

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	16
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f1330-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 Other Special Features

- Memory Endurance: The Enhanced Flash cells for both program memory and data EEPROM are rated to last for many thousands of erase/write cycles – up to 100,000 for program memory and 1,000,000 for EEPROM. Data retention without refresh is conservatively estimated to be greater than 40 years.
- Self-Programmability: These devices can write to their own program memory spaces under internal software control. By using a bootloader routine located in the protected Boot Block at the top of program memory, it becomes possible to create an application that can update itself in the field.
- Extended Instruction Set: The PIC18F1230/1330 family introduces an optional extension to the PIC18 instruction set, which adds eight new instructions and an Indexed Addressing mode. This extension, enabled as a device configuration option, has been specifically designed to optimize re-entrant application code originally developed in high-level languages, such as C.
- Power Control PWM Module: This module provides up to six modulated outputs for controlling half-bridge and full-bridge drivers. Other features include auto-shutdown on Fault detection and auto-restart to reactivate outputs once the condition has cleared.
- Enhanced Addressable USART: This serial communication module is capable of standard RS-232 operation and provides support for the LIN/J2602 bus protocol. Other enhancements include automatic Baud Rate Detection and a 16-bit Baud Rate Generator for improved resolution. When the microcontroller is using the internal oscillator block, the EUSART provides stable operation for applications that talk to the outside world without using an external crystal (or its accompanying power requirement).
- **10-Bit A/D Converter:** This module incorporates programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period and thus, reducing code overhead.
- Extended Watchdog Timer (WDT): This enhanced version incorporates a 16-bit prescaler, allowing an extended time-out range that is stable across operating voltage and temperature. See Section 23.0 "Electrical Characteristics" for time-out periods.

1.3 Details on Individual Family Members

Devices in the PIC18F1230/1330 family are available in 18-pin, 20-pin and 28-pin packages.

The devices are differentiated from each other in one way:

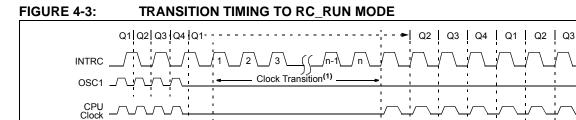
1. Flash program memory (4 Kbytes for PIC18F1230, 8 Kbytes for PIC18F1330).

All other features for devices in this family are identical. These are summarized in Table 1-1.

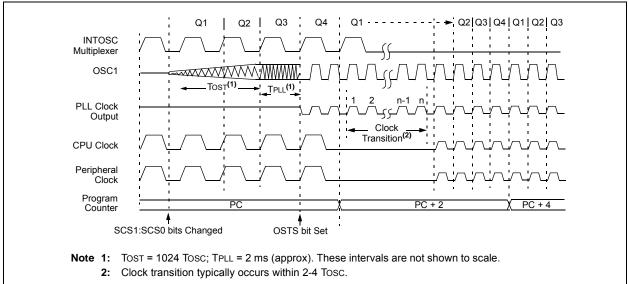
A block diagram of the PIC18F1220/1320 device architecture is provided in Figure 1-1. The pinouts for this device family are listed in Table 1-2.

Like all Microchip PIC18 devices, members of the PIC18F1230/1330 family are available as both standard and low-voltage devices. Standard devices with Enhanced Flash memory, designated with an "F" in the part number (such as PIC18F1330), accommodate an operating VDD range of 4.2V to 5.5V. Low-voltage parts, designated by "LF" (such as PIC18LF1330), function over an extended VDD range of 2.0V to 5.5V. If the IRCF bits and the INTSRC bit are all clear, the INTOSC output is not enabled and the IOFS bit will remain clear; there will be no indication of the current clock source. The INTRC source is providing the device clocks.

If the IRCF bits are changed from all clear (thus, enabling the INTOSC output), or if INTSRC is set, the IOFS bit becomes set after the INTOSC output becomes stable. Clocks to the device continue while the INTOSC source stabilizes after an interval of TIOBST.


If the IRCF bits were previously at a non-zero value, or if INTSRC was set before setting SCS1 and the INTOSC source was already stable, the IOFS bit will remain set.

PC


Note 1: Clock transition typically occurs within 2-4 Tosc.

On transitions from RC_RUN mode to PRI_RUN mode, the device continues to be clocked from the INTOSC multiplexer while the primary clock is started. When the primary clock becomes ready, a clock switch to the primary clock occurs (see Figure 4-4). When the clock switch is complete, the IOFS bit is cleared, the OSTS bit is set and the primary clock is providing the device clock. The IDLEN and SCS bits are not affected by the switch. The INTRC source will continue to run if either the WDT or the Fail-Safe Clock Monitor is enabled.

PC + 4

FIGURE 4-4: TRANSITION TIMING FROM RC_RUN MODE TO PRI_RUN MODE

PC + 2

Peripheral Clock Program Counter

5.6 Reset State of Registers

Most registers are unaffected by a Reset. Their status is unknown on POR and unchanged by all other Resets. The other registers are forced to a "Reset state" depending on the type of Reset that occurred.

Most registers are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. Status bits from the RCON register, \overline{RI} , \overline{TO} , \overline{PD} , \overline{POR} and \overline{BOR} , are set or cleared differently in different Reset situations, as indicated in Table 5-3. These bits are used in software to determine the nature of the Reset. Table 5-4 describes the Reset states for all of the Special Function Registers. These are categorized by Power-on and Brown-out Resets, Master Clear and WDT Resets and WDT wake-ups.

Condition	Program		RCC		STKPTR Register				
Condition	Counter	SBOREN	RI	то	PD	POR	BOR	STKFUL	STKUNF
Power-on Reset	0000h	1	1	1	1	0	0	0	0
RESET Instruction	0000h	u (2)	0	u	u	u	u	u	u
Brown-out Reset	0000h	u (2)	1	1	1	u	0	u	u
MCLR during Power-Managed Run Modes	0000h	_ປ (2)	u	1	u	u	u	u	u
MCLR during Power-Managed Idle Modes and Sleep Mode	0000h	_ປ (2)	u	1	0	u	u	u	u
WDT Time-out during Full Power or Power-Managed Run Mode	0000h	ս (2)	u	0	u	u	u	u	u
MCLR during Full Power Execution	0000h	ս (2)	u	u	u	u	u	u	u
Stack Full Reset (STVREN = 1)	0000h	u (2)	u	u	u	u	u	1	u
Stack Underflow Reset (STVREN = 1)	0000h	ս (2)	u	u	u	u	u	u	1
Stack Underflow Error (not an actual Reset, STVREN = 0)	0000h	ս (2)	u	u	u	u	u	u	1
WDT Time-out during Power-Managed Idle or Sleep Modes	PC + 2	u (2)	u	0	0	u	u	u	u
Interrupt Exit from Power-Managed Modes	PC + 2 ⁽¹⁾	u (2)	u	u	0	u	u	u	u

TABLE 5-3: STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION FOR RCON REGISTER

Legend: u = unchanged

Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bit is set, the PC is loaded with the interrupt vector (008h or 0018h).

2: Reset state is '1' for POR and unchanged for all other Resets when software BOR is enabled (BOREN1:BOREN0 Configuration bits = 01 and SBOREN = 1); otherwise, the Reset state is '0'.

TABLE 5-4:	INITIA	ALIZATION CONDITIONS FOR ALL REGISTERS									
Register	Register Applicable Devices		Power-on Reset, Brown-out Reset	MCLR Resets, WDT Reset, RESET Instruction, Stack Resets	Wake-up via WDT or Interrupt						
TOSU	1230	1330	0 0000	0 0000	0 uuuu (3)						
TOSH	1230	1330	0000 0000	0000 0000	uuuu uuuu (3)						
TOSL	1230	1330	0000 0000	0000 0000	uuuu uuuu ⁽³⁾						
STKPTR	1230	1330	00-0 0000	uu-0 0000	uu-u uuuu (3)						
PCLATU	1230	1330	0 0000	0 0000	u uuuu						
PCLATH	1230	1330	0000 0000	0000 0000	uuuu uuuu						
PCL	1230	1330	0000 0000	0000 0000	PC + 2 ⁽²⁾						
TBLPTRU	1230	1330	00 0000	00 0000	uu uuuu						
TBLPTRH	1230	1330	0000 0000	0000 0000	uuuu uuuu						
TBLPTRL	1230	1330	0000 0000	0000 0000	uuuu uuuu						
TABLAT	1230	1330	0000 0000	0000 0000	uuuu uuuu						
PRODH	1230	1330	xxxx xxxx	uuuu uuuu	uuuu uuuu						
PRODL	1230	1330	xxxx xxxx	uuuu uuuu	uuuu uuuu						
INTCON	1230	1330	0000 000x	0000 000u	uuuu uuuu (1)						
INTCON2	1230	1330	1111 1111	1111 1111	uuuu uuuu (1)						
INTCON3	1230	1330	1100 0000	1100 0000	uuuu uuuu (1)						
INDF0	1230	1330	N/A	N/A	N/A						
POSTINC0	1230	1330	N/A	N/A	N/A						
POSTDEC0	1230	1330	N/A	N/A	N/A						
PREINC0	1230	1330	N/A	N/A	N/A						
PLUSW0	1230	1330	N/A	N/A	N/A						
FSR0H	1230	1330	0000	0000	uuuu						
FSR0L	1230	1330	xxxx xxxx	uuuu uuuu	uuuu uuuu						
WREG	1230	1330	xxxx xxxx	uuuu uuuu	uuuu uuuu						
INDF1	1230	1330	N/A	N/A	N/A						
POSTINC1	1230	1330	N/A	N/A	N/A						
POSTDEC1	1230	1330	N/A	N/A	N/A						
PREINC1	1230	1330	N/A	N/A	N/A						
PLUSW1	1230	1330	N/A	N/A	N/A						
FSR1H	1230	1330	0000	0000	uuuu						
FSR1L	1230	1330	xxxx xxxx	uuuu uuuu	uuuu uuuu						
BSR	1230	1330	0000	0000	uuuu						

 TABLE 5-4:
 INITIALIZATION CONDITIONS FOR ALL REGISTERS

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

- **2:** When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).
- **3:** When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.
- 4: See Table 5-3 for Reset value for specific condition.
- **5:** Bits 6 and 7 of PORTA, LATA and TRISA are enabled depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read as '0'.
- 6: Reset condition of PWMEN bits depends on the PWMPIN Configuration bit of CONFIG3L.

6.1.2.2 Return Stack Pointer (STKPTR)

The STKPTR register (Register 6-1) contains the Stack Pointer value, the STKFUL (Stack Full) status bit and the STKUNF (Stack Underflow) status bits. The value of the Stack Pointer can be 0 through 31. The Stack Pointer increments before values are pushed onto the stack and decrements after values are popped off the stack. On Reset, the Stack Pointer value will be zero. The user may read and write the Stack Pointer value. This feature can be used by a Real-Time Operating System (RTOS) for return stack maintenance.

After the PC is pushed onto the stack 31 times (without popping any values off the stack), the STKFUL bit is set. The STKFUL bit is cleared by software or by a POR.

The action that takes place when the stack becomes full depends on the state of the STVREN (Stack Overflow Reset Enable) Configuration bit. (Refer to **Section 20.1 "Configuration Bits"** for a description of the device Configuration bits.) If STVREN is set (default), the 31st push will push the (PC + 2) value onto the stack, set the STKFUL bit and reset the device. The STKFUL bit will remain set and the Stack Pointer will be set to zero.

If STVREN is cleared, the STKFUL bit will be set on the 31st push and the Stack Pointer will increment to 31. Any additional pushes will not overwrite the 31st push and STKPTR will remain at 31.

When the stack has been popped enough times to unload the stack, the next pop will return a value of zero to the PC and sets the STKUNF bit, while the Stack Pointer remains at zero. The STKUNF bit will remain set until cleared by software or until a POR occurs.

Note:	Returning a value of zero to the PC on an underflow has the effect of vectoring the								
	program to the Reset vector, where the								
	stack conditions can be verified and								
	appropriate actions can be taken. This is								
	not the same as a Reset, as the contents of the SFRs are not affected.								

6.1.2.3 PUSH and POP Instructions

Since the Top-of-Stack is readable and writable, the ability to push values onto the stack and pull values off the stack, without disturbing normal program execution, is a desirable feature. The PIC18 instruction set includes two instructions, PUSH and POP, that permit the TOS to be manipulated under software control. TOSU, TOSH and TOSL can be modified to place data or a return address on the stack.

The PUSH instruction places the current PC value onto the stack. This increments the Stack Pointer and loads the current PC value onto the stack.

The POP instruction discards the current TOS by decrementing the Stack Pointer. The previous value pushed onto the stack then becomes the TOS value.

REGISTER 6-1: STKPTR: STACK POINTER REGISTER

REGISTER 6	-1: SIKP	IR: STACK P	OINTER RE	GISTER				
R/C-0	R/C-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
STKFUL ⁽¹⁾	STKUNF ⁽¹⁾	—	SP4	SP3	SP2	SP1	SP0	
bit 7							bit 0	
Legend:		C = Clearable	bit					
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		
bit 7	1 = Stack bec	ck Full Flag bit came full or ove not become fu	rflowed	ed				
bit 6	1 = Stack und	ack Underflow F derflow occurred derflow did not d	d					
bit 5	Unimplemen	ted: Read as 'o	כ'					
bit 4-0	SP4:SP0: Sta	ack Pointer Loc	ation bits					

Note 1: Bit 7 and bit 6 are cleared by user software or by a POR.

EXAMPLE 7-3: WRITING TO FLASH PROGRAM MEMORY

EAAWIFLE 7-3.	VVNI	TING TO FLASH PROG	
	MOVLW	D'88	; number of bytes in erase block
	MOVWF	COUNTER	
	MOVLW	BUFFER_ADDR_HIGH	; point to buffer
	MOVWF	FSROH	
	MOVLW	BUFFER_ADDR_LOW	
	MOVWF	FSROL	
	MOVLW	CODE_ADDR_UPPER	; Load TBLPTR with the base
	MOVWF	TBLPTRU	; address of the memory block
	MOVLW	CODE_ADDR_HIGH	
	MOVWF	TBLPTRH	
	MOVLW	CODE_ADDR_LOW	
	MOVWF	TBLPTRL	
READ_BLOCK			
	TBLRD*+		; read into TABLAT, and inc
	MOVF	TABLAT, W	; get data
	MOVWF	POSTINC0	; store data
		COUNTER	; done?
	BRA	READ_BLOCK	; repeat
MODIFY_WORD			
	MOVLW	DATA_ADDR_HIGH	; point to buffer
	MOVWF	FSROH	
	MOVLW	DATA_ADDR_LOW	
	MOVWF	FSROL	
	MOVLW	NEW_DATA_LOW	; update buffer word
	MOVWF	POSTINC0	
	MOVLW	NEW_DATA_HIGH	
	MOVWF	INDF0	
ERASE_BLOCK			
	MOVLW	CODE_ADDR_UPPER	; load TBLPTR with the base
	MOVWF	TBLPTRU	; address of the memory block
	MOVLW	CODE_ADDR_HIGH	
	MOVWF	TBLPTRH	
	MOVLW	CODE_ADDR_LOW	
	MOVWF	TBLPTRL	· reint to plack measure memory
	BSF BCF	EECON1, EEPGD	; point to Flash program memory
	BSF	EECON1, CFGS EECON1, WREN	; access Flash program memory ; enable write to memory
	BSF	EECONI, WREN EECON1, FREE	; enable Row Erase operation
	BCF	INTCON, GIE	; disable interrupts
	MOVLW	55h	, arounte interrupto
Required	MOVIN	EECON2	; write 55h
Sequence	MOVLW	0AAh	/ WIICE JJII
bequence	MOVE	EECON2	; write OAAh
	BSF	EECON1, WR	; start erase (CPU stall)
	BSF	INTCON, GIE	; re-enable interrupts
	TBLRD*-		; dummy read decrement
	MOVLW	BUFFER_ADDR_HIGH	; point to buffer
	MOVLW	FSROH	. point to baller
	MOVLW	BUFFER_ADDR_LOW	
	MOVE	FSROL	
WRITE_BUFFER_E			
	MOVLW	D'8	; number of bytes in holding register
	MOVE	COUNTER	
WRITE_BYTE_TO_			
	MOVFF	POSTINC0, WREG	; get low byte of buffer data
	MOVWF	TABLAT	; present data to table latch
	TBLWT+*		; write data, perform a short write
			; to internal TBLWT holding register.
	DECFSZ	COUNTER	; loop until buffers are full
	BRA	WRITE_WORD_TO_HREGS	. Toop where parters are rain

TABLE 10-1: PORTA I/O SUMMARY

Pin	Function	TRIS Setting	I/O	I/O Type	Description
RA0/AN0/INT0/	RA0	0	0	DIG	LATA<0> data output; not affected by analog input.
KBI0/CMP0		1	I	TTL	PORTA<0> data input; disabled when analog input enabled.
	AN0	1	I	ANA	Analog input 0.
	INT0	1	I	ST	External interrupt 0.
	KBI0	1	I	TTL	Interrupt-on-change pin.
	CMP0	1	I	ANA	Comparator 0 input.
RA1/AN1/INT1/	RA1	0	0	DIG	LATA<1> data output; not affected by analog input.
KBI1		1	I	TTL	PORTA<1> data input; disabled when analog input enabled.
	AN1	1	I	ANA	Analog input 1.
	INT1	1	I	ST	External interrupt 1.
	KBI1	1	Ι	TTL	Interrupt-on-change pin.
RA2/TX/CK	RA2	0	0	DIG	LATA<2> data output; not affected by analog input. Disabled when CVREF output enabled.
		1	Ι	TTL	PORTA<2> data input. Disabled when analog functions enabled; disabled when CVREF output enabled.
	TX	0	0	DIG	EUSART asynchronous transmit.
	СК	0	0	DIG	EUSART synchronous clock.
		1	Ι	ST	
RA3/RX/DT	RA3	0	0	DIG	LATA<3> data output; not affected by analog input.
		1	Ι	TTL	PORTA<3> data input; disabled when analog input enabled.
	RX	1	Ι	ANA	EUSART asynchronous receive.
	DT	0	0	DIG	EUSART synchronous data.
		1	Ι	TTL	
RA4/T0CKI/AN2/	RA4	0	0	DIG	LATA<4> data output.
VREF+		1	I	ST	PORTA<4> data input; default configuration on POR.
	TOCKI	1	Ι	ST	Timer0 external clock input.
	AN2	1	Ι	ANA	Analog input 2.
	VREF+	1	Ι	ANA	A/D reference voltage (high) input.
MCLR/Vpp/RA5/	MCLR	1	Ι	ST	Master Clear (Reset) input. This pin is an active-low Reset to the device
FLTA	Vpp	1	I	ANA	Programming voltage input.
	RA5	1	Ι	ST	Digital input.
	FLTA ⁽¹⁾	1	I	ST	Fault detect input for PWM.
RA6/OSC2/CLKO/	RA6	0	0	DIG	LATA<6> data output. Enabled in RCIO, INTIO2 and ECIO modes only
T1OSO/T1CKI/AN3		1	I	ST	PORTA<6> data input. Enabled in RCIO, INTIO2 and ECIO modes only
	OSC2	0	0	ANA	Oscillator crystal output or external clock source output.
	CLKO	0	0	ANA	Oscillator crystal output.
	T10SO ⁽²⁾	0	0	ANA	Timer1 oscillator output.
	T1CKI ⁽²⁾	1	I	ST	Timer1 clock input.
	AN3	1	I	ANA	Analog input 3.
RA7/OSC1/CLKI/	RA7	0	0	DIG	LATA<7> data output. Disabled in external oscillator modes.
T1OSI/FLTA		1	I	TTL	PORTA<7> data input. Disabled in external oscillator modes.
	OSC1	1	I	ANA	Oscillator crystal input or external clock source input.
	CLKI	1	I	ANA	External clock source input.
	T10SI ⁽²⁾	1	I	ANA	Timer1 oscillator input.
	FLTA ⁽¹⁾			1	

Legend: DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ANA = Analog level input/output; x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

Note 1: Placement of FLTA depends on the value of Configuration bit, FLTAMX, of CONFIG3H.

2: Placement of T1OSI and T1OSO/T1CKI depends on the value of Configuration bit, T1OSCMX, of CONFIG3H.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTOPS3	PTOPS2	PTOPS1	PTOPS0	PTCKPS1	PTCKPS0	PTMOD1	PTMOD0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value at P		'1' = Bit is set		'0' = Bit is cle	,	x = Bit is unkr	nown
bit 7-4 bit 3-2	0000 = 1:1 Pc 0001 = 1:2 Pc	ostscale ostscale Postscale CKPS0: PWM	I Time Base Ir	•	scale Select bits	5	
	01 = PWM ti 10 = PWM ti	me base input me base input	clock is Fosc clock is Fosc	/4 (1:1 prescale /16 (1:4 presca /64 (1:16 presc /256 (1:64 pres	ale) cale)		
bit 1-0	PTMOD1:PTI	NODO: PWM T	ïme Base Mo	de Select bits			
	updates 10 = PWM tin 01 = PWM tin	s me base opera me base config	tes in a Conti jured for Sing	nuous Up/Dow	n Count mode w 'n Count mode	ith interrupts fo	r double PWM

REGISTER 14-1: PTCON0: PWM TIMER CONTROL REGISTER 0

REGISTER 14-2: PTCON1: PWM TIMER CONTROL REGISTER 1

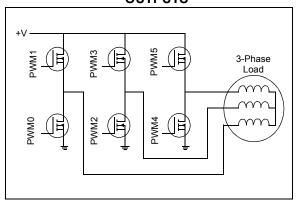
R/W-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0
PTEN	PTDIR	—	_	—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

```
bit 7PTEN: PWM Time Base Timer Enable bit1 = PWM time base is on<br/>0 = PWM time base is offbit 6PTDIR: PWM Time Base Count Direction Status bit<br/>1 = PWM time base counts down<br/>0 = PWM time base counts upbit 5-0Unimplemented: Read as '0'
```

14.6.5 COMPLEMENTARY PWM OPERATION

The Complementary mode of PWM operation is useful to drive one or more power switches in half-bridge configuration, as shown in Figure 14-16. This inverter topology is typical for a 3-phase induction motor, brushless DC motor or 3-phase Uninterruptible Power Supply (UPS) control applications.


Each upper/lower power switch pair is fed by a complementary PWM signal. Dead time may be optionally inserted during device switching, where both outputs are inactive for a short period (see **Section 14.7 "Dead-Time Generators"**).

In Complementary mode, the duty cycle comparison units are assigned to the PWM outputs as follows:

- · PDC0 register controls PWM1/PWM0 outputs
- · PDC1 register controls PWM3/PWM2 outputs
- PDC2 register controls PWM5/PWM4 outputs

PWM1/3/5 are the main PWMs that are controlled by the PDCx registers and PWM0/2/4 are the complemented outputs. When using the PWMs to control the half-bridge, the odd number PWMs can be used to control the upper power switch and the even numbered PWMs can be used for the lower switches.

FIGURE 14-16: TYPICAL LOAD FOR COMPLEMENTARY PWM OUTPUTS

The Complementary mode is selected for each PWM I/O pin pair by clearing the appropriate PMODx bit in the PWMCON0 register. The PWM I/O pins are set to Complementary mode by default upon all kinds of device Resets.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	47
_	ADIF	RCIF	TXIF	CMP2IF	CMP1IF	CMP0IF	TMR1IF	49
_	ADIE	RCIE	TXIE	CMP2IE	CMP1IE	CMP0IE	TMR1IE	49
_	ADIP	RCIP	TXIP	CMP2IP	CMP1IP	CMP0IP	TMR1IP	49
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	48
EUSART T	ransmit Reg	ister						48
CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	48
ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	—	WUE	ABDEN	48
SPBRGH EUSART Baud Rate Generator Register High Byte								
EUSART B	aud Rate G	enerator Re	gister Low	Byte				48
	GIE/GIEH — SPEN EUSART T CSRC ABDOVF EUSART B	GIE/GIEHPEIE/GIEL—ADIF—ADIE—ADIPSPENRX9EUSART Transmit RegCSRCTX9ABDOVFRCIDLEUSART Baud Rate G	GIE/GIEHPEIE/GIELTMR0IE—ADIFRCIF—ADIERCIE—ADIPRCIPSPENRX9SRENEUSART Transmit RegisterCSRCTX9CSRCTX9TXENABDOVFRCIDLRXDTPEUSART Baud Rate Generator RegisterCSRC	GIE/GIEHPEIE/GIELTMR0IEINT0IEOIE/GIEHPEIE/GIELTMR0IEINT0IEOIEADIFRCIFTXIFOIEADIERCIPTXIPOIEADIPRCIPTXIPSPENRX9SRENCRENEUSART Transmit RegisterCRENSYNCABDOVFRCIDLRXDTPTXCKPEUSART Bud Rate Generator Register HighCREN	GIE/GIEHPEIE/GIELTMR0IEINT0IERBIEADIFRCIFTXIFCMP2IFADIERCIETXIECMP2IEADIPRCIPTXIPCMP2IPSPENRX9SRENCRENADDENEUSARTTansmit RejsterSYNCSENDBABDOVFRCIDLRXDTPTXCKPBRG16	GIE/GIEHPEIE/GIELTMROIEINTOIERBIETMROIFADIFRCIFTXIFCMP2IFCMP1IFADIERCIETXIECMP2IECMP1IEADIPRCIPTXIPCMP2IPCMP1IPSPENRX9SRENCRENADDENFERREUSART Transmit RegisterSYNCSENDBBRGHABDOVFRCIDLRXDTPTXCKPBRG16EUSART BULRATESHARSHARSHAR	GIE/GIEHPEIE/GIELTMR0IEINT0IERBIETMR0IFINT0IFADIFRCIFTXIFCMP2IFCMP1IFCMP0IFADIERCIETXIECMP2IECMP1IECMP0IEADIPRCIPTXIPCMP2IPCMP1IPCMP0IPSPENRX9SRENCRENADDENFERROERREUSART Transmit RegisterSYNCSENDBBRGHTRMTABDOVFRCIDLRXDTPTXCKPBRG16WUEEUSART BUTSUBARTSUBARTSUBARTSUBARTSUBART	GIE/GIEHPEIE/GIELTMROIEINTOIERBIETMROIFINTOIFRBIFADIFRCIFTXIFCMP2IFCMP1IFCMP0IFTMR1IFADIERCIETXIECMP2IECMP1IECMP0IETMR1IFADIPRCIPTXIPCMP2IPCMP1IPCMP0IPTMR1IPSPENRX9SRENCRENADDENFERROERRRX9DEUSART Transmit RegisterSYNCSENDBBRGHTRMTTX9DABDOVFRCIDLRXDTPTXCKPBRG16WUEABDENEUSART But Rate Generator Register High Byte

TABLE 15-5: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Legend: — = unimplemented locations read as '0'. Shaded cells are not used for asynchronous transmission.

15.3.2 EUSART SYNCHRONOUS MASTER RECEPTION

Once Synchronous mode is selected, reception is enabled by setting either the Single Receive Enable bit, SREN (RCSTA<5>), or the Continuous Receive Enable bit, CREN (RCSTA<4>). Data is sampled on the RX pin on the falling edge of the clock.

If enable bit, SREN, is set, only a single word is received. If enable bit, CREN, is set, the reception is continuous until CREN is cleared. If both bits are set, then CREN takes precedence.

To set up a Synchronous Master Reception:

FIGURE 15-13:

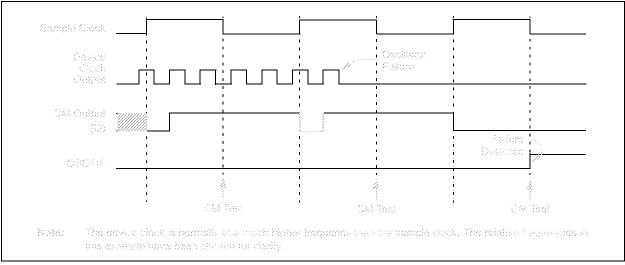
- 1. If any error occurred, clear the error by clearing bit, CREN.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.
- 3. Initialize the SPBRGH:SPBRG registers for the appropriate baud rate. Set or clear the BRG16 bit, as required, to achieve the desired baud rate.

- 4. Enable the synchronous master serial port by setting bits, SYNC, SPEN and CSRC.
- 5. Ensure bits, CREN and SREN, are clear.
- 6. If the signal from the CK pin is to be inverted, set the TXCKP bit.
- 7. If interrupts are desired, set enable bit, RCIE.
- 8. If 9-bit reception is desired, set bit, RX9.
- 9. If a single reception is required, set bit, SREN. For continuous reception, set bit, CREN.
- 10. Interrupt flag bit, RCIF, will be set when reception is complete and an interrupt will be generated if the enable bit, RCIE, was set.
- 11. Read the RCSTA register to get the 9th bit (if enabled) and determine if any error occurred during reception.
- 12. Read the 8-bit received data by reading the RCREG register.

Q2 Q3 C	14 Q1 Q2 Q3 Q4	Q1 Q2 Q3 (Q4 Q1 Q2 Q3 Q4	4 Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	1 Q1 Q2 Q3 Q4	4 Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4
RA3/RX/DT pin	:X	bit 0	bit 1	bit 2	bit 3	bit 4	bit 5	bit 6	bit 7	
RA2/TX/CK pin (TXCKP)	Ļ		÷	; 	÷	$\frac{1}{2}$: : 	$\frac{1}{2}$;	
Write to bit SREN		1 1 1	• •	1 1 1	1 + 1 1	1 1 1	1 1 1	1 	1 1 1	• • •
SREN bit			;	•	<u>,</u>	•	•	;	;	
CREN bit <u>'0'</u>	1	1 1	1	1	1	1 1	1	1	1	ʻ0'
RCIF bit (Interrupt)	, , ,	, , ,		, , ,	, , ,	, , ,	, , ,	, , ,	; ;	
Read RXREG	1 1	1 1 1	1 1 1	1 7 1	1 1 1	, , ,	1 1 1	1 1 1	1 1 1	
	1	1 1	1 1		1 1 1		1 1 1	1	1 1 1	
Note: Timing diagram	demonstrate	es Sync Ma	aster mode w	ith bit SREN	= 1 and bit	BRGH = 0.				

SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

TABLE 15-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION


Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	47
PIR1	_	ADIF	RCIF	TXIF	CMP2IF	CMP1IF	CMP0IF	TMR1IF	49
PIE1	—	ADIE	RCIE	TXIE	CMP2IE	CMP1IE	CMP0IE	TMR1IE	49
IPR1	—	ADIP	RCIP	TXIP	CMP2IP	CMP1IP	CMP0IP	TMR1IP	49
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	48
RCREG	EUSART Receive Register							48	
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	48
BAUDCON	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	_	WUE	ABDEN	48
SPBRGH	H EUSART Baud Rate Generator Register High Byte							48	
SPBRG	G EUSART Baud Rate Generator Register Low Byte							48	
Legend: -		mented, rea	d as '0'. Sha	aded cells a	re not used	for synchror	ous master	reception.	•

REGISTER 20-2: CONFIG2L: CONFIGURATION REGISTER 2 LOW (BYTE ADDRESS 300002h)

					•		,
U-0	U-0	U-0	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
_		—	BORV1 ⁽¹⁾	BORV0 ⁽¹⁾	BOREN1 ⁽²⁾	BOREN0 ⁽²⁾	PWRTEN ⁽²⁾
bit 7	·						bit 0
Legend:							
R = Readable bit P = Programmable bit U = Unimplemented bit, read as '0'							
-n = Value whe	en device is unp	programmed		u = Unchang	ed from progran	nmed state	
bit 7-5	Unimplemen	ted: Read as '	0'				
bit 4-3	BORV1:BOR	V0: Brown-out	Reset Voltage	e bits ⁽¹⁾			
	11 = Minimun	n setting					
	•						
	•						
	00 = Maximur	m settina					
bit 2-1	BOREN1:BO	REN0: Brown-	out Reset Ena	able bits ⁽²⁾			
					EN is disabled)		
	10 = Brown-o	ut Reset enab	led in hardwai	re only and dis	abled in Sleep r		۱ is disabled)
				•	re (SBOREN is	enabled)	
		ut Reset disab		re and softwar	e		
bit 0		wer-up Timer I	Enable bit ⁽²⁾				
	1 = PWRT dis 0 = PWRT en						
	v = PWRT en	ableu					
Note 1: See	e Section 23.1	"DC Characte	eristics" for th	ne specificatior	IS.		
0. The	Davis a sur Tim						

2: The Power-up Timer is decoupled from Brown-out Reset, allowing these features to be independently controlled.

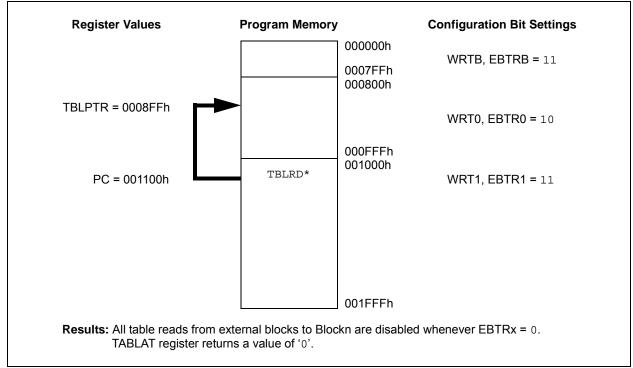
20.4.3 FSCM INTERRUPTS IN POWER-MANAGED MODES

By entering a power-managed mode, the clock multiplexer selects the clock source selected by the OSCCON register. Fail-Safe Clock Monitoring of the powermanaged clock source resumes in the power-managed mode.

If an oscillator failure occurs during power-managed operation, the subsequent events depend on whether or not the oscillator failure interrupt is enabled. If enabled (OSCFIF = 1), code execution will be clocked by the INTOSC multiplexer. An automatic transition back to the failed clock source will not occur.

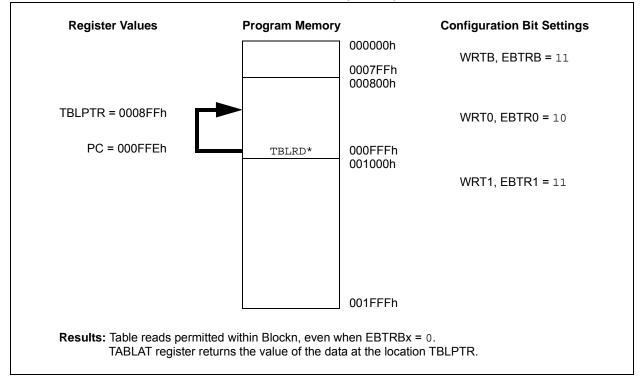
If the interrupt is disabled, subsequent interrupts while in Idle mode will cause the CPU to begin executing instructions while being clocked by the INTOSC source.

20.4.4 POR OR WAKE FROM SLEEP


The FSCM is designed to detect oscillator failure at any point after the device has exited Power-on Reset (POR) or low-power Sleep mode. When the primary device clock is EC, RC or INTRC modes, monitoring can begin immediately following these events.

For oscillator modes involving a crystal or resonator (HS, HSPLL, LP or XT), the situation is somewhat different. Since the oscillator may require a start-up

time considerably longer than the FCSM sample clock time, a false clock failure may be detected. To prevent this, the internal oscillator block is automatically configured as the device clock and functions until the primary clock is stable (the OST and PLL timers have timed out). This is identical to Two-Speed Start-up mode. Once the primary clock is stable, the INTRC returns to its role as the FSCM source.


Note: The same logic that prevents false oscillator failure interrupts on POR, or wake from Sleep, will also prevent the detection of the oscillator's failure to start at all following these events. This can be avoided by monitoring the OSTS bit and using a timing routine to determine if the oscillator is taking too long to start. Even so, no oscillator failure interrupt will be flagged.

As noted in Section 20.3.1 "Special Considerations for Using Two-Speed Start-up", it is also possible to select another clock configuration and enter an alternate power-managed mode while waiting for the primary clock to become stable. When the new powermanaged mode is selected, the primary clock is disabled.

FIGURE 20-7: EXTERNAL BLOCK TABLE READ (EBTRx) DISALLOWED

FIGURE 20-8: EXTERNAL BLOCK TABLE READ (EBTRx) ALLOWED

21.7 MPLAB ICE 2000 High-Performance In-Circuit Emulator

The MPLAB ICE 2000 In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PIC microcontrollers. Software control of the MPLAB ICE 2000 In-Circuit Emulator is advanced by the MPLAB Integrated Development Environment, which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The architecture of the MPLAB ICE 2000 In-Circuit Emulator allows expansion to support new PIC microcontrollers.

The MPLAB ICE 2000 In-Circuit Emulator system has been designed as a real-time emulation system with advanced features that are typically found on more expensive development tools. The PC platform and Microsoft[®] Windows[®] 32-bit operating system were chosen to best make these features available in a simple, unified application.

21.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC[®] and MCU devices. It debugs and programs PIC[®] and dsPIC[®] Flash microcontrollers with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The MPLAB REAL ICE probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with the popular MPLAB ICD 2 system (RJ11) or with the new high speed, noise tolerant, lowvoltage differential signal (LVDS) interconnection (CAT5).

MPLAB REAL ICE is field upgradeable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added, such as software breakpoints and assembly code trace. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, real-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

21.9 MPLAB ICD 2 In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB ICD 2, is a powerful, low-cost, run-time development tool, connecting to the host PC via an RS-232 or high-speed USB interface. This tool is based on the Flash PIC MCUs and can be used to develop for these and other PIC MCUs and dsPIC DSCs. The MPLAB ICD 2 utilizes the in-circuit debugging capability built into the Flash devices. This feature, along with Microchip's In-Circuit Serial Programming[™] (ICSP[™]) protocol, offers costeffective, in-circuit Flash debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by setting breakpoints, single stepping and watching variables, and CPU status and peripheral registers. Running at full speed enables testing hardware and applications in real time. MPLAB ICD 2 also serves as a development programmer for selected PIC devices.

21.10 MPLAB PM3 Device Programmer

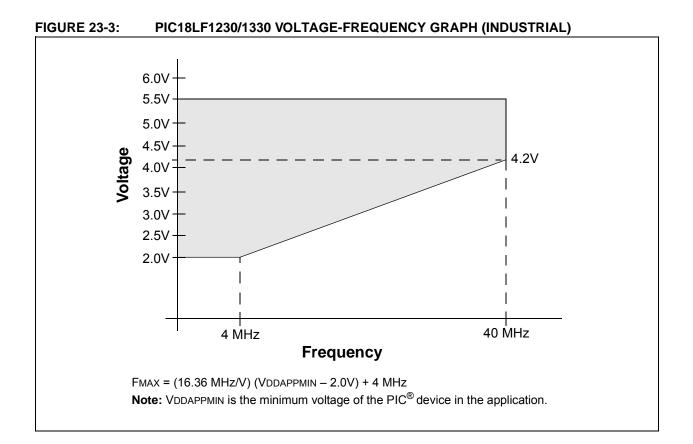
The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an SD/MMC card for file storage and secure data applications.

RCA	LL	Relative C	Call				
Synta	ax:	RCALL n					
Oper	ands:	-1024 ≤ n ≤	1023				
Oper	ation:	(PC) + 2 → (PC) + 2 + 2	,	;			
Statu	s Affected:	None					
Enco	ding:	1101	1nnn	nnn	n	nnnn	
Desc	ription: Is:	from the cu address (PC stack. Then number '2n have incren instruction, PC + 2 + 2r	Subroutine call with a jump up to 1K from the current location. First, return address (PC + 2) is pushed onto the stack. Then, add the 2's complement number '2n' to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is a two-cycle instruction.				
Cycle		2					
	vcle Activity:	_					
	Q1	Q2	Q3	5		Q4	
	Decode	Read literal 'n' PUSH PC to stack	Proce Dat		V	Vrite to PC	
	No operation	No operation	No opera		op	No peration	

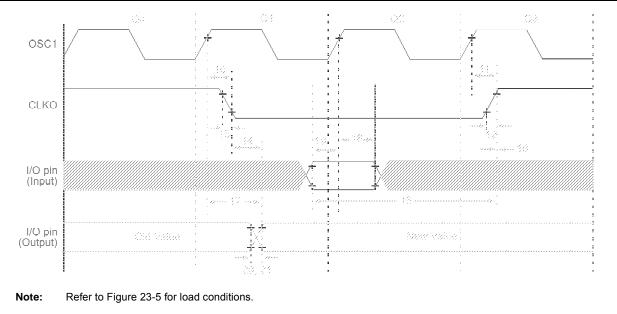
Example: HERE RCALL Jump

Before Instruction PC = Address (HERE) After Instruction PC = Address (Jump)

PC = Address (Jump) TOS = Address (HERE + 2)


RESET Reset									
Synta	ax:	RESET	RESET						
Oper	ands:	None							
Oper	ation:		Reset all registers and flags that are affected by a MCLR Reset.						
Statu	s Affected:	All	All						
Enco	ding:	0000	0000	1111	1111				
Desc	ription:		This instruction provides a way to execute a MCLR Reset in software.						
Word	ls:	1	1						
Cycle	es:	1							
QC	ycle Activity:								
	Q1	Q2	Q3	3	Q4				
	Decode	Start	No)	No				
		Reset	opera	tion o	peration				

Example:


After	Inst	trι	uction	
	-			_

manuction	
Registers =	Reset Value
Flags* =	Reset Value

RESET

TABLE 23-9:	CLKO AND I/O TIMING REQUIREMENTS
-------------	----------------------------------

Param No.	Symbol	Characterist	ic	Min	Тур	Мах	Units	Conditions
10	TosH2ckL	OSC1 ↑ to CLKO \downarrow		—	75	200	ns	(Note 1)
11	TosH2ckH	OSC1 ↑ to CLKO ↑		—	75	200	ns	(Note 1)
12	TckR	CLKO Rise Time		—	35	100	ns	(Note 1)
13	TckF	CLKO Fall Time		—	35	100	ns	(Note 1)
14	TckL2ioV	CLKO \downarrow to Port Out Valid		—		0.5 Tcy + 20	ns	(Note 1)
15	TioV2ckH	Port In Valid before CLKO ↑		0.25 TCY + 25		—	ns	(Note 1)
16	TckH2iol	Port In Hold after CLKO ↑		0		—	ns	(Note 1)
17	TosH2ioV	OSC1 ↑ (Q1 cycle) to Port C	out Valid	—	50	150	ns	
18	TosH2iol	OSC1 ↑ (Q2 cycle) to Port	PIC18FXXXX	100		—	ns	
18A		Input Invalid (I/O in hold time)	PIC18LFXXXX	200		—	ns	Vdd = 2.0V
19	TioV2osH	Port Input Valid to OSC1 1 (I/	O in setup time)	0		—	ns	
20	TioR	Port Output Rise Time	PIC18FXXXX	_	10	25	ns	
20A			PIC18LFXXXX	_	—	60	ns	VDD = 2.0V
21	TioF	Port Output Fall Time	PIC18FXXXX	_	10	25	ns	
21A			PIC18LFXXXX	—		60	ns	VDD = 2.0V
22†	Tinp	INTx Pin High or Low Time		Тсү		—	ns	
23†	Trbp	RB7:RB4 Change INTx High	or Low Time	Тсү		_	ns	

† These parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC mode, where CLKO output is 4 x Tosc.

Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
A01	NR	Resolution	—	_	10	bit	$\Delta \text{VREF} \geq 3.0 \text{V}$
A03	EIL	Integral Linearity Error	—	_	< ±1	LSb	$\Delta \text{VREF} \geq 3.0 \text{V}$
A04	Edl	Differential Linearity Error	—	—	< ±1	LSb	$\Delta \text{VREF} \geq 3.0 \text{V}$
A06	EOFF	Offset Error	—	_	< ±2	LSb	$\Delta VREF \ge 3.0V$
A07	Egn	Gain Error	—	_	< ±1	LSb	$\Delta VREF \ge 3.0V$
A10	—	Monotonicity	G	Guaranteed ⁽¹⁾		—	$VSS \leq VAIN \leq VREF$
A20	$\Delta VREF$	Reference Voltage Range (VREF+ – VSS)	1.8 3	_		V V	$\begin{array}{l} VDD < 3.0V \\ VDD \geq 3.0V \end{array}$
A21	VREF+	Positive Reference Voltage	Vss	—	VREF+	V	
A22	VREF-	Negative Reference Voltage	Vss – 0.3V	_	Vdd - 3.0V	—	
A25	VAIN	Analog Input Voltage	VREF-		VREF+	V	
A30	ZAIN	Recommended Impedance of Analog Voltage Source	—		2.5	kΩ	
A50	IREF	VREF+ Input Current ⁽²⁾		_	5 150	μΑ μΑ	During VAIN acquisition. During A/D conversion cycle.

TABLE 23-14: A/D CONVERTER CHARACTERISTICS

Note 1: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

2: VREF+ current is from RA4/T0CKI/AN2/VREF+ pin or VDD, whichever is selected as the VREF+ source.

MOVLW	
MOVWF	241
MULLW	
MULWF	
NEGF	
NOP	
Opcode Field Descriptions	216
POP	244
PUSH	244
RCALL	245
RESET	245
RETFIE	246
RETLW	
RETURN	247
RLCF	247
RLNCF	
RRCF	
RRNCF	249
SETF	
SETF (Indexed Literal Offset Mode)	
SLEEP	
Standard Instructions	215
SUBFWB	
SUBLW	
SUBWF	
SUBWFB	
SWAPF	
TBLRD	
TBLWT	
TSTFSZ	
XORLW	
XORWF	
INTCON Registers	
Internal Oscillator Block	24
Adjustment	24
INTIO Modes	
INTOSC Frequency Drift	
INTOSC Output Frequency	
OSCTUNE Register	
PLL in INTOSC Modes	
Internal RC Oscillator	
Use with WDT	
Internet Address	
Interrupt Sources	
A/D Conversion Complete	
INTx Pin	
PORTB, Interrupt-on-Change	
TMR0	
TMR1 Overflow	
Interrupts	
Interrupts, Flag Bits	
Interrupt-on-Change Flag (RBIF Bit)	90
INTOSC, INTRC. See Internal Oscillator Block.	
IORLW	238
IORWF	
IPR Registers	

L

LFSR	220
Low-Voltage Detect	
Applications	
Associated Registers	
Characteristics	
Current Consumption	
Effects of a Reset	
Operation	
During Sleep	
Setup	
Start-up Time	
Typical Application	
Low-Voltage ICSP Programming. See Single-Supply	ICSP
Programming	
LVD. See Low-Voltage Detect	187
M	
Master Clear (MCLR)	41
Memory Organization	51
Data Memory	57
Program Memory	51
Memory Programming Requirements	281
Microchip Internet Web Site	
Migration from Baseline to Enhanced Devices	
Migration from High-End to Enhanced Devices	
Migration from Mid-Range to Enhanced Devices	
MOVF	
MOVFF	
MOVLB	
MOVED	
MOVEV	
MOVSF	
MOVWF	
MPLAB ASM30 Assembler, Linker, Librarian	
MPLAB ICD 2 In-Circuit Debugger	
MPLAB ICE 2000 High-Performance Universal In-Circu	
ulator	
MPLAB Integrated Development Environment Software	
MPLAB PM3 Device Programmer	
MPLAB REAL ICE In-Circuit Emulator System	
MPLINK Object Linker/MPLIB Object Librarian	
MULLW	242
MULWF	242
NI	
Ν	
NEGF	
NOP	243
•	

0	

Oscillator Configuration	
EC	
ECIO	
HS	
HSPLL	
Internal Oscillator Block	
INTIO1	
INTIO2	
LP	
RC	
RCIO	
ХТ	
Oscillator Selection	191
Oscillator Start-up Timer (OST)	
Oscillator Switching	