the contents of the W by performing an unsigned subtraction. If the contents of 'f' are greater than the contents of WREG, then the fetched instruction is discarded and a NOP is executed instead, making this a two-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '0', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 22.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.							
Words:	Literal Offs	set Mode" for	details.					
Cycles:	1(2)							
-	Note: 3 cy	cles if skip and 2-word instru						
Q Cycle Activity:			<u>.</u>					
Q1 Decode	Q2 Read	Q3 Process	Q4 No					
Decode	register 'f'	Data	operation					
If skip:								
Q1	Q2	Q3	Q4					
No	No	No	No					
operation If skip and followed	operation d by 2-word in:	operation struction:	operation					
Q1	Q2	Q3	Q4					
No	No	No	No					
operation	operation	operation	operation					
No operation	No operation	No operation	No operation					
Example:	HERE NGREATER GREATER	CPFSGT RE : :	G, 0					
Before Instruction PC = Address (HERE)								
Ŵ	= ?	2.300 (IIIII(E	,					
After Instruction	-							
lf REG	> W;							
PC	,	dress (GREAT	ΓER)					
If REG PC	≤ W; = Ad	dress (NGREA	ATER)					

CPF	SLT	Compare	compare f with W, Skip if f < W							
Synta	ax:	CPFSLT	f {,a}							
Oper	ands:	0 ≤ f ≤ 255 a ∈ [0,1]								
Oper	ation:		(f) - (W), skip if $(f) < (W)$ (unsigned comparison)							
Statu	s Affected:	None	None							
Enco	ding:	0110	000a f	fff ffff						
Desc	ription:	of data memory its of W by subtraction. less than the fetched and a NOP is ng this a ank is selected. sed to select the								
Word	ls:	1								
Cycle	es:									
QC	ycle Activity:									
	Q1	Q2	Q3	Q4						
	Decode	Read	Process	No						
lf sk	in [.]	register 'f'	Data	operation						
11 510	Q1	Q2	Q3	Q4						
	No	No	No	No						
	operation	operation	operation	operation						
lf sk	ip and followed	5		_						
	Q1	Q2	Q3	Q4						
	No operation	No operation	No operation	No operation						
	No	No	No	No						
	operation	operation	operation	operation						
<u>Exan</u>	nple:	NLESS	CPFSLT RE(: :	G, 1						
	Before Instruc									
	PC W After Instructio	= ?	= ?							
	If REG	< W								
	PC	= Ac	dress (LES	S)						
	If REG PC	≥ W = Ac	; Idress (NLE	SS)						

PIC18F1230/1330

RRNCF	RRNCF Rotate Right f (No Carry)							
Syntax:	RRNCF	f {,d {,a}}						
Operands:	$0 \le f \le 255$ d $\in [0,1]$ a $\in [0,1]$	5						
Operation:	$(f \le n >) \rightarrow c$ $(f \le 0 >) \rightarrow c$	lest <n 1≯<br="" –="">lest<7></n>	>,					
Status Affected:	N, Z							
Encoding:	0100	0100 00da ffff ffff						
Description:	one bit to f is placed in placed bac If 'a' is '0', selected, c is '1', then per the BS If 'a' is '0' is set is enat in Indexed mode whe Section 2 Bit-Orient	The contents of register 'f' are rotated one bit to the right. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f'. If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' is '1', then the bank will be selected as per the BSR value. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 22.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.						
Words:	1							
0	-							
Cycles:	1							
Q Cycle Activity:	1	03		04				
Q Cycle Activity: Q1	1 Q2	Q3 Proces	88	Q4 Write to				
Q Cycle Activity:	1	Q3 Proces Data		Q4 Write to estination				
Q Cycle Activity: Q1	1 Q2 Read register 'f' RRNCF tion = 1101	Proces Data REG, 1, 0111	a de	Write to				
Q Cycle Activity: Q1 Decode Example 1: Before Instruct REG After Instruction REG	1 Q2 Read register 'f' RRNCF tion = 1101 on	Proces Data REG, 1, 0111 1011	0 0	Write to				
Q Cycle Activity: Q1 Decode Example 1: Before Instruct REG After Instruction REG	1 Q2 Read register 'f' RRNCF tion = 1101 on = 1110 RRNCF	Proces Data REG, 1, 0111 1011	0 0	Write to				
Q Cycle Activity: Q1 Decode Example 1: Before Instruct REG After Instruction REG Example 2:	1 Q2 Read register 'f' RRNCF tion = 1101 on = 1110 RRNCF tion = ? = 1101	Proces Data REG, 1, 0111 1011 REG, 0,	0 0	Write to				

SETF		Set f						
Syntax:		SETF f {,	a}					
Operand	s:	0 ≤ f ≤ 255 a ∈ [0,1]						
Operatio	n:	$FFh\tof$						
Status A	ffected:	None						
Encoding	g:	0110	100a	ffff	ffff			
Descripti	ion:	are set to F If 'a' is '0', t If 'a' is '1', t GPR bank. If 'a' is '0' a set is enab in Indexed mode wher Section 22 Bit-Oriente	The contents of the specified register are set to FFh. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 22.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.					
Words:		1						
Cycles:		1						
Q Cycle	e Activity:							
	Q1	Q2	Q3		Q4			
	Decode	Read register 'f'						

Example:	SETF		REG,	1
Before Instruction	on			
REG	=	5Ah		
After Instruction	I			
REG	=	FFh		

23.2 DC Characteristics: Power-Down and Supply Current PIC18F1230/1330 (Industrial) PIC18LF1230/1330 (Industrial) (Continued)

PIC18LF1 (Indus		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
PIC18F12 (Indus	2 30/1330 trial, Extended)	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended							
Param No.	Device	Тур	Max	Units		Conditions			
	Supply Current (IDD) ⁽²⁾								
	PIC18LF1230/1330	14	39.6	μΑ	-40°C				
		15	39.6	μΑ	+25°C	VDD = 2.0V			
		16	39.6	μΑ	+85°C				
	PIC18LF1230/1330	40	64	μΑ	-40°C		Fosc = 32 kHz ⁽⁴⁾		
		35	64	μΑ	+25°C	VDD = 3.0V	(SEC_RUN mode,		
		31	64	μΑ	+85°C		Timer1 as clock)		
	All devices	99	147	μA	-40°C				
		81	147	μA	+25°C	VDD = 5.0V			
		75	147	μA	+85°C				
	PIC18LF1230/1330	2.5	11.6	μΑ	-40°C				
		3.7	11.6	μA	+25°C	VDD = 2.0V			
		4.5	11.6	μΑ	+85°C				
	PIC18LF1230/1330	5.0	14.6	μA	-40°C		Fosc = 32 kHz ⁽⁴⁾		
		5.4	14.6	μA	+25°C	VDD = 3.0V	(SEC_IDLE mode,		
		6.3	14.6	μA	+85°C		Timer1 as clock)		
	All devices	8.5	24.6	μA	-40°C				
		9.0	24.6	μA	+25°C	VDD = 5.0V			
		10.5	24.6	μA	+85°C				

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or VSS;

MCLR = VDD; WDT enabled/disabled as specified.

Low-power Timer1 oscillator selected.

4: BOR and LVD enable internal band gap reference. With both modules enabled, current consumption will be less than the sum of both specifications.

3:

Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
A01	NR	Resolution	—	_	10	bit	$\Delta VREF \ge 3.0V$
A03	EIL	Integral Linearity Error	—	_	< ±1	LSb	$\Delta VREF \ge 3.0V$
A04	Edl	Differential Linearity Error	—	_	< ±1	LSb	$\Delta VREF \ge 3.0V$
A06	EOFF	Offset Error	—	_	< ±2	LSb	$\Delta VREF \ge 3.0V$
A07	Egn	Gain Error	—	< <u>+1</u>		LSb	$\Delta VREF \ge 3.0V$
A10	_	Monotonicity	G	Guaranteed ⁽¹⁾			$VSS \leq VAIN \leq VREF$
A20	$\Delta VREF$	Reference Voltage Range (VREF+ – VSS)	1.8 3			V V	$\begin{array}{l} VDD < 3.0V \\ VDD \geq 3.0V \end{array}$
A21	VREF+	Positive Reference Voltage	Vss	—	VREF+	V	
A22	VREF-	Negative Reference Voltage	Vss – 0.3V	_	Vdd - 3.0V	—	
A25	VAIN	Analog Input Voltage	VREF-	_	VREF+	V	
A30	ZAIN	Recommended Impedance of Analog Voltage Source	—		2.5	kΩ	
A50	IREF	VREF+ Input Current ⁽²⁾		_	5 150	μΑ μΑ	During VAIN acquisition. During A/D conversion cycle.

TABLE 23-14: A/D CONVERTER CHARACTERISTICS

Note 1: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

2: VREF+ current is from RA4/T0CKI/AN2/VREF+ pin or VDD, whichever is selected as the VREF+ source.

APPENDIX C: CONVERSION CONSIDERATIONS

This appendix discusses the considerations for converting from previous versions of a device to the ones listed in this data sheet. Typically, these changes are due to the differences in the process technology used. An example of this type of conversion is from a PIC16C74A to a PIC16C74B.

Not Applicable

APPENDIX D: MIGRATION FROM BASELINE TO ENHANCED DEVICES

This section discusses how to migrate from a Baseline device (i.e., PIC16C5X) to an Enhanced MCU device (i.e., PIC18FXXX).

The following are the list of modifications over the PIC16C5X microcontroller family:

Not Currently Available

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com