

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	16
Program Memory Size	8KB (4K × 16)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f1330t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pi	n Numb	ber	Bin Buffor		
Pin Name	PDIP, SOIC	SSOP	QFN	Туре	Туре	Description
						PORTB is a bidirectional I/O port.
RB0/PWM0 RB0 PWM0	8	9	9	I/O O	TTL	Digital I/O. PWM module output PWM0.
RB1/PWM1 RB1 PWM1	9	10	10	I/O O	TTL	Digital I/O. PWM module output PWM1.
RB2/INT2/KBI2/CMP2/ T1OSO/T1CKI RB2	17	19	23	1/0	TTL	Digital I/O.
INT2 KBI2 CMP2 T1OSO ⁽²⁾ T1CKI ⁽²⁾				 	ST TTL Analog — ST	External interrupt 2. Interrupt-on-change pin. Comparator 2 input. Timer1 oscillator output. Timer1 clock input.
RB3/INT3/KBI3/CMP1/ T1OSI	18	20	24			
RB3 INT3 KBI3 CMP1 T1OSI ⁽²⁾				/O 	TTL ST TTL Analog Analog	Digital I/O. External interrupt 3. Interrupt-on-change pin. Comparator 1 input. Timer1 oscillator input.
RB4/PWM2 RB4 PWM2	10	11	12	I/O O	TTL	Digital I/O. PWM module output PWM2.
RB5/PWM3 RB5 PWM3	11	12	13	I/O O	TTL	Digital I/O. PWM module output PWM3.
RB6/PWM4/PGC RB6 PWM4 PGC	12	13	15	I/O O I	TTL — ST	Digital I/O. PWM module output PWM4. In-Circuit Debugger and ICSP™ programming clock pin.
RB7/PWM5/PGD RB7 PWM5 PGD	13	14	16	I/O O O	TTL — —	Digital I/O. PWM module output PWM5. In-Circuit Debugger and ICSP programming data pin.
Legend: TTL = TTL co ST = Schmi O = Output	ompatible tt Trigge t	e input r input w	vith CMC)S level	CMC Is I P	DS = CMOS compatible input or output = Input = Power
Note 1: Placement of FLTA depends on the value of Configuration bit FLTAMX of CONFIG3H						

TABLE 1-2: PIC18F1230/1330 PINOUT I/O DESCRIPTIONS (CONTINUED)

Placement of T1OSI and T1OSO/T1CKI depends on the value of Configuration bit, T1OSCMX, of CONFIG3H.

TABLE 3-2:CAPACITOR SELECTION FOR
CRYSTAL OSCILLATOR

Osc Type	Crystal	Typical Capa Tes	Capacitor Values Tested:		
	Fieq	C1	C2		
LP	32 kHz	30 pF	30 pF		
XT	1 MHz 4 MHz	15 pF 15 pF	15 pF 15 pF		
HS	4 MHz 10 MHz 20 MHz 25 MHz	15 pF 15 pF 15 pF 15 pF	15 pF 15 pF 15 pF 15 pF		

Capacitor values are for design guidance only.

Different capacitor values may be required to produce acceptable oscillator operation. The user should test the performance of the oscillator over the expected VDD and temperature range for the application.

See the notes following this table for additional information.

- **Note 1:** Higher capacitance increases the stability of the oscillator but also increases the start-up time.
 - When operating below 3V VDD, or when using certain ceramic resonators at any voltage, it may be necessary to use the HS mode or switch to a crystal oscillator.
 - 3: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.
 - Rs may be required to avoid overdriving crystals with low drive level specification.
 - 5: Always verify oscillator performance over the VDD and temperature range that is expected for the application.

An external clock source may also be connected to the OSC1 pin in the HS mode, as shown in Figure 3-2.

3.3 External Clock Input

The EC and ECIO Oscillator modes require an external clock source to be connected to the OSC1 pin. There is no oscillator start-up time required after a Power-on Reset or after an exit from Sleep mode.

In the EC Oscillator mode, the oscillator frequency divided by 4 is available on the OSC2 pin. This signal may be used for test purposes or to synchronize other logic. Figure 3-3 shows the pin connections for the EC Oscillator mode.

EXTERNAL CLOCK INPUT OPERATION (EC CONFIGURATION)

The ECIO Oscillator mode functions like the EC mode, except that the OSC2 pin becomes an additional general purpose I/O pin. The I/O pin becomes bit 6 of PORTA (RA6). Figure 3-4 shows the pin connections for the ECIO Oscillator mode.

FIGURE 3-4:

EXTERNAL CLOCK INPUT OPERATION (ECIO CONFIGURATION)

R/W-0	R/W-0 ⁽¹⁾	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
INTSRC	PLLEN ⁽¹⁾		TUN4	TUN3	TUN2	TUN1	TUN0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 7	INTSRC: Inte	rnal Oscillator	Low-Frequen	cy Source Sele	ect bit		
	1 = 31.25 kH	z device clock	derived from	8 MHz INTOS	C source (divide	e-by-256 enable	ed)
	0 = 31 kHz d	evice clock der	ived directly	from INTRC int	ernal oscillator		
bit 6	PLLEN: Freq	uency Multiplie	r PLL for INT	OSC Enable bi	it(1)		
	1 = PLL enab	oled for INTOS	C (4 MHz and	d 8 MHz only)			
		bied					
bit 5	5 Unimplemented: Read as '0'						
bit 4-0	t 4-0 TUN4:TUN0: Frequency Tuning bits						
	01111 = Max	imum frequenc	cy .				
	•	•					
	•	•					
	00001						
	00000 = Cen	ter frequency.	Oscillator mo	dule is running	at the calibrate	d frequency.	
	11111						
	•	•					
	• 10000 - Mini	• mum froquese	.,				
		mum requenc	у				

REGISTER 3-1: OSCTUNE: OSCILLATOR TUNING REGISTER

Note 1: Available only in certain oscillator configurations; otherwise, this bit is unavailable and reads as '0'. See Section 3.6.4 "PLL in INTOSC Modes" for details.

3.6.5.1 Compensating with the EUSART

An adjustment may be required when the EUSART begins to generate framing errors or receives data with errors while in Asynchronous mode. Framing errors indicate that the device clock frequency is too high; to adjust for this, decrement the value in OSCTUNE to reduce the clock frequency. On the other hand, errors in data may suggest that the clock speed is too low; to compensate, increment OSCTUNE to increase the clock frequency.

3.6.5.2 Compensating with the Timers

This technique compares device clock speed to some reference clock. Two timers may be used; one timer is clocked by the peripheral clock, while the other is clocked by a fixed reference source, such as the Timer1 oscillator.

Both timers are cleared, but the timer clocked by the reference generates interrupts. When an interrupt occurs, the internally clocked timer is read and both timers are cleared. If the internally clocked timer value is greater than expected, then the internal oscillator block is running too fast. To adjust for this, decrement the OSCTUNE register.

3.8 Effects of Power-Managed Modes on the Various Clock Sources

When PRI_IDLE mode is selected, the designated primary oscillator continues to run without interruption. For all other power-managed modes, the oscillator using the OSC1 pin is disabled. The OSC1 pin (and OSC2 pin, if used by the oscillator) will stop oscillating.

In secondary clock modes (SEC_RUN and SEC_IDLE), the Timer1 oscillator is operating and providing the device clock. The Timer1 oscillator may also run in all power-managed modes if required to clock Timer1 or Timer3.

In internal oscillator modes (RC_RUN and RC_IDLE), the internal oscillator block provides the device clock source. The 31 kHz INTRC output can be used directly to provide the clock and may be enabled to support various special features, regardless of the powermanaged mode (see Section 20.2 "Watchdog Timer (WDT)", Section 20.3 "Two-Speed Start-up" and Section 20.4 "Fail-Safe Clock Monitor" for more information on WDT, Fail-Safe Clock Monitor and Two-Speed Start-up). The INTOSC output at 8 MHz may be used directly to clock the device or may be divided down by the postscaler. The INTOSC output is disabled if the clock is provided directly from the INTRC output.

If the Sleep mode is selected, all clock sources are stopped. Since all the transistor switching currents have been stopped, Sleep mode achieves the lowest current consumption of the device (only leakage currents).

Enabling any on-chip feature that will operate during Sleep will increase the current consumed during Sleep. The INTRC is required to support WDT operation. The Timer1 oscillator may be operating to support a realtime clock. Other features may be operating that do not require a device clock source (i.e., INTx pins and others). Peripherals that may add significant current consumption are listed in **Section 23.0** "**Electrical Characteristics**".

3.9 Power-up Delays

Power-up delays are controlled by two timers, so that no external Reset circuitry is required for most applications. The delays ensure that the device is kept in Reset until the device power supply is stable under normal circumstances and the primary clock is operating and stable. For additional information on power-up delays, see **Section 5.5 "Device Reset Timers"**.

The first timer is the Power-up Timer (PWRT), which provides a fixed delay on power-up (parameter 33, Table 23-10). It is enabled by clearing (= 0) the PWRTEN Configuration bit.

The second timer is the Oscillator Start-up Timer (OST), intended to keep the chip in Reset until the crystal oscillator is stable (LP, XT and HS modes). The OST does this by counting 1024 oscillator cycles before allowing the oscillator to clock the device.

When the HSPLL Oscillator mode is selected, the device is kept in Reset for an additional 2 ms, following the HS mode OST delay, so the PLL can lock to the incoming clock frequency.

There is a delay of interval TCSD (parameter 38, Table 23-10), following POR, while the controller becomes ready to execute instructions. This delay runs concurrently with any other delays. This may be the only delay that occurs when any of the EC, RC or INTIO modes are used as the primary clock source.

Oscillator Mode	OSC1 Pin	OSC2 Pin
RC, INTIO1	Floating, external resistor should pull high	At logic low (clock/4 output)
RCIO	Floating, external resistor should pull high	Configured as PORTA, bit 6
INTIO2	Configured as PORTA, bit 7	Configured as PORTA, bit 6
ECIO	Floating, pulled by external clock	Configured as PORTA, bit 6
EC	Floating, pulled by external clock	At logic low (clock/4 output)
LP, XT and HS	Feedback inverter disabled at quiescent voltage level	Feedback inverter disabled at quiescent voltage level

TABLE 3-3: OSC1 AND OSC2 PIN STATES IN SLEEP MODE

Note: See Table 5-2 in **Section 5.0 "Reset"** for time-outs due to Sleep and MCLR Reset.

6.0 MEMORY ORGANIZATION

There are three types of memory in PIC18 Enhanced microcontroller devices:

- Program Memory
- Data RAM
- Data EEPROM

As Harvard architecture devices, the data and program memories use separate busses; this allows for concurrent access of the two memory spaces. The data EEPROM, for practical purposes, can be regarded as a peripheral device, since it is addressed and accessed through a set of control registers.

Additional detailed information on the operation of the Flash program memory is provided in **Section 7.0 "Flash Program Memory"**. Data EEPROM is discussed separately in **Section 8.0 "Data EEPROM Memory"**.

6.1 Program Memory Organization

PIC18 microcontrollers implement a 21-bit program counter, which is capable of addressing a 2-Mbyte program memory space. Accessing a location between the upper boundary of the physically implemented memory and the 2-Mbyte address will return all '0's (a NOP instruction).

The PIC18F1230 has 4 Kbytes of Flash memory and can store up to 2,048 single-word instructions. The PIC18F1330 has 8 Kbytes of Flash memory and can store up to 4,096 single-word instructions.

PIC18 devices have two interrupt vectors. The Reset vector address is at 0000h and the interrupt vector addresses are at 0008h and 0018h.

The program memory maps for PIC18F1230 and PIC18F1330 devices are shown in Figure 6-1.

6.4.3.1 FSR Registers and the INDF Operand

At the core of Indirect Addressing are three sets of registers: FSR0, FSR1 and FSR2. Each represents a pair of 8-bit registers, FSRnH and FSRnL. The four upper bits of the FSRnH register are not used so each FSR pair holds a 12-bit value. This represents a value that can address the entire range of the data memory in a linear fashion. The FSR register pairs, then, serve as pointers to data memory locations.

Indirect Addressing is accomplished with a set of Indirect File Operands, INDF0 through INDF2. These can be thought of as "virtual" registers: they are mapped in the SFR space but are not physically implemented. Reading or writing to a particular INDF register actually accesses its corresponding FSR register pair. A read from INDF1, for example, reads the data at the address indicated by FSR1H:FSR1L. Instructions that use the INDF registers as operands actually use the contents of their corresponding FSR as a pointer to the instruction's target. The INDF operand is just a convenient way of using the pointer.

Because Indirect Addressing uses a full 12-bit address, data RAM banking is not necessary. Thus, the current contents of the BSR and the Access RAM bit have no effect on determining the target address.

6.4.3.2 FSR Registers and POSTINC, POSTDEC, PREINC and PLUSW

In addition to the INDF operand, each FSR register pair also has four additional indirect operands. Like INDF, these are "virtual" registers that cannot be indirectly read or written to. Accessing these registers actually accesses the associated FSR register pair, but also performs a specific action on its stored value. They are:

- POSTDEC: accesses the FSR value, then automatically decrements it by 1 afterwards
- POSTINC: accesses the FSR value, then automatically increments it by 1 afterwards
- PREINC: increments the FSR value by 1, then uses it in the operation
- PLUSW: adds the signed value of the W register (range of -127 to 128) to that of the FSR and uses the new value in the operation.

In this context, accessing an INDF register uses the value in the FSR registers without changing them. Similarly, accessing a PLUSW register gives the FSR value offset by that in the W register; neither value is actually changed in the operation. Accessing the other virtual registers changes the value of the FSR registers.

Operations on the FSRs with POSTDEC, POSTINC and PREINC affect the entire register pair; that is, rollovers of the FSRnL register from FFh to 00h carry over to the FSRnH register. On the other hand, results of these operations do not change the value of any flags in the STATUS register (e.g., Z, N, OV, etc.).

FIGURE 6-7: INDIRECT ADDRESSING

7.2.2 TABLAT – TABLE LATCH REGISTER

The Table Latch (TABLAT) is an 8-bit register mapped into the SFR space. The Table Latch register is used to hold 8-bit data during data transfers between program memory and data RAM.

7.2.3 TBLPTR – TABLE POINTER REGISTER

The Table Pointer (TBLPTR) register addresses a byte within the program memory. The TBLPTR is comprised of three SFR registers: Table Pointer Upper Byte, Table Pointer High Byte and Table Pointer Low Byte (TBLPTRU:TBLPTRH:TBLPTRL). These three registers join to form a 22-bit wide pointer. The low-order 21 bits allow the device to address up to 2 Mbytes of program memory space. The 22nd bit allows access to the device ID, the user ID and the Configuration bits.

The Table Pointer register, TBLPTR, is used by the TBLRD and TBLWT instructions. These instructions can update the TBLPTR in one of four ways based on the table operation. These operations are shown in Table 7-1. These operations on the TBLPTR only affect the low-order 21 bits.

7.2.4 TABLE POINTER BOUNDARIES

TBLPTR is used in reads, writes and erases of the Flash program memory.

When a TBLRD is executed, all 22 bits of the TBLPTR determine which byte is read from program memory into TABLAT.

When the timed write to program memory begins (via the WR bit), the 19 MSbs of the TBLPTR (TBLPTR<21:3>) determine which program memory block of 8 bytes is written to. The Table Pointer register's three LSBs (TBLPTR<2:0>) are ignored. For more detail, see Section 7.5 "Writing to Flash Program Memory".

When an erase of program memory is executed, the 16 MSbs of the Table Pointer register (TBLPTR<21:6>) point to the 64-byte block that will be erased. The Least Significant bits (TBLPTR<5:0>) are ignored.

Figure 7-3 describes the relevant boundaries of TBLPTR based on Flash program memory operations.

TABLE 7-1:	TABLE POINTER OPERATIONS WITH TBLRD AND TBLWT INSTRUCTIONS
------------	--

Example	Operation on Table Pointer
TBLRD* TBLWT*	TBLPTR is not modified
TBLRD*+ TBLWT*+	TBLPTR is incremented after the read/write
TBLRD*- TBLWT*-	TBLPTR is decremented after the read/write
TBLRD+* TBLWT+*	TBLPTR is incremented before the read/write

FIGURE 7-3: TABLE POINTER BOUNDARIES BASED ON OPERATION

Pin	Function	TRIS Setting	I/O	l/O Type	Description	
RB0/PWM0	RB0	0	0	DIG	LATB<0> data output; not affected by analog input.	
		1	I	TTL	PORTB<0> data input; weak pull-up when RBPU bit is cleared. Disabled when analog input enabled. ⁽¹⁾	
	PWM0	0	0	DIG	PWM module output PWM0.	
RB1PWM1	RB1	0	0	DIG	LATB<1> data output; not affected by analog input.	
		1	I	TTL	PORTB<1> data input; weak pull-up when RBPU bit is cleared. Disabled when analog input enabled. ⁽¹⁾	
	PWM1	0	0	DIG	DIG PWM module output PWM1.	
RB2/INT2/KBI2/	RB2	0	0	DIG	LATB<2> data output; not affected by analog input.	
CMP2/T1OSO/ T1CKI		1	I	TTL	PORTB<2> data input; weak pull-up when RBPU bit is cleared. Disabled when analog input enabled. ⁽¹⁾	
	INT2	1	Ι	ST	External interrupt 2 input.	
	KBI2	1	Ι	TTL	Interrupt-on-change pin.	
	CMP2	1	Ι	ANA	Comparator 2 input.	
	T10SO ⁽²⁾	0	0	ANA	Timer1 oscillator output.	
	T1CKI ⁽²⁾	1	Ι	ST	Timer1 clock input.	
RB3/INT3/KBI3/	RB3	0	0	DIG	LATB<3> data output; not affected by analog input.	
CMP1/T1OSI		1	Ι	TTL	PORTB<3> data input; weak pull-up when $\overline{\text{RBPU}}$ bit is cleared. Disabled when analog input enabled. ⁽¹⁾	
	INT3	1	Ι	ST	External interrupt 3 input.	
	KBI3	1	I	TTL	Interrupt-on-change pin.	
	CMP1	1	I	ANA	Comparator 1 input.	
	T10SI ⁽²⁾	1	Ι	ANA	Timer1 oscillator input.	
RB4/PWM2	RB4	0	0	DIG	LATB<4> data output; not affected by analog input.	
		1	I	TTL	PORTB<4> data input; weak pull-up when RBPU bit is cleared. Disabled when analog input enabled. ⁽¹⁾	
	PWM2	0	0	DIG	PWM module output PWM2.	
RB5/PWM3	RB5	0	0	DIG	LATB<5> data output.	
		1	Ι	TTL	PORTB<5> data input; weak pull-up when RBPU bit is cleared.	
	PWM3	0	0	DIG	PWM module output PWM3.	
RB6/PWM4/PGC	RB6	0	0	DIG	LATB<6> data output.	
	1 I TTL PORTB<6> data inp		TTL	PORTB<6> data input; weak pull-up when RBPU bit is cleared.		
	PWM4	0	0	DIG	PWM module output PWM4.	
	PGC	1	Ι	ST	In-Circuit Debugger and ICSP™ programming clock pin.	
RB7/PWM5/PGD	RB7	0	0	DIG	G LATB<7> data output.	
		1	Ι	TTL	PORTB<7> data input; weak pull-up when RBPU bit is cleared.	
	PWM5	0	0	TTL	PWM module output PWM4.	
PGD 0 DIG		DIG	In-Circuit Debugger and ICSP programming data pin.			

TABLE 10-3: PORTB I/O SUMMARY

Legend: DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ANA = Analog level input/output; x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

Note 1: Configuration on POR is determined by the PBADEN Configuration bit. Pins are configured as analog inputs by default when PBADEN is set and digital inputs when PBADEN is cleared.

2: Placement of T1OSI and T1OSO/T1CKI depends on the value of Configuration bit, T1OSCMX, of CONFIG3H.

PIC18F1230/1330

NOTES:

14.4.4 INTERRUPTS IN DOUBLE UPDATE MODE

This mode is available in Continuous Up/Down Count mode. In the Double Update mode (PTMOD<1:0> = 11), an interrupt event is generated each time the PTMR register is equal to zero and each time the PTMR matches the PTPER register. Figure 14-8 shows the interrupts in Continuous Up/Down Count mode with double updates.

The Double Update mode provides two additional functions to the user in Center-Aligned mode.

 The control loop bandwidth is doubled because the PWM duty cycles can be updated twice per period.

- Asymmetrical center-aligned PWM waveforms can be generated, which are useful for minimizing output waveform distortion in certain motor control applications.
- Note: Do not change the PTMOD bits while PTEN is active. It will yield unexpected results. To change the PWM Timer mode of operation, first clear the PTEN bit, load PTMOD bits with required data and then set PTEN.

FIGURE 14-8: PWM TIME BASE INTERRUPTS, CONTINUOUS UP/DOWN COUNT MODE WITH DOUBLE UPDATES

14.10.3 OUTPUT OVERRIDE EXAMPLES

Figure 14-21 shows an example of a waveform that might be generated using the PWM output override feature. The figure shows a six-step commutation sequence for a BLDC motor. The motor is driven through a 3-phase inverter as shown in Figure 14-16. When the appropriate rotor position is detected, the PWM outputs are switched to the next commutation state in the sequence. In this example, the PWM outputs are driven to specific logic states. The OVDCOND and OVDCONS register values used to generate the signals in Figure 14-21 are given in Table 14-4. The PWM Duty Cycle registers may be used in conjunction with the OVDCOND and OVDCONS registers. The Duty Cycle registers control the average voltage across the load and the OVDCOND and OVDCONS registers control the commutation sequence. Figure 14-22 shows the waveforms, while Table 14-4 and Table 14-5 show the OVDCOND and OVDCONS register values used to generate the signals.

REGISTER 14-6: OVDCOND: OUTPUT OVERRIDE CONTROL REGISTER

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	POVD5	POVD4	POVD3	POVD2	POVD1	POVD0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6 Unimplemented: Read as '0'

bit 5-0 POVD5:POVD0: PWM Output Override bits

1 = Output on PWM I/O pin is controlled by the value in the Duty Cycle register and the PWM time base 0 = Output on PWM I/O pin is controlled by the value in the corresponding POUTx bit

REGISTER 14-7: OVDCONS: OUTPUT STATE REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	POUT5	POUT4	POUT3	POUT2	POUT1	POUT0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6 Unimplemented: Read as '0'

bit 5-0 POUT5:POUT0: PWM Manual Output bits⁽¹⁾

1 = Output on PWM I/O pin is active when the corresponding PWM output override bit is cleared 0 = Output on PWM I/O pin is inactive when the corresponding PWM output override bit is cleared

Note 1: With PWMs configured in complementary mode, even PWM (PWM0, 2, 4) outputs will be complementary of the odd PWM (PWM1, 3, 5) outputs, irrespective of the POUT bit setting.

15.0 ENHANCED UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (EUSART)

The Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) module is one of the two serial I/O modules. (Generically, the USART is also known as a Serial Communications Interface or SCI.) The EUSART can be configured as a full-duplex asynchronous system that can communicate with peripheral devices, such as CRT terminals and personal computers. It can also be configured as a halfduplex synchronous system that can communicate with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs, etc.

The Enhanced USART module implements additional features, including automatic baud rate detection and calibration, automatic wake-up on Sync Break reception and 12-bit Break character transmit. These features make it ideally suited for use in Local Interconnect Network bus (LIN/J2602 bus) systems.

The EUSART can be configured in the following modes:

- · Asynchronous (full-duplex) with:
 - Auto-Wake-up on Character Reception
 - Auto-Baud Calibration
 - 12-Bit Break Character Transmission
- Synchronous Master (half-duplex) with Selectable Clock Polarity
- Synchronous Slave (half-duplex) with Selectable Clock Polarity

The pins of the Enhanced USART are multiplexed with PORTA. In order to configure RA2/TX/CK and RA3/RX/DT as an EUSART:

- bit SPEN (RCSTA<7>) must be set (= 1)
- bit TRISA<3> must be set (= 1)
- bit TRISA<2> must be set (= 1)

Note:	The EUSART control will automatically
	reconfigure the pin from input to output as
	needed.

The operation of the Enhanced USART module is controlled through three registers:

- · Transmit Status and Control (TXSTA)
- Receive Status and Control (RCSTA)
- · Baud Rate Control (BAUDCON)

These are detailed on the following pages in Register 15-1, Register 15-2 and Register 15-3, respectively.

EXAMPLE 15-1: CALCULATING BAUD RATE ERROR

For a device with FOSC of 16 MHz, desired baud rate of 9600, Asynchronous mode, 8-bit BRG:								
Desired Baud Rate	= Fosc/(64 ([SPBRGH:SPBRG] + 1))							
Solving for SPBRGH:S	PBRG:							
Х	= ((FOSC/Desired Baud Rate)/64) – 1							
	= ((1600000/9600)/64) - 1							
	= [25.042] = 25							
Calculated Baud Rate	= 1600000/(64(25+1))							
	= 9615							
Error	= (Calculated Baud Rate – Desired Baud Rate)/Desired Baud Rate							
	= (9615 - 9600)/9600 = 0.16%							

TABLE 15-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	48
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	48
BAUDCON	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	_	WUE	ABDEN	48
SPBRGH	PBRGH EUSART Baud Rate Generator Register High Byte								
SPBRG	EUSART E	Baud Rate G	Generator R	egister Low	Byte				48

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the BRG.

18.0 COMPARATOR VOLTAGE REFERENCE MODULE

The comparator voltage reference is a 16-tap resistor ladder network that provides a selectable reference voltage. Its purpose is to provide a reference for the analog comparators.

A block diagram of the module is shown in Figure 18-1. The resistor ladder is segmented to provide two ranges of CVREF values and has a power-down function to conserve power when the reference is not being used. The module's supply reference can be provided from either device VDD/VSS or an external voltage reference.

18.1 Configuring the Comparator Voltage Reference

The voltage reference module is controlled through the CVRCON register (Register 18-1). The comparator voltage reference provides two ranges of output voltage, each with 16 distinct levels. The range to be used is selected by the CVRR bit (CVRCON<5>). The primary difference between the ranges is the size of the steps selected by the CVREF selection bits (CVR3:CVR0), with one range offering finer resolution. The equations used to calculate the output of the comparator voltage reference are as follows:

 $\frac{\text{If CVRR} = 1:}{\text{CVREF} = ((\text{CVR3:CVR0})/24) \times \text{CVRSRC}}$ $\frac{\text{If CVRR} = 0:}{\text{CVRFF} = ((\text{CVR3:CVR0})/24) + (((\text{CVR3:CVR0})/24) \times \text{CVRSRC})}$

CVREF = (CVRSRC x 1/4) + (((CVR3:CVR0)/32) x CVRSRC)

The comparator reference supply voltage can come from either AVDD or AVSS, or the external VREF+ that is multiplexed with RA4 and AVSS. The voltage source is selected by the CVRSS bit (CVRCON<4>).

Additionally, the voltage reference can select the unscaled VREF+ input for use by the comparators, bypassing the CVREF module. (See Table 18-1 and Figure 18-1.)

The settling time of the comparator voltage reference must be considered when changing the CVREF output (see Table 23-3 in **Section 23.0 "Electrical Characteristics"**).

TABLE 18-1: VOLTAGE REFERENCE OUTPUT

CVREN	CVRSS	CVREF	Comparator Input		
0	0	Disabled	No reference		
0	1	Disabled	From VREF (CVREF bypassed)		
1	0	Enabled	From CVREF		
1	1	Enabled	From CVREF		

19.0 LOW-VOLTAGE DETECT (LVD)

PIC18F1230/1330 devices have a Low-Voltage Detect module (LVD). This is a programmable circuit that allows the user to specify the device voltage trip point. If the device experiences an excursion past the trip point, an interrupt flag is set. If the interrupt is enabled, the program execution will branch to the interrupt vector address and the software can then respond to the interrupt. The Low-Voltage Detect Control register (Register 19-1) completely controls the operation of the LVD module. This allows the circuitry to be "turned off" by the user under software control, which minimizes the current consumption for the device.

The block diagram for the LVD module is shown in Figure 19-1.

REGISTER 19-1: LVDCON: LOW-VOLTAGE DETECT CONTROL REGISTER

U-0	U-0	R-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1
—	—	IRVST	LVDEN	LVDL3 ⁽¹⁾	LVDL2 ⁽¹⁾	LVDL1 ⁽¹⁾	LVDL0 ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	Unimplemented: Read as 10 [°]
bit 5	IRVST: Internal Reference Voltage Stable Flag bit
	1 = Indicates that the voltage detect logic will generate the interrupt flag at the specified voltage trip point
	 Indicates that the voltage detect logic will not generate the interrupt flag at the specified voltage trip point and the LVD interrupt should not be enabled
bit 4	LVDEN: Low-Voltage Detect Power Enable bit
	1 = LVD enabled
	0 = LVD disabled
bit 3-0	LVDL3:LVDL0: Voltage Detection Limit bits ⁽¹⁾
	1111 = Reserved
	1110 = Maximum setting
	•
	•
	0000 = Minimum setting
N	

Note 1: See Table 23-4 in Section 23.0 "Electrical Characteristics" for the specifications.

. .. - .

.. .

. . .

PIC18F1230/1330

COMF	Complem	ent f		CP	FSEQ	Compare	f with W, Sk	tip if f = W
Syntax:	COMF f {,d {,a}}		Syn	tax:	CPFSEQ	FSEQ f {,a}		
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \end{array}$			Оре	erands:	$\begin{array}{l} 0 \leq f \leq 255 \\ a \in [0,1] \end{array}$		
Operation:	$a \in [0,1]$ $(\overline{f}) \rightarrow dest$			Оре	eration:	(f) - (W), skip if $(f) =$	(W)	
Status Affected:	N, Z			Stat	us Affected:	None	Joinpanson	
Encoding:	0001	11da ff:	ff ffff	Enc	odina:	0110	001a fff	f ffff
Description:	The conten complemen stored in W stored back If 'a' is '0', t If 'a' is '1', t GPR bank. If 'a' is '0' a set is enabl in Indexed mode when Section 22 Bit-Oriente Literal Offs	ts of register 'f tted. If 'd' is '1', th (in register 'f'. he Access Ba he BSR is use and the extend- led, this instruct Literal Offset A iever $f \le 95$ (5) .2.3 "Byte-Or ed Instruction set Mode" for	fff ffff Encoding: 'f' are Description io', the result is Description the result is f. gank is selected. Seed to select the added instruction Seed to select the uction operates t Addressing (5Fh). See Driented and Dris in Indexed Dor details.		cription:	Compares location 'f' performing If 'f' = W, th discarded a instead, ma instruction. If 'a' is '0', t If 'a' is '0', t GPR bank. If 'a' is '0' a set is enab in Indexed mode wher	the contents of to the contents of an unsigned s are the fetched and a NOP is ex- aking this a two he Access Bar he BSR is use nd the extende led, this instruct Literal Offset A never $f \le 95$ (5)	data memory of W by ubtraction. Instruction is kecuted b-cycle hk is selected. d to select the ed instruction ction operates kddressing Fh). See
vvoras:	1					Bit-Oriente	ed Instruction	s in Indexed
	1					Literal Offe	set Mode" for	details.
Q Cycle Activity:	00	00	04	Wor	ds:	1		
Decode	Read register 'f'	Process Data	Write to destination	Сус	les:	1(2) Note: 3 c	ycles if skip an a 2-word instru	d followed Iction.
				Q	Cycle Activity:			
Example:	COMF	REG, 0, 0			Q1	Q2	Q3	Q4
Before Instruc	ction				Decode	Read	Process	No
REG After Instruction	= 13h			lf o	kini	register 'f'	Data	operation
REG	= 13h			11.5	κι μ . Ο1	02	03	04
W	= ECh				No	No	No	No
					operation	operation	operation	operation
				lf s	kip and followe	d by 2-word in	struction:	
					Q1	Q2	Q3	Q4
					operation	operation	operation	operation
					No	No	No	No
					operation	operation	operation	operation
				<u>Exa</u>	<u>mple:</u>	HERE NEQUAL EQUAL	CPFSEQ REG : :	а, О
					Before Instruct PC Addru W REG After Instruction If REG	tion ess = HE = ? = ? on = W	RE	-)

PIC18F1230/1330

SUB	LW	S	Subtract W from Literal						
Synta	ax:	S	SUBLW k						
Oper	ands:	0	$0 \le k \le 255$						
Oper	ation:	k	– (W) –	→ W					
Statu	s Affected:	Ν	I, OV, C	, DC, Z					
Enco	ding:	Γ	0000	1000	kk}	ĸk	kkkk		
Desc	ription	V	V is sub teral 'k'.	tracted from The result	m the t is pla	eigh acec	nt-bit I in W.		
Word	ls:	1							
Cycle	es:	1							
QC	ycle Activity:								
	Q1		Q2	Q3			Q4		
	Decode	l lit	Read eral 'k'	Proce Data	:SS a	W	rite to W		
Exan	nple 1:	S	UBLW	02h					
	Before Instruc W C After Instructio W C Z N	tion = on = = = =	01h ? 01h 1 ; 0	result is p	ositiv	е			
Exan	nple 2:	S	UBLW	02h					
	Before Instruc W C After Instructic W C Z N	tion = = n = = =	02h ? 00h 1 ; 1	result is z	ero				
Exan	nple <u>3:</u>	S	UBLW	02h					
	Before Instruc W C After Instructic W C Z N	tion = = n = = =	03h ? FFh 0 1	; (2's comp ; result is r	bleme negati	nt) ve			

SUB	WF		Subtract W from f						
Synta	ax:		SUBWF f {,d {,a}}						
Oper	ands:		$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$						
Oper	ation:		(f) – (W) —	→ dest				
Statu	s Affected:		N, OV, 0	C, I	DC, Z				
Enco	ding:		0101		11da fff	f ffff			
Description:			Subtract W from register 'f' (2's complement method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 22.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details						
Word	ls:		1						
Cycle	es:		1						
QC	ycle Activity:								
	Q1		Q2		Q3	Q4			
	Decode		Read	,	Process	Write to			
		ſ	egister t		Data	destination			
Exan	nple 1:		SUBWF		REG, 1, 0				
	Before Instruc REG W C	tior = = =	1 3 2 ?						
	After Instructio	n_	1						
	W	=	2		rocult in ponitiv	10			
	Z	=	0	,	result is positiv	/e			
Even	N anio 2:	=	0		DEG 0 0				
Exan	<u>lipie z.</u> Refore Instruc	tior	SUBWF		REG, 0, 0				
	REG W C	=	2 2 ?						
	After Instructio REG W C	on = = =	2 0 1		result is zero				
	Z	=	1	,					
IN =		-	U		PFG 1 0				
	Before Instruc	tior	ואססט		REG, 1, 0				
	REG W C	= = =	1 2 ?						
	After Instructio	n =	FEh	•7	2's compleme	nt)			
	W	=	2	,(
	Z	=	0	;	result is negati	ve			
	N	=	1						

23.2 DC Characteristics: Power-Down and Supply Current PIC18F1230/1330 (Industrial) PIC18LF1230/1330 (Industrial) (Continued)

PIC18LF1 (Indus	230/1330 trial)	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
PIC18F12 (Indus	trial, Extended)	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended							
Param No.	Device	Тур	Max	Units		Conditio	ns		
	Supply Current (IDD) ⁽²⁾								
	PIC18LF1230/1330	165	347	μA	-40°C				
		175	347	μA	+25°C	VDD = 2.0V			
		190	347	μA	+85°C				
	PIC18LF1230/1330	250	497	μA	-40°C		Fosc = 1 MHz (RC_IDLE mode, INTOSC source)		
		270	497	μA	+25°C	VDD = 3.0V			
		290	497	μA	+85°C				
	All devices	500	930	μA	-40°C				
		520	930	μA	+25°C	Vpp = 5 0V			
		550	930	μA	+85°C	VDD - 0.0V			
	Extended devices only	0.6	2.9	mA	+125°C				
	PIC18LF1230/1330	340	497	μA	-40°C				
		350	497	μA	+25°C	VDD = 2.0V			
		360	497	μA	+85°C				
	PIC18LF1230/1330	520	830	μA	-40°C				
		540	830	μA	+25°C	VDD = 3.0V	FOSC = 4 MHZ		
		580	830	μA	+85°C		INTOSC source)		
	All devices	1.0	1.33	mA	-40°C		,		
		1.1	1.33	mA	+25°C	VDD = 5 0V			
		1.1	1.33	mA	+85°C	VDD - 0.0V			
	Extended devices only	1.1	5.0	mA	+125°C				

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or Vss and all features that add delta current disabled (such as WDT, Timer1 oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or VSS;

 $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.

3: Low-power Timer1 oscillator selected.

4: BOR and LVD enable internal band gap reference. With both modules enabled, current consumption will be less than the sum of both specifications.

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS		
Dimensior	n Limits	MIN	NOM	MAX	
Number of Pins	N 28				
Pitch	е		0.65 BSC		
Overall Height	А	0.80 0.90 1.00			
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.20 REF			
Overall Width	E	6.00 BSC			
Exposed Pad Width	E2	3.65	3.70	4.20	
Overall Length	D		6.00 BSC		
Exposed Pad Length	D2	3.65	3.70	4.20	
Contact Width	b	0.23	0.30	0.35	
Contact Length	L	0.50	0.55	0.70	
Contact-to-Exposed Pad	K	0.20	_	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105B

PIC18F1230/1330

ïmer1111
16-Bit Read/Write Mode114
Associated Registers 115
Interrupt114
Operation112
Oscillator 111, 113
Oscillator Layout Considerations
Overflow Interrupt
TMR1H Register 111
IMR1L Register
Use as a Clock Source
Use as a Real-Time Clock
A/D Conversion 202
A/D Conversion
Asynchronous Transmission 158
Asynchronous Transmission (Back-to-Back) 158
Automatic Baud Rate Calculation 156
Auto-Wake-up Bit (WLIE) During Normal Operation 162
Auto-Wake-up Bit (WUE) During Sleen 162
BRG Overflow Sequence 156
Brown-out Reset (BOR) 289
CLKO and I/O
Clock/Instruction Cvcle
Dead-Time Insertion for Complementary PWM 135
Duty Cycle Update Times in Continuous Up/Down Count
Mode
Duty Cycle Update Times in Continuous Up/Down Count
Mode with Double Updates
Edge-Aligned PWM132
EUSART Synchronous Receive (Master/Slave)291
EUSART Synchronous Transmission (Master/Slave)
291
291 External Clock (All Modes Except PLL)
291 External Clock (All Modes Except PLL)286 Fail-Safe Clock Monitor206
291 External Clock (All Modes Except PLL)
291 External Clock (All Modes Except PLL)
291 External Clock (All Modes Except PLL) 286 Fail-Safe Clock Monitor 206 Low-Voltage Detect Characteristics 283 Low-Voltage Detect Operation 189 Override Bits in Complementary Mode 139
291 External Clock (All Modes Except PLL) 286 Fail-Safe Clock Monitor 206 Low-Voltage Detect Characteristics 283 Low-Voltage Detect Operation 189 Override Bits in Complementary Mode 139 PWM Output Override Example #1 141
291 External Clock (All Modes Except PLL) 286 Fail-Safe Clock Monitor 206 Low-Voltage Detect Characteristics 283 Low-Voltage Detect Operation 189 Override Bits in Complementary Mode 139 PWM Output Override Example #1 141 PWM Output Override Example #2 141
291 External Clock (All Modes Except PLL) 286 Fail-Safe Clock Monitor 206 Low-Voltage Detect Characteristics 283 Low-Voltage Detect Operation 189 Override Bits in Complementary Mode 139 PWM Output Override Example #1 141 PWM Output Override Example #2 141
291 External Clock (All Modes Except PLL) 286 Fail-Safe Clock Monitor 206 Low-Voltage Detect Characteristics 283 Low-Voltage Detect Operation 189 Override Bits in Complementary Mode 139 PWM Output Override Example #1 141 PWM Output Override Example #2 141 PWM Period Buffer Updates in Continuous Up/Down 130 Output Deversion Ladeates in Continuous Up/Down 130
291 External Clock (All Modes Except PLL) 286 Fail-Safe Clock Monitor 206 Low-Voltage Detect Characteristics 283 Low-Voltage Detect Operation 189 Override Bits in Complementary Mode 139 PWM Output Override Example #1 141 PWM Output Override Example #2 141 PWM Period Buffer Updates in Continuous Up/Down 130 PWM Period Buffer Updates in Free-Running Mode 130 PWM Times Description 120
291 External Clock (All Modes Except PLL) 286 Fail-Safe Clock Monitor 206 Low-Voltage Detect Characteristics 283 Low-Voltage Detect Operation 189 Override Bits in Complementary Mode 139 PWM Output Override Example #1 141 PWM Output Override Example #2 141 PWM Period Buffer Updates in Continuous Up/Down 130 PWM Period Buffer Updates in Free-Running Mode 130 PWM Time Base Interrupt (Free-Running Mode) 126 PWM Time Base Interrupt (Free-Running Mode) 126
291 External Clock (All Modes Except PLL) 286 Fail-Safe Clock Monitor 206 Low-Voltage Detect Characteristics 283 Low-Voltage Detect Operation 189 Override Bits in Complementary Mode 139 PWM Output Override Example #1 141 PWM Output Override Example #2 141 PWM Period Buffer Updates in Continuous Up/Down 130 PWM Period Buffer Updates in Free-Running Mode 130 130 PWM Time Base Interrupt (Free-Running Mode) 126 PWM Time Base Interrupt (Single-Shot Mode) 127 DWM Time Case Interrupt (Sangle-Shot Mode) 127
291 External Clock (All Modes Except PLL) 286 Fail-Safe Clock Monitor 206 Low-Voltage Detect Characteristics 283 Low-Voltage Detect Operation 189 Override Bits in Complementary Mode 139 PWM Output Override Example #1 141 PWM Output Override Example #2 141 PWM Period Buffer Updates in Continuous Up/Down 130 PWM Period Buffer Updates in Free-Running Mode 130 130 PWM Time Base Interrupt (Single-Shot Mode) 127 PWM Time Base Interrupt (Scontinuous Up/Down Count 127 PWM Time Base Interrupt (Scontinuous Up/Down Count 127
291 External Clock (All Modes Except PLL) 286 Fail-Safe Clock Monitor 206 Low-Voltage Detect Characteristics 283 Low-Voltage Detect Operation 189 Override Bits in Complementary Mode 139 PWM Output Override Example #1 141 PWM Output Override Example #2 141 PWM Period Buffer Updates in Continuous Up/Down Count Modes 130 PWM Period Buffer Updates in Free-Running Mode 130 130 PWM Time Base Interrupt (Free-Running Mode) 126 PWM Time Base Interrupt (Single-Shot Mode) 127 PWM Time Base Interrupts (Continuous Up/Down Count Mode with Double Updates) 128 BW/M Time Base Interrupts (Continuous Up/Down Count Mode with Double Updates) 128
291 External Clock (All Modes Except PLL) 286 Fail-Safe Clock Monitor 206 Low-Voltage Detect Characteristics 283 Low-Voltage Detect Operation 189 Override Bits in Complementary Mode 139 PWM Output Override Example #1 141 PWM Output Override Example #2 141 PWM Period Buffer Updates in Continuous Up/Down Count Modes 130 PWM Period Buffer Updates in Free-Running Mode 130 130 PWM Time Base Interrupt (Free-Running Mode) 127 PWM Time Base Interrupt (Single-Shot Mode) 127 PWM Time Base Interrupts (Continuous Up/Down Count Mode with Double Updates) 128 PWM Time Base Interrupts (Continuous Up/Down Count Mode) 128
291 External Clock (All Modes Except PLL) 286 Fail-Safe Clock Monitor 206 Low-Voltage Detect Characteristics 283 Low-Voltage Detect Operation 189 Override Bits in Complementary Mode 139 PWM Output Override Example #1 141 PWM Output Override Example #2 141 PWM Period Buffer Updates in Continuous Up/Down Count Modes 130 PWM Period Buffer Updates in Free-Running Mode 130 130 PWM Time Base Interrupt (Free-Running Mode) 126 PWM Time Base Interrupt (Single-Shot Mode) 127 PWM Time Base Interrupts (Continuous Up/Down Count Mode with Double Updates) 128 PWM Time Base Interrupts (Continuous Up/Down Count Mode) 127
291 External Clock (All Modes Except PLL) 286 Fail-Safe Clock Monitor 206 Low-Voltage Detect Characteristics 283 Low-Voltage Detect Operation 189 Override Bits in Complementary Mode 139 PWM Output Override Example #1 141 PWM Output Override Example #2 141 PWM Period Buffer Updates in Continuous Up/Down Count Modes 130 PWM Period Buffer Updates in Free-Running Mode 130 130 PWM Time Base Interrupt (Free-Running Mode) 126 PWM Time Base Interrupt (Single-Shot Mode) 127 PWM Time Base Interrupts (Continuous Up/Down Count Mode with Double Updates) 128 PWM Time Base Interrupts (Continuous Up/Down Count Mode) 127 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST) Power un Timer (PWPT)
291 External Clock (All Modes Except PLL) 286 Fail-Safe Clock Monitor 206 Low-Voltage Detect Characteristics 283 Low-Voltage Detect Operation 189 Override Bits in Complementary Mode 139 PWM Output Override Example #1 141 PWM Output Override Example #2 141 PWM Period Buffer Updates in Continuous Up/Down Count Modes 130 PWM Period Buffer Updates in Free-Running Mode 130 130 PWM Time Base Interrupt (Free-Running Mode) 126 PWM Time Base Interrupt (Single-Shot Mode) 127 PWM Time Base Interrupts (Continuous Up/Down Count Mode with Double Updates) 128 PWM Time Base Interrupts (Continuous Up/Down Count Mode) 127 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) 289 Seend Break Character Sequence 163
291 External Clock (All Modes Except PLL) 286 Fail-Safe Clock Monitor 206 Low-Voltage Detect Characteristics 283 Low-Voltage Detect Operation 189 Override Bits in Complementary Mode 139 PWM Output Override Example #1 141 PWM Output Override Example #2 141 PWM Period Buffer Updates in Continuous Up/Down Count Modes 130 PWM Period Buffer Updates in Free-Running Mode 130 130 PWM Time Base Interrupt (Free-Running Mode) 126 PWM Time Base Interrupt (Continuous Up/Down Count Mode with Double Updates) 128 PWM Time Base Interrupts (Continuous Up/Down Count Mode) 127 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) 289 Send Break Character Sequence 183 Send Break Character Sequence 184
291 External Clock (All Modes Except PLL) 286 Fail-Safe Clock Monitor 206 Low-Voltage Detect Characteristics 283 Low-Voltage Detect Operation 189 Override Bits in Complementary Mode 139 PWM Output Override Example #1 141 PWM Output Override Example #2 141 PWM Period Buffer Updates in Continuous Up/Down 130 PWM Period Buffer Updates in Free-Running Mode 130 130 PWM Time Base Interrupt (Free-Running Mode) 126 PWM Time Base Interrupt (Continuous Up/Down Count 127 PWM Time Base Interrupts (Continuous Up/Down Count 128 PWM Time Base Interrupts (Continuous Up/Down Count 127 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) 289 Send Break Character Sequence 163 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) 45
291 External Clock (All Modes Except PLL) 286 Fail-Safe Clock Monitor 206 Low-Voltage Detect Characteristics 283 Low-Voltage Detect Operation 189 Override Bits in Complementary Mode 139 PWM Output Override Example #1 141 PWM Output Override Example #2 141 PWM Period Buffer Updates in Continuous Up/Down 130 PWM Period Buffer Updates in Free-Running Mode 130 130 PWM Time Base Interrupt (Free-Running Mode) 126 PWM Time Base Interrupt (Continuous Up/Down Count 127 PWM Time Base Interrupts (Continuous Up/Down Count 128 PWM Time Base Interrupts (Continuous Up/Down Count 127 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) 289 Send Break Character Sequence 163 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) 45 Start of Center-Aligned PWM 133
291 External Clock (All Modes Except PLL) 286 Fail-Safe Clock Monitor 206 Low-Voltage Detect Characteristics 283 Low-Voltage Detect Operation 189 Override Bits in Complementary Mode 139 PWM Output Override Example #1 141 PWM Output Override Example #2 141 PWM Period Buffer Updates in Continuous Up/Down 130 PWM Period Buffer Updates in Free-Running Mode 130 130 PWM Time Base Interrupt (Free-Running Mode) 126 PWM Time Base Interrupt (Continuous Up/Down Count 127 PWM Time Base Interrupts (Continuous Up/Down Count 128 PWM Time Base Interrupts (Continuous Up/Down Count 127 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) 289 Send Break Character Sequence 163 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) 45 Start of Center-Aligned PWM 133 Synchronous Reception (Master Mode, SREN) 163
291 External Clock (All Modes Except PLL) 286 Fail-Safe Clock Monitor 206 Low-Voltage Detect Characteristics 283 Low-Voltage Detect Operation 189 Override Bits in Complementary Mode 139 PWM Output Override Example #1 141 PWM Output Override Example #2 141 PWM Period Buffer Updates in Continuous Up/Down 130 PWM Period Buffer Updates in Free-Running Mode 130 130 PWM Time Base Interrupt (Free-Running Mode) 126 PWM Time Base Interrupt (Continuous Up/Down Count 127 PWM Time Base Interrupts (Continuous Up/Down Count 128 PWM Time Base Interrupts (Continuous Up/Down Count 127 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) 289 Send Break Character Sequence 163 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) 45 Start of Center-Aligned PWM 133 Synchronous Reception (Master Mode, SREN) 166
291 External Clock (All Modes Except PLL) 286 Fail-Safe Clock Monitor 206 Low-Voltage Detect Characteristics 283 Low-Voltage Detect Operation 189 Override Bits in Complementary Mode 139 PWM Output Override Example #1 141 PWM Output Override Example #2 141 PWM Period Buffer Updates in Continuous Up/Down Count Modes 130 PWM Period Buffer Updates in Free-Running Mode 130 130 PWM Time Base Interrupt (Free-Running Mode) 126 PWM Time Base Interrupt (Continuous Up/Down Count Mode with Double Updates) 128 PWM Time Base Interrupts (Continuous Up/Down Count Mode) 127 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) 289 Send Break Character Sequence 163 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) 45 Start of Center-Aligned PWM 133 Synchronous Reception (Master Mode, SREN) 164 Synchronous Transmission 164
291 External Clock (All Modes Except PLL) 286 Fail-Safe Clock Monitor 206 Low-Voltage Detect Characteristics 283 Low-Voltage Detect Operation 189 Override Bits in Complementary Mode 139 PWM Output Override Example #1 141 PWM Output Override Example #2 141 PWM Period Buffer Updates in Continuous Up/Down 130 PWM Period Buffer Updates in Free-Running Mode 130 130 PWM Time Base Interrupt (Free-Running Mode) 126 PWM Time Base Interrupt (Continuous Up/Down Count 127 PWM Time Base Interrupts (Continuous Up/Down Count Mode with Double Updates) 128 PWM Time Base Interrupts (Continuous Up/Down Count Mode) 127 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) 289 Send Break Character Sequence 163 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) 45 Start of Center-Aligned PWM 133 Synchronous Reception (Master Mode, SREN) 166 Synchronous Transmission 164 Synchronous Transmission (Through TXEN) 165
291 External Clock (All Modes Except PLL) 286 Fail-Safe Clock Monitor 206 Low-Voltage Detect Characteristics 283 Low-Voltage Detect Operation 189 Override Bits in Complementary Mode 139 PWM Output Override Example #1 141 PWM Output Override Example #2 141 PWM Period Buffer Updates in Continuous Up/Down 130 PWM Period Buffer Updates in Free-Running Mode 130 130 PWM Time Base Interrupt (Free-Running Mode) 126 PWM Time Base Interrupt (Single-Shot Mode) 127 PWM Time Base Interrupts (Continuous Up/Down Count Mode with Double Updates) 128 PWM Time Base Interrupts (Continuous Up/Down Count Mode) 127 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) 289 Send Break Character Sequence 163 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) 45 Start of Center-Aligned PWM 133 Synchronous Reception (Master Mode, SREN) 166 Synchronous Transmission 164 Synchronous Transmission (Through TXEN) 165 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD)
291 External Clock (All Modes Except PLL) 286 Fail-Safe Clock Monitor 206 Low-Voltage Detect Characteristics 283 Low-Voltage Detect Operation 189 Override Bits in Complementary Mode 139 PWM Output Override Example #1 141 PWM Output Override Example #2 141 PWM Period Buffer Updates in Continuous Up/Down 130 PWM Period Buffer Updates in Free-Running Mode 130 130 PWM Time Base Interrupt (Free-Running Mode) 126 PWM Time Base Interrupt (Single-Shot Mode) 127 PWM Time Base Interrupts (Continuous Up/Down Count Mode with Double Updates) 128 PWM Time Base Interrupts (Continuous Up/Down Count Mode) 127 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) 289 Send Break Character Sequence 163 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) 45 Start of Center-Aligned PWM 133 Synchronous Reception (Master Mode, SREN) 166 Synchronous Transmission 164 Synchronous Transmission (Through TXEN) 165 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) 45
291 External Clock (All Modes Except PLL) 286 Fail-Safe Clock Monitor 206 Low-Voltage Detect Characteristics 283 Low-Voltage Detect Operation 189 Override Bits in Complementary Mode 139 PWM Output Override Example #1 141 PWM Output Override Example #2 141 PWM Period Buffer Updates in Continuous Up/Down Count Modes 130 PWM Period Buffer Updates in Free-Running Mode 130 130 PWM Time Base Interrupt (Free-Running Mode) 126 PWM Time Base Interrupt (Single-Shot Mode) 127 PWM Time Base Interrupts (Continuous Up/Down Count Mode with Double Updates) 128 PWM Time Base Interrupts (Continuous Up/Down Count Mode) 127 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) 289 Send Break Character Sequence 163 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) 45 Start of Center-Aligned PWM 133 Synchronous Reception (Master Mode, SREN) 166 Synchronous Transmission (Through TXEN) 165 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) 45
291 External Clock (All Modes Except PLL) 286 Fail-Safe Clock Monitor 206 Low-Voltage Detect Characteristics 283 Low-Voltage Detect Operation 189 Override Bits in Complementary Mode 139 PWM Output Override Example #1 141 PWM Output Override Example #2 141 PWM Period Buffer Updates in Continuous Up/Down Count Modes 130 PWM Period Buffer Updates in Free-Running Mode 130 130 PWM Time Base Interrupt (Free-Running Mode) 126 PWM Time Base Interrupt (Single-Shot Mode) 127 PWM Time Base Interrupts (Continuous Up/Down Count Mode with Double Updates) 128 PWM Time Base Interrupts (Continuous Up/Down Count Mode) 127 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) 289 Send Break Character Sequence 163 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) 45 Start of Center-Aligned PWM 133 Synchronous Reception (Master Mode, SREN) 166 Synchronous Transmission (Through TXEN) 165 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) 45 Time-out Sequence on Power-up
291 External Clock (All Modes Except PLL) 286 Fail-Safe Clock Monitor 206 Low-Voltage Detect Characteristics 283 Low-Voltage Detect Operation 189 Override Bits in Complementary Mode 139 PWM Output Override Example #1 141 PWM Output Override Example #2 141 PWM Period Buffer Updates in Continuous Up/Down Count Modes 130 PWM Period Buffer Updates in Free-Running Mode1 130 PWM Time Base Interrupt (Free-Running Mode) 126 PWM Time Base Interrupt (Single-Shot Mode) 127 PWM Time Base Interrupts (Continuous Up/Down Count Mode with Double Updates) 128 PWM Time Base Interrupts (Continuous Up/Down Count Mode) 127 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) 289 Send Break Character Sequence 163 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) 45 Start of Center-Aligned PWM 133 Synchronous Reception (Master Mode, SREN) 166 Synchronous Transmission (Through TXEN) 165 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) 45 Time-out Sequence on Power-up (M

VDD Rise < TPWRT)
Timer0 and Timer1 External Clock
Transition for Entry to Idle Mode
Transition for Entry to SEC_RUN Mode
Transition for Entry to Sleep Mode 35
Transition for Two-Speed Start-up (INTOSC to HSPLL)
204
Transition for Wake From Idle to Run Mode
Transition for Wake From Sleep (HSPLL)
Transition from RC_RUN Mode to PRI_RUN Mode 34
Transition from SEC_RUN Mode to PRI_RUN Mode
(HSPLL)
Transition to RC_RUN Mode 34
Timing Diagrams and Specifications
CLKO and I/O Requirements
EUSART Synchronous Receive Requirements 291
EUSART Synchronous Transmission Requirements
291
External Clock Requirements
PLL Clock
Reset, Watchdog Timer, Oscillator Start-up Timer, Pow-
er-up Timer and Brown-out Reset Requirements
289
Timer0 and Timer1 External Clock Requirements 290
Top-of-Stack Access
TSTESZ 255
Two-Speed Start-up 191 204
Two-Word Instructions
Example Cases 56
TXSTA Register
BRGH Bit 151
V
Voltage Reference Specifications
W
Watchdog Timer (WDT) 191, 202
Associated Registers 203
Control Register 202
During Oscillator Failure 205
Programming Considerations
WWW Address

WWW, On-Line Support7

Х