

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2014110	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	16
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f1330t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Register	Applicable Devices		Power-on Reset, Brown-out Reset	MCLR Resets, WDT Reset, RESET Instruction, Stack Resets	Wake-up via WDT or Interrupt
SEVTCMPH	1230	1330	0000	0000	uuuu
PWMCON0	1230	1330	-100 -000 (6)	-100 -000 (6)	-uuu -uuu (6)
			-000 -000 (6)	-000 -000 (6)	-uuu -uuu (6)
PWMCON1	1230	1330	0000 0-00	0000 0-00	uuuu u-uu
DTCON	1230	1330	0000 0000	0000 0000	սսսս սսսս
OVDCOND	1230	1330	11 1111	11 1111	uu uuuu
OVDCONS	1230	1330	00 0000	00 0000	uu uuuu
PORTB	1230	1330	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTA	1230	1330	xx0x xxxx ⁽⁵⁾	uu0u uuuu ⁽⁵⁾	uuuu uuuu ⁽⁵⁾

TABLE 5-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 5-3 for Reset value for specific condition.

5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read as '0'.

6: Reset condition of PWMEN bits depends on the PWMPIN Configuration bit of CONFIG3L.

6.1.1 PROGRAM COUNTER

The Program Counter (PC) specifies the address of the instruction to fetch for execution. The PC is 21 bits wide and is contained in three separate 8-bit registers. The low byte, known as the PCL register, is both readable and writable. The high byte, or PCH register, contains the PC<15:8> bits; it is not directly readable or writable. Updates to the PCH register are performed through the PCLATH register. The upper byte is called PCU. This register contains the PC<20:16> bits; it is also not directly readable or writable. Updates to the PCH register. Updates to the PCU register are performed through the PCLATH register contains the PC<20:16> bits; it is also not directly readable or writable. Updates to the PCU register are performed through the PCLATU register.

The contents of PCLATH and PCLATU are transferred to the program counter by any operation that writes to the PCL. Similarly, the upper two bytes of the program counter are transferred to PCLATH and PCLATU by an operation that reads the PCL. This is useful for computed offsets to the PC (see **Section 6.1.4.1 "Computed GOTO"**).

The PC addresses bytes in the program memory. To prevent the PC from becoming misaligned with word instructions, the Least Significant bit of PCL is fixed to a value of '0'. The PC increments by 2 to address sequential instructions in the program memory.

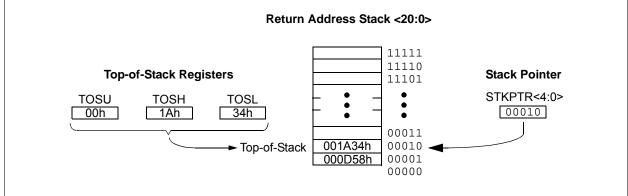
The CALL, RCALL, GOTO and program branch instructions write to the program counter directly. For these instructions, the contents of PCLATH and PCLATU are not transferred to the program counter.

6.1.2 RETURN ADDRESS STACK

The return address stack allows any combination of up to 31 program calls and interrupts to occur. The PC is pushed onto the stack when a CALL or RCALL instruction is executed or an interrupt is Acknowledged. The PC value is pulled off the stack on a RETURN, RETLW or a RETFIE instruction. PCLATU and PCLATH are not affected by any of the RETURN or CALL instructions.

The stack operates as a 31-word by 21-bit RAM and a 5-bit Stack Pointer, STKPTR. The stack space is not part of either program or data space. The Stack Pointer is readable and writable and the address on the top of the stack is readable and writable through the Top-of-Stack Special Function Registers. Data can also be pushed to, or popped from the stack, using these registers.

A CALL type instruction causes a push onto the stack; the Stack Pointer is first incremented and the location pointed to by the Stack Pointer is written with the contents of the PC (already pointing to the instruction following the CALL). A RETURN type instruction causes a pop from the stack; the contents of the location pointed to by the STKPTR are transferred to the PC and then the Stack Pointer is decremented.


The Stack Pointer is initialized to '00000' after all Resets. There is no RAM associated with the location corresponding to a Stack Pointer value of '00000'; this is only a Reset value. Status bits indicate if the stack is full, has overflowed or has underflowed.

6.1.2.1 Top-of-Stack Access

Only the top of the return address stack (TOS) is readable and writable. A set of three registers, TOSU:TOSH:TOSL, hold the contents of the stack location pointed to by the STKPTR register (Figure 6-2). This allows users to implement a software stack if necessary. After a CALL, RCALL or interrupt, the software can read the pushed value by reading the TOSU:TOSH:TOSL registers. These values can be placed on a user-defined software stack. At return time, the software can return these values to TOSU:TOSH:TOSL and do a return.

The user must disable the global interrupt enable bits while accessing the stack to prevent inadvertent stack corruption.

7.0 FLASH PROGRAM MEMORY

The Flash program memory is readable, writable and erasable during normal operation over the entire VDD range.

A read from program memory is executed on one byte at a time. A write to program memory is executed on blocks of 8 bytes at a time. Program memory is erased in blocks of 64 bytes at a time. A bulk erase operation may not be issued from user code.

Writing or erasing program memory will cease instruction fetches until the operation is complete. The program memory cannot be accessed during the write or erase, therefore, code cannot execute. An internal programming timer terminates program memory writes and erases.

A value written to program memory does not need to be a valid instruction. Executing a program memory location that forms an invalid instruction results in a NOP.

7.1 Table Reads and Table Writes

In order to read and write program memory, there are two operations that allow the processor to move bytes between the program memory space and the data RAM:

- Table Read (TBLRD)
- Table Write (TBLWT)

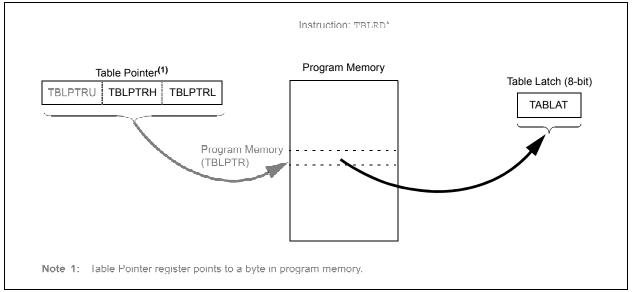

The program memory space is 16 bits wide, while the data RAM space is 8 bits wide. Table reads and table writes move data between these two memory spaces through an 8-bit register (TABLAT).

Table read operations retrieve data from program memory and place it into the data RAM space. Figure 7-1 shows the operation of a table read with program memory and data RAM.

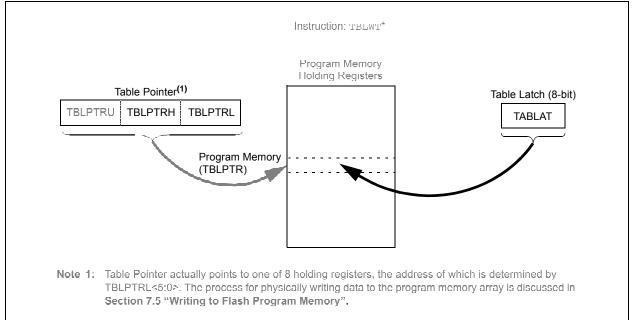

Table write operations store data from the data memory space into holding registers in program memory. The procedure to write the contents of the holding registers into program memory is detailed in **Section 7.5** "**Writing to Flash Program Memory**". Figure 7-2 shows the operation of a table write with program memory and data RAM.

Table operations work with byte entities. A table block containing data, rather than program instructions, is not required to be word-aligned. Therefore, a table block can start and end at any byte address. If a table write is being used to write executable code into program memory, program instructions will need to be word-aligned.

FIGURE 7-1: TABLE READ OPERATION

FIGURE 7-2: TABLE WRITE OPERATION

7.2 Control Registers

Several control registers are used in conjunction with the TBLRD and TBLWT instructions. These include the:

- EECON1 register
- EECON2 register
- TABLAT register
- TBLPTR registers

7.2.1 EECON1 AND EECON2 REGISTERS

The EECON1 register (Register 7-1) is the control register for memory accesses. The EECON2 register is not a physical register; it is used exclusively in the memory write and erase sequences. Reading EECON2 will read all '0's.

The EEPGD control bit determines if the access will be a program or data EEPROM memory access. When clear, any subsequent operations will operate on the data EEPROM memory. When set, any subsequent operations will operate on the program memory.

The CFGS control bit determines if the access will be to the Configuration/Calibration registers or to program memory/data EEPROM memory. When set, subsequent operations will operate on Configuration registers regardless of EEPGD (see **Section 20.0 "Special Features of the CPU"**). When clear, memory selection access is determined by EEPGD. The FREE bit, when set, will allow a program memory erase operation. When FREE is set, the erase operation is initiated on the next WR command. When FREE is clear, only writes are enabled.

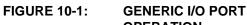
The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear. The WRERR bit is set in hardware when the WR bit is set and cleared when the internal programming timer expires and the write operation is complete.

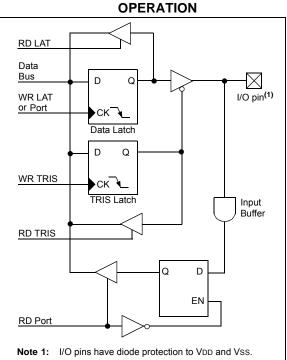
Note:	During normal operation, the WRERR
	may read as '1'. This can indicate that a
	write operation was prematurely termi-
	nated by a Reset, or a write operation was
	attempted improperly.

The WR control bit initiates write operations. The bit cannot be cleared, only set, in software; it is cleared in hardware at the completion of the write operation.

Note: The EEIF interrupt flag bit (PIR2<4>) is set when the write is complete. It must be cleared in software.

10.0 I/O PORTS


Depending on the device selected and features enabled, there are up to five ports available. Some pins of the I/O ports are multiplexed with an alternate function from the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.


Each port has three registers for its operation. These registers are:

- TRIS register (Data Direction register)
- PORT register (reads the levels on the pins of the device)
- LAT register (Output Latch register)

The Output Latch (LAT register) is useful for readmodify-write operations on the value that the I/O pins are driving.

A simplified model of a generic I/O port, without the interfaces to other peripherals, is shown in Figure 10-1.

10.1 PORTA, TRISA and LATA Registers

PORTA is an 8-bit wide, bidirectional port. The corresponding Data Direction register is TRISA. Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin).

Reading the PORTA register reads the status of the pins, whereas writing to it, will write to the port latch.

The Output Latch (LATA) register is also memory mapped. Read-modify-write operations on the LATA register read and write the latched output value for PORTA.

Pins RA6 and RA7 are multiplexed with the main oscillator pins; they are enabled as oscillator or I/O pins by the selection of the main oscillator in the Configuration register (see **Section 20.1 "Configuration Bits"** for details). When they are not used as port pins, RA6 and RA7 and their associated TRIS and LAT bits are read as '0'.

The RA0 pin is multiplexed with one of the analog inputs, one of the external interrupt inputs, one of the interrupt-on-change inputs and one of the analog comparator inputs to become RA0/AN0/INT0/KBI0/CMP0 pin.

The RA1 pin is multiplexed with one of the analog inputs, one of the external interrupt inputs and one of the interrupt-on-change inputs to become RA1/AN1/ INT1/KBI1 pin.

Pins RA2 and RA3 are multiplexed with the Enhanced USART transmission and reception input (see **Section 20.1 "Configuration Bits"** for details).

The RA4 pin is multiplexed with the Timer0 module clock input, one of the analog inputs and the analog VREF+ input to become the RA4/T0CKI/AN2/VREF+ pin.

The Fault detect input for PWM FLTA is multiplexed with pins RA5 and RA7. Its placement is decided by clearing or setting the FLTAMX bit of Configuration Register 3H.

Note: On a Power-on Reset, RA0, RA1, RA4 and RA5 are configured as analog inputs and read as '0'. RA2 and RA3 are configured as digital inputs.

The TRISA register controls the direction of the PORTA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

EXAMPLE 10-1: INITIALIZING PORTA

CLRF	PORTA	; Initialize PORTA by ; clearing output
		; data latches
CLRF	LATA	; Alternate method
		; to clear output
		; data latches
MOVLW	07h	; Configure A/D
MOVWF	ADCON1	; for digital inputs
MOVWF	07h	; Configure comparators
MOVWF	CMCON	; for digital input
MOVLW	OCFh	; Value used to
		; initialize data
		; direction
MOVWF	TRISA	; Set RA<7:6,3:0> as inputs
		; RA<5:4> as outputs

11.5 RCON Register

Γ.

The RCON register contains flag bits which are used to determine the cause of the last Reset or wake-up from Idle or Sleep modes. RCON also contains the IPEN bit which enables interrupt priorities.

The operation of the SBOREN bit and the Reset flag bits is discussed in more detail in **Section 5.1 "RCON Register"**.

REGISTER 11-13: RCON: RESET CONTROL REGISTER

R/W-0	R/W-1 ⁽¹⁾	U-0	R/W-1	R-1	R-1	R/W-0 ⁽²⁾	R/W-0
IPEN	SBOREN	_	RI	TO	PD	POR	BOR
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	IPEN: Interrupt Priority Enable bit 1 = Enable priority levels on interrupts 0 = Disable priority levels on interrupts (PIC16CXXX Compatibility mode)
bit 6	SBOREN: BOR Software Enable bit ⁽¹⁾
	For details of bit operation, see Register 5-1.
bit 5	Unimplemented: Read as '0'
bit 4	RI: RESET Instruction Flag bit
	For details of bit operation, see Register 5-1.
bit 3	TO: Watchdog Time-out Flag bit
	For details of bit operation, see Register 5-1.
bit 2	PD: Power-Down Detection Flag bit
	For details of bit operation, see Register 5-1.
bit 1	POR: Power-on Reset Status bit ⁽²⁾
	For details of bit operation, see Register 5-1.
bit 0	BOR: Brown-out Reset Status bit
	For details of bit operation, see Register 5-1.

- Note 1: If SBOREN is enabled, its Reset state is '1'; otherwise, it is '0'. See Register 5-1 for additional information.
 - 2: The actual Reset value of POR is determined by the type of device Reset. See Register 5-1 for additional information.

		SYNC = 0, BRGH = 0, BRG16 = 0												
BAUD RATE	Fosc = 40.000 MHz			Fosc = 20.000 MHz			Fosc = 10.000 MHz			Fosc = 8.000 MHz				
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)		
0.3	_	_	_	_		_	_	_	_	_	_	_		
1.2	—	—	—	1.221	1.73	255	1.202	0.16	129	1.201	-0.16	103		
2.4	2.441	1.73	255	2.404	0.16	129	2.404	0.16	64	2.403	-0.16	51		
9.6	9.615	0.16	64	9.766	1.73	31	9.766	1.73	15	9.615	-0.16	12		
19.2	19.531	1.73	31	19.531	1.73	15	19.531	1.73	7	_	_	_		
57.6	56.818	-1.36	10	62.500	8.51	4	52.083	-9.58	2	—	_	_		
115.2	125.000	8.51	4	104.167	-9.58	2	78.125	-32.18	1	—	_	_		

		SYNC = 0, BRGH = 0, BRG16 = 0													
BAUD RATE	Fos	c = 4.000	MHz	Fos	c = 2.000	MHz	Fos	Fosc = 1.000 MHz							
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)						
0.3	0.300	0.16	207	0.300	-0.16	103	0.300	-0.16	51						
1.2	1.202	0.16	51	1.201	-0.16	25	1.201	-0.16	12						
2.4	2.404	0.16	25	2.403	-0.16	12	—	_	_						
9.6	8.929	-6.99	6	_	_	_	—	_	_						
19.2	20.833	8.51	2	—	_	_	—	_	_						
57.6	62.500	8.51	0	—	_	_	—	_	_						
115.2	62.500	-45.75	0	_		_	_	—							

		SYNC = 0, BRGH = 1, BRG16 = 0													
BAUD RATE (K)	Fosc = 40.000 MHz			Fosc = 20.000 MHz			Fosc = 10.000 MHz			Fosc = 8.000 MHz					
	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)			
0.3				_	_		_			_	_	_			
1.2	—	_	_	—	_	_	—	_	_	—	_	—			
2.4	—	_	_	—	_	_	2.441	1.73	255	2.403	-0.16	207			
9.6	9.766	1.73	255	9.615	0.16	129	9.615	0.16	64	9.615	-0.16	51			
19.2	19.231	0.16	129	19.231	0.16	64	19.531	1.73	31	19.230	-0.16	25			
57.6	58.140	0.94	42	56.818	-1.36	21	56.818	-1.36	10	55.555	3.55	8			
115.2	113.636	-1.36	21	113.636	-1.36	10	125.000	8.51	4	—	_	_			

		SYNC = 0, BRGH = 1, BRG16 = 0												
BAUD	Foso	c = 4.000	MHz	Fos	c = 2.000	MHz	Fosc = 1.000 MHz							
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)					
0.3	_		_		_	_	0.300	-0.16	207					
1.2	1.202	0.16	207	1.201	-0.16	103	1.201	-0.16	51					
2.4	2.404	0.16	103	2.403	-0.16	51	2.403	-0.16	25					
9.6	9.615	0.16	25	9.615	-0.16	12	_	_	—					
19.2	19.231	0.16	12	_	_	_	_	_	—					
57.6	62.500	8.51	3	—	_	—	—	_	—					
115.2	125.000	8.51	1	—	_	—	—	_	—					

© 2009 Microchip Technology Inc.

16.1 Triggering A/D Conversions

The A/D conversion can be triggered by setting the GO/ DONE bit. This bit can either be set manually by the programmer or by setting the SEVTEN bit of ADCON0. When the SEVTEN bit is set, the Special Event Trigger from the Power Control PWM module triggers the A/D conversion. For more information, see **Section 14.14 "PWM Special Event Trigger"**.

16.2 A/D Acquisition Requirements

For the A/D Converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 16-3. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD). The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 2.5 k Ω . After the analog input channel is

selected (changed), the channel must be sampled for at least the minimum acquisition time before starting a conversion.

Note:	When	the	conversion	is	started,	the
	holding	g capa	acitor is disco	nne	ected from	the
	input p	in.				

To calculate the minimum acquisition time, Equation 16-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

Example 16-3 shows the calculation of the minimum required acquisition time, TACQ. This calculation is based on the following application system assumptions:

CHOLD	=	25 pF
Rs	=	2.5 kΩ
Conversion Error	\leq	1/2 LSb
Vdd	=	$5V \rightarrow Rss = 2 \ k\Omega$
Temperature	=	85°C (system max.)

EQUATION 16-1: ACQUISITION TIME

TACQ = Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient = TAMP + TC + TCOFF

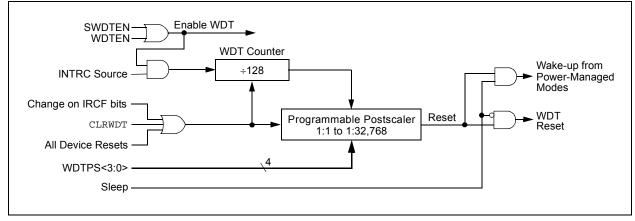
EQUATION 16-2: A/D MINIMUM CHARGING TIME

VHOLD	=	$(\text{VREF} - (\text{VREF}/2048)) \bullet (1 - e^{(-\text{TC/CHOLD}(\text{Ric} + \text{Rss} + \text{Rs}))})$
or		
TC	=	-(CHOLD)(RIC + RSS + RS) ln(1/2048)

EQUATION 16-3: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME

TACQ	=	TAMP + TC + TCOFF
TAMP	=	0.2 μs
TCOFF	=	(Temp – 25°C)(0.02 μs/°C) (85°C – 25°C)(0.02 μs/°C) 1.2 μs
Tempera	ture c	oefficient is only required for temperatures $> 25^{\circ}$ C. Below 25° C, TCOFF = 0 ms.
Тс	=	-(Chold)(Ric + Rss + Rs) $\ln(1/2047)$ -(25 pF) (1 k Ω + 2 k Ω + 2.5 k Ω) $\ln(0.0004883)$ 1.05 µs
TACQ	=	0.2 μs + 1 μs + 1.2 μs 2.4 μs

20.2 Watchdog Timer (WDT)


For PIC18F1230/1330 devices, the WDT is driven by the INTRC source. When the WDT is enabled, the clock source is also enabled. The nominal WDT period is 4 ms and has the same stability as the INTRC oscillator.

The 4 ms period of the WDT is multiplied by a 16-bit postscaler. Any output of the WDT postscaler is selected by a multiplexer, controlled by bits in Configuration Register 2H. Available periods range from 4 ms to 131.072 seconds (2.18 minutes). The WDT and postscaler are cleared when any of the following events occur: a SLEEP or CLRWDT instruction is executed, the IRCF bits (OSCCON<6:4>) are changed or a clock failure has occurred.

- Note 1: The CLRWDT and SLEEP instructions clear the WDT and postscaler counts when executed.
 - 2: Changing the setting of the IRCF bits (OSCCON<6:4>) clears the WDT and postscaler counts.
 - **3:** When a CLRWDT instruction is executed, the postscaler count will be cleared.

20.2.1 CONTROL REGISTER

Register 20-15 shows the WDTCON register. This is a readable and writable register which contains a control bit that allows software to override the WDT enable Configuration bit, but only if the Configuration bit has disabled the WDT.

FIGURE 20-1: WDT BLOCK DIAGRAM

20.5 Program Verification and Code Protection

The overall structure of the code protection on the PIC18 Flash devices differs significantly from other $\text{PIC}^{\textcircled{R}}$ devices.

The user program memory is divided into three blocks. One of these is a Boot Block of variable size (maximum 2 Kbytes). The remainder of the memory is divided into two blocks on binary boundaries. Each of the three blocks has three code protection bits associated with them. They are:

- Code-Protect bit (CPx)
- Write-Protect bit (WRTx)
- External Block Table Read bit (EBTRx)

Figure 20-5 shows the program memory organization for 4 and 8-Kbyte devices and the specific code protection bit associated with each block. The actual locations of the bits are summarized in Table 20-3.

FIGURE 20-5: CODE-PROTECTED PROGRAM MEMORY FOR PIC18F1230/1330

4 Kbytes (PIC18F1230)	IZE/DEVICE 8 Kbytes (PIC18F1330)	Address Range	Block Code Protection Controlled By:
Boot Block		000000h 0003FFh	CPB, WRTB, EBTRB
Block 0	Boot Block	000400h 0007FFh	CP0, WRT0, EBTR0
Block 1	Block 0	000800h 000FFFh	CP1, WRT1, EBTR1
Unimplemented Read '0's	Block 1	001000h 001FFFh	CP2, WRT2, EBTR2
Unimplemented Read '0's	Unimplemented Read '0's	002000h	(Unimplemented Memory Space)
		1FFFFFh	

TABLE 20-3: SUMMARY OF CODE PROTECTION REGISTERS

File	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
300008h	CONFIG5L		_	—	_			CP1	CP0
300009h	CONFIG5H	CPD	CPB	_	_	_	_	_	_
30000Ah	CONFIG6L	—	—	—	_	_	_	WRT1	WRT0
30000Bh	CONFIG6H	WRTD	WRTB	WRTC	_	_	_	—	—
30000Ch	CONFIG7L	—	—	—	_	_	_	EBTR1	EBTR0
30000Dh	CONFIG7H	—	EBTRB	—	_	_	_	_	—

Legend: Shaded cells are unimplemented.

22.0 INSTRUCTION SET SUMMARY

PIC18F1230/1330 devices incorporate the standard set of 75 PIC18 core instructions, as well as an extended set of 8 new instructions for the optimization of code that is recursive or that utilizes a software stack. The extended set is discussed later in this section.

22.1 Standard Instruction Set

The standard PIC18 instruction set adds many enhancements to the previous PIC[®] MCU instruction sets, while maintaining an easy migration from these PIC MCU instruction sets. Most instructions are a single program memory word (16 bits), but there are four instructions that require two program memory locations.

Each single-word instruction is a 16-bit word divided into an opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into four basic categories:

- · Byte-oriented operations
- **Bit-oriented** operations
- · Literal operations
- · Control operations

The PIC18 instruction set summary in Table 22-2 lists **byte-oriented**, **bit-oriented**, **literal** and **control** operations. Table 22-1 shows the opcode field descriptions.

Most byte-oriented instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The destination of the result (specified by 'd')
- 3. The accessed memory (specified by 'a')

The file register designator 'f' specifies which file register is to be used by the instruction. The destination designator 'd' specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the WREG register. If 'd' is one, the result is placed in the file register specified in the instruction.

All bit-oriented instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The bit in the file register (specified by 'b')
- 3. The accessed memory (specified by 'a')

The bit field designator 'b' selects the number of the bit affected by the operation, while the file register designator 'f' represents the number of the file in which the bit is located. The **literal** instructions may use some of the following operands:

- A literal value to be loaded into a file register (specified by 'k')
- The desired FSR register to load the literal value into (specified by 'f')
- No operand required (specified by '—')

The **control** instructions may use some of the following operands:

- A program memory address (specified by 'n')
- The mode of the CALL or RETURN instructions (specified by 's')
- The mode of the table read and table write instructions (specified by 'm')
- No operand required (specified by '—')

All instructions are a single word, except for four double-word instructions. These instructions were made double-word to contain the required information in 32 bits. In the second word, the 4 MSbs are '1's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

All single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles, with the additional instruction cycle(s) executed as a NOP.

The double-word instructions execute in two instruction cycles.

One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true, or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s. Two-word branch instructions (if true) would take 3 μ s.

Figure 22-1 shows the general formats that the instructions can have. All examples use the convention 'nnh' to represent a hexadecimal number.

The Instruction Set Summary, shown in Table 22-2, lists the standard instructions recognized by the Microchip MPASM[™] Assembler.

Section 22.1.1 "Standard Instruction Set" provides a description of each instruction.

PIC18F1230/1330

TABLE 22-2: PIC18FXXXX INSTRUCTION SET

Mnemo	nic,	Description	Quality	16-	Bit Instr	uction W	ord	Status	Neter
Operands		Description	Cycles	MSb			LSb	Affected	Notes
BYTE-ORIE	BYTE-ORIENTED OPERATIONS								
ADDWF	f, d, a	Add WREG and f	1	0010	01da0	ffff	ffff	C, DC, Z, OV, N	1, 2
ADDWFC	f, d, a	Add WREG and Carry bit to f	1	0010	00da	ffff	ffff	C, DC, Z, OV, N	1, 2
ANDWF	f, d, a	AND WREG with f	1	0001	01da	ffff	ffff	Z, N	1,2
CLRF	f, a	Clear f	1	0110	101a	ffff	ffff	Z	2
COMF	f, d, a	Complement f	1	0001	11da	ffff	ffff	Z, N	1, 2
CPFSEQ	f, a	Compare f with WREG, Skip =	1 (2 or 3)	0110	001a	ffff	ffff	None	4
CPFSGT	f, a	Compare f with WREG, Skip >	1 (2 or 3)	0110	010a	ffff	ffff	None	4
CPFSLT	f, a	Compare f with WREG, Skip <	1 (2 or 3)	0110	000a	ffff	ffff	None	1, 2
DECF	f, d, a	Decrement f	1	0000	01da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
DECFSZ	f, d, a	Decrement f, Skip if 0	1 (2 or 3)	0010	11da	ffff	ffff	None	1, 2, 3, 4
DCFSNZ	f, d, a	Decrement f, Skip if Not 0	1 (2 or 3)	0100	11da	ffff	ffff	None	1, 2
INCF	f, d, a	Increment f	1	0010	10da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
INCFSZ	f, d, a	Increment f, Skip if 0	1 (2 or 3)	0011	11da	ffff	ffff	None	4
INFSNZ	f, d, a	Increment f, Skip if Not 0	1 (2 or 3)	0100	10da	ffff	ffff	None	1, 2
IORWF	f, d, a	Inclusive OR WREG with f	1	0001	00da	ffff	ffff	Z, N	1, 2
MOVF	f, d, a	Move f	1	0101	00da	ffff	ffff	Z, N	1
MOVFF	f _s , f _d	Move f _s (source) to 1st word	2	1100	ffff	ffff	ffff	None	
		f _d (destination) 2nd word		1111	ffff	ffff	ffff		
MOVWF	f, a	Move WREG to f	1	0110	111a	ffff	ffff	None	
MULWF	f, a	Multiply WREG with f	1	0000	001a	ffff	ffff	None	1, 2
NEGF	f, a	Negate f	1	0110	110a	ffff	ffff	C, DC, Z, OV, N	
RLCF	f, d, a	Rotate Left f through Carry	1	0011	01da	ffff	ffff	C, Z, N	1, 2
RLNCF	f, d, a	Rotate Left f (No Carry)	1	0100	01da	ffff	ffff	Z, N	
RRCF	f, d, a	Rotate Right f through Carry	1	0011	00da	ffff	ffff	C, Z, N	
RRNCF	f, d, a	Rotate Right f (No Carry)	1	0100	00da	ffff	ffff	Z, N	
SETF	f, a	Set f	1	0110	100a	ffff	ffff	None	1, 2
SUBFWB	f, d, a	Subtract f from WREG with Borrow	1	0101	01da	ffff	ffff	C, DC, Z, OV, N	
SUBWF	f, d, a	Subtract WREG from f	1	0101	11da	ffff	ffff	C, DC, Z, OV, N	1, 2
SUBWFB	f, d, a	Subtract WREG from f with	1	0101	10da	ffff	ffff	C, DC, Z, OV, N	
	, -,	Borrow					_	, _, , _ , _ , _	
SWAPF	f, d, a	Swap Nibbles in f	1	0011	10da	ffff	ffff	None	4
TSTFSZ	f, a	Test f, Skip if 0	1 (2 or 3)	0110	011a	ffff	ffff	None	1, 2
XORWF	f, d, a	Exclusive OR WREG with f	1	0001	10da	ffff	ffff	Z, N	l í

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, 'd' = 1), the prescaler will be cleared if assigned.

3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

PIC18F1230/1330

RRNCF	Rotate Right f (No Carry)								
Syntax:	RRNCF	f {,d {,a}}							
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$								
Operation:	. ,	(f <n>) → dest<n 1="" –="">, (f<0>) → dest<7></n></n>							
Status Affected:	N, Z								
Encoding:	0100	00da	ffff	ffff					
Description:	one bit to t is placed in placed bac If 'a' is '0', selected, c is '1', then per the BS If 'a' is '0' a set is enab in Indexed mode whe Section 2: Bit-Orient	The contents of register 'f' are rotated one bit to the right. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f'. If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' is '1', then the bank will be selected as per the BSR value. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 22.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.							
M/anda.	_								
Words:	1								
Cycles:	1 1								
Cycles: Q Cycle Activity:	1	03							
Cycles: Q Cycle Activity: Q1	1 Q2	Q3 Proces	as 1	Q4 Write to					
Cycles: Q Cycle Activity:	1	Q3 Proces Data		Q4 Write to estination					
Cycles: Q Cycle Activity: Q1	1 Q2 Read register 'f' RRNCF tion = 1101	Proces Data REG, 1, 0111	de	Write to					
Cycles: Q Cycle Activity: Q1 Decode Example 1: Before Instruct REG After Instruction REG	1 Q2 Read register 'f' RRNCF tion = 1101 on	Proces Data REG, 1, 0111 1011	0	Write to					
Cycles: Q Cycle Activity: Q1 Decode Example 1: Before Instruct REG After Instruction REG	1 Q2 Read register 'f' RRNCF tion = 1101 on = 1110 RRNCF	Proces Data REG, 1, 0111 1011	0	Write to					
Cycles: Q Cycle Activity: Q1 Decode Example 1: Before Instructor REG After Instruction REG Example 2:	1 Q2 Read register 'f' RRNCF tion = 1101 m = 1110 RRNCF tion = ? = 1101	Proces Data REG, 1, 0111 1011 REG, 0,	0	Write to					

SETF		Set f								
Syntax:										
Operand	ls:	0 ≤ f ≤ 255 a ∈ [0,1]								
Operatio	on:	$FFh\tof$								
Status A	ffected:	None								
Encodin	g:	0110	100a	ffff	ffff					
Descript	ion:	The conten are set to F If 'a' is '0', t If 'a' is '1', t GPR bank. If 'a' is '0' a set is enab in Indexed mode wher Section 22 Bit-Oriente Literal Offe	Fh. the Access the BSR i und the ex led, this i Literal Of never f ≤ 2.2.3 "By ed Instru	ss Bank i s used to ktended i nstructio ffset Add 95 (5Fh) te-Orien ctions i	s selected. o select the instruction n operates ressing . See ted and n Indexed					
Words:		1								
Cycles:		1								
Q Cycle	e Activity:									
_	Q1	Q2	Q3		Q4					
	Decode	Read register 'f'	Proce Dat		Write register 'f'					

Example:	SETF		REG,	1
Before Instruction	on			
REG	=	5Ah		
After Instruction	I			
REG	=	FFh		

23.2 DC Characteristics: Power-Down and Supply Current PIC18F1230/1330 (Industrial) PIC18LF1230/1330 (Industrial) (Continued)

PIC18LF1 (Indus	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial									
PIC18F12 (Indus	2 30/1330 trial, Extended)	$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$								
Param No.	Device	Тур	Max	าร						
	Supply Current (IDD) ⁽²⁾									
	PIC18LF1230/1330	250	497	μA	-40°C					
		260	497	μA	+25°C	VDD = 2.0V				
		250	497	μA	+85°C					
	PIC18LF1230/1330	550	750	μΑ	-40°C					
		480	750	μA	+25°C	VDD = 3.0V	Fosc = 1 MHz (PRI_RUN ,			
		460	750	μA	+85°C		EC oscillator)			
	All devices	1.2	3	mA	-40°C		,			
		1.1	3	mA	+25°C	VDD = 5.0V				
		1.0	3	mA	+85°C	VDD - 3.0V				
	Extended devices only	1.0	3.0	mA	+125°C					
	PIC18LF1230/1330	0.72	1.93	mA	-40°C					
		0.74	1.93	mA	+25°C	VDD = 2.0V				
		0.74	1.93	mA	+85°C					
	PIC18LF1230/1330	1.3	2.93	mA	-40°C					
		1.3	2.93	mA	+25°C	VDD = 3.0V	Fosc = 4 MHz (PRI_RUN ,			
		1.3	2.93	mA	+85°C		EC oscillator)			
	All devices	2.7	5.93	mA	-40°C		,			
		2.6	5.93	mA	+25°C	VDD = 5.0V				
		2.5	5.93	mA	+85°C	VDD - 0.0V				
	Extended devices only	2.6	7.0	mA	+125°C					
	Extended devices only	8.4	27.7	mA	+125°C	VDD = 4.2V	Fosc = 25 MHz			
		11	27.7	mA	+125°C	VDD = 5.0V	(PRI_RUN , EC oscillator)			
	All devices	15	26	mA	-40°C					
		16	25	mA	+25°C	VDD = 4.2V				
		16	24	mA	+85°C		Fosc = 40 MHz (PRI_RUN ,			
	All devices	21	39.3	mA	-40°C	_	EC oscillator)			
		21	39.3	mA	+25°C	VDD = 5.0V				
		21	39.3	mA	+85°C					

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

- OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or VSS;
- MCLR = VDD; WDT enabled/disabled as specified.
- **3:** Low-power Timer1 oscillator selected.
- 4: BOR and LVD enable internal band gap reference. With both modules enabled, current consumption will be less than the sum of both specifications.

23.2 DC Characteristics: Power-Down and Supply Current PIC18F1230/1330 (Industrial) PIC18LF1230/1330 (Industrial) (Continued)

PIC18LF1 (Indus	1 230/1330 strial)	· · · · · · · · · · · · · · · · · · ·						
PIC18F12 (Indus	2 30/1330 strial, Extended)		$ \begin{array}{ll} \mbox{rd Operating Conditions (unless otherwise stated)} \\ \mbox{ing temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ \mbox{-}40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array} $					
Param No.	Device	Тур	Max	Units		Conditio	ns	
	Supply Current (IDD) ⁽²⁾							
	All devices	7.5	20.3	mA	-40°C			
		7.4	20.3	mA	+25°C	VDD = 4.2V	Fosc = 4 MHz, 16 MHz internal	
		7.3	20.3	mA	+85°C	VDD = 4.2V	(PRI RUN HS+PLL)	
	Extended devices only	8.0	21	mA	+125°C		(****_*********************************	
	All devices	10	20.3	mA	-40°C			
		10	20.3	mA	+25°C	VDD = 5.0V	Fosc = 4 MHz, 16 MHz internal	
		9.7	20.3	mA	+85°C	VDD = 5.0V	(PRI RUN HS+PLL)	
	Extended devices only	10	21	mA	+125°C		· – /	
	All devices	17	40	mA	-40°C		Fosc = 10 MHz,	
		17	40	mA	+25°C	VDD = 4.2V	40 MHz internal	
		17	40	mA	+85°C		(PRI_RUN HS+PLL)	
	All devices	23	40	mA	-40°C		Fosc = 10 MHz,	
		23	40	mA	+25°C	VDD = 5.0V	40 MHz internal	
		23	40	mA	+85°C		(PRI_RUN HS+PLL)	

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or VSS;

MCLR = VDD; WDT enabled/disabled as specified.

3: Low-power Timer1 oscillator selected.

4: BOR and LVD enable internal band gap reference. With both modules enabled, current consumption will be less than the sum of both specifications.

23.3 DC Characteristics: PIC18F1230/1330 (Industrial) PIC18LF1230/1330 (Industrial)

DC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for extended} \end{array}$				
Param No.	Symbol	Characteristic	Min	Мах	Units	Conditions
	VIL	Input Low Voltage				
		I/O ports:				
D030		with TTL buffer	Vss	0.15 Vdd	V	VDD < 4.5V
D030A			—	0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$
D031		with Schmitt Trigger buffer	Vss	0.2 Vdd	V	
D031A		RC3 and RC4	Vss	0.3 Vdd	V	I ² C™ enabled
D031B			Vss	0.8	V	SMBus enabled
D032		MCLR	Vss	0.2 Vdd	V	
D033		OSC1	Vss	0.3 Vdd	V	HS, HSPLL modes
D033A		OSC1	Vss	0.2 Vdd	V	RC, EC modes ⁽¹⁾
D033B		OSC1	Vss	0.3	V	XT, LP modes
D034) (T1CKI	Vss	0.3	V	
	Vih	Input High Voltage				
D040		I/O ports:	0.25 VDD + 0.8V		V	
D040 D040A		with TTL buffer	2.0	Vdd Vdd	V	VDD < 4.5V
D040A		with Cohmitt Trigger buffer	2.0 0.8 VDD	VDD VDD	V V	$4.5V \le VDD \le 5.5V$
D041 D041A		with Schmitt Trigger buffer RC3 and RC4	0.8 VDD 0.7 VDD	VDU VDD	V	I ² C enabled
D041A D041B		RC3 and RC4	2.1	VDD VDD	v	I^2C enabled
		MCLR			Ň	
D042				VDD	V	
D043		OSC1	0.7 VDD	VDD	V	HS, HSPLL modes
D043A D043B		OSC1 OSC1	0.8 Vdd 0.9 Vdd	Vdd Vdd	V V	EC mode RC mode ⁽¹⁾
D043C		OSC1	1.6	VDD	v	XT, LP modes
D044		T1CKI	1.6	Vdd	V	
	lı∟	Input Leakage Current ^(2,3)				
D060		I/O ports	_	±200	nA	Vss < 5.5V Vss \leq VPIN \leq VDD Pin at high-impedance
				±50	nA	Vss < 3V Vss ≤ VPIN ≤ VDD Pin at high-impedance
D061		MCLR	—	±1	μA	$V \textbf{s} \textbf{s} \leq V \text{PIN} \leq V \text{DD}$
D063		OSC1		±1	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$
	IPU	Weak Pull-up Current				
D070	IPURB	PORTB weak pull-up current	50	400	μA	VDD = 5V, VPIN = VSS

Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the PIC[®] device be driven with an external clock while in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

PIC18F1230/1330

NOTES:

Associated Registers, Transmit 165	
Reception166	
Transmission164	
Synchronous Slave Mode167	
Associated Registers, Receive	
Associated Registers, Transmit	
Reception168	
Transmission167	
Extended Instruction Set	
ADDFSR	
ADDULNK	
and Using MPLAB Tools264	
CALLW	
Considerations for Use	
MOVSF259	
MOVSS	
PUSHL	
SUBFSR	
SUBULNK	
Syntax	
External Clock Input	

F

Fail-Safe Clock Monitor	. 191, 205
Exiting Operation	205
Interrupts in Power-Managed Modes	206
POR or Wake From Sleep	206
WDT During Oscillator Failure	205
Fast Register Stack	54
Firmware Instructions	
Flash Program Memory	71
Associated Registers	79
Control Registers	
EECON1 and EECON2	72
TABLAT (Table Latch) Register	74
TBLPTR (Table Pointer) Register	74
Erase Sequence	76
Erasing	76
Operation During Code-Protect	79
Reading	75
Table Pointer	
Boundaries Based on Operation	74
Operations with TBLRD and TBLWT (tabl	
Table Pointer Boundaries	74
Table Reads and Table Writes	71
Write Sequence	77
Writing	
Protection Against Spurious Writes	79
Unexpected Termination	79
Write Verify	79
FSCM. See Fail-Safe Clock Monitor.	

G

Н

Hardware Multiplier	
Introduction	
Operation	85
Performance Comparison	

L

I/O Ports	
ID Locations	191, 210
INCF	236
INCFSZ	237
In-Circuit Debugger	210
In-Circuit Serial Programming (ICSP)	
Independent PWM Mode	101, 210
Duty Cycle Assignment	407
	13/
Output	
Output, Channel Override	138
Indexed Literal Offset Addressing	
and Standard PIC18 Instructions	262
Indexed Literal Offset Mode	262
Indirect Addressing	
INFSNZ	
Initialization Conditions for all Registers	
Instruction Cycle	
Clocking Scheme	55
Flow/Pipelining	55
Instruction Set	215
ADDLW	221
ADDWF	
ADDWF (Indexed Literal Offset Mode)	
ADDWFC	
ANDLW	
ANDWF	223
BC	223
BCF	224
BN	224
BNC	
BNN	
BNOV	
BNZ	226
BOV	
	229
BRA	
BRA BSF	227
BSF	227 227
BSF BSF (Indexed Literal Offset Mode)	227 227 263
BSF BSF (Indexed Literal Offset Mode) BTFSC	227 227 263 228
BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS	227 227 263 228 228
BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG	227 227 263 228 228 229
BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ	227 227 263 228 228 229 230
BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG	227 227 263 228 228 229 230
BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ	227 263 228 228 228 229 230 230
BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL	
BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT	
BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF	
BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF CPFSEQ	
BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF CPFSEQ CPFSGT	
BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF CPFSEQ CPFSET	
BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF CPFSEQ CPFSEQ CPFSGT CPFSLT DAW	
BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG CALL CLRF CLRWDT COMF CPFSEQ CPFSEQ CPFSGT CPFSLT DAW DCFSNZ	
BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF CPFSEQ CPFSEQ CPFSGT CPFSLT DAW	
BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG CALL CLRF CLRWDT COMF CPFSEQ CPFSEQ CPFSGT CPFSLT DAW DCFSNZ	
BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF CPFSEQ CPFSEQ CPFSGT CPFSLT DAW DCFSNZ DECF DECF SZ	
BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF CPFSEQ CPFSEQ CPFSGT CPFSLT DAW DCFSNZ DECF DECF SZ Extended Instruction Set	
BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF CPFSEQ CPFSGT DFSLT DAW DECF DECFSZ Extended Instruction Set General Format	
BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF CPFSEQ CPFSGT CPFSLT DAW DCFSNZ DECF Extended Instruction Set GOTO	
BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF CPFSEQ CPFSGT CPFSLT DAW DCFSNZ DECF Extended Instruction Set GOTO INCF	
BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF COMF CPFSEQ CPFSGT CPFSGT CPFSLT DAW DCFSNZ DECF DECF DECF SZ Extended Instruction Set General Format GOTO INCF INCF	
BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF CPFSEQ CPFSGT CPFSLT DAW DCFSNZ DECF DECFSZ Extended Instruction Set General Format GOTO INCF INCFSZ	
BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF COMF CPFSEQ CPFSGT CPFSGT CPFSLT DAW DCFSNZ DECF DECF DECF SZ Extended Instruction Set General Format GOTO INCF INCF	
BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF CPFSEQ CPFSGT CPFSLT DAW DCFSNZ DECF DECFSZ Extended Instruction Set General Format GOTO INCF INCFSZ	
BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF CPFSEQ CPFSGT CPFSLT DAW DCFSNZ DECF Extended Instruction Set General Format GOTO INCF INCFSZ INFSNZ IORLW IORWF	
BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF CPFSEQ CPFSGT CPFSLT DAW DCFSNZ DECF Extended Instruction Set General Format GOTO INCF INFSNZ IORLW IORWF LFSR	
BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF CPFSEQ CPFSGT CPFSLT DAW DCFSNZ DECF DECFSZ Extended Instruction Set General Format GOTO INCF INCFSZ INCFSNZ IORUW IORWF LFSR MOVF	
BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG BZ CALL CLRF CLRWDT COMF CPFSEQ CPFSGT CPFSLT DAW DCFSNZ DECF Extended Instruction Set General Format GOTO INCF INFSNZ IORLW IORWF LFSR	

PIC18F1230/1330

Postscaler	
Prescaler	125
Single-Shot Mode	125
R	
RAM. See Data Memory.	
RBIF Bit	90
RC Oscillator	23
RCIO Oscillator Mode	23
RC IDLE Mode	

RCIO Oscillator Mode	23
RC_IDLE Mode	37
RC_RUN Mode	33
RCALL	245
RCON Register	
Bit Status During Initialization	46
Reader Response	315
Register File Summary61	-63
Registers	
ADCON0 (A/D Control 0)	169
ADCON1 (A/D Control 1)	170
ADCON2 (A/D Control 2)	171
BAUDCON (Baud Rate Control)	150
CMCON (Comparator Control)	
CONFIG1H (Configuration 1 High)	192
CONFIG2H (Configuration 2 High)	
CONFIG2L (Configuration 2 Low)	193
CONFIG3H (Configuration 3 High)	196
CONFIG3L (Configuration 3 Low)	195
CONFIG4L (Configuration 4 Low)	197
CONFIG5H (Configuration 5 High)	198
CONFIG5L (Configuration 5 Low)	
CONFIG6H (Configuration 6 High)	199
CONFIG6L (Configuration 6 Low)	
CONFIG7H (Configuration 7 High)	200
CONFIG7L (Configuration 7 Low)	
CVRCON (Comparator Voltage Reference Control)	184
DEVID1 (Device ID 1)	
DEVID2 (Device ID 2)	201
DTCON (Dead-Time Control)	
EECON1 (EEPROM Control 1)73	3, 82
FLTCONFIG (Fault Configuration)	143
INTCON (Interrupt Control)	95
INTCON2 (Interrupt Control 2)	96
INTCON3 (Interrupt Control 3)	97
IPR1 (Peripheral Interrupt Priority 1)	102
IPR2 (Peripheral Interrupt Priority 2)	103
IPR3 (Peripheral Interrupt Priority 3)	103
LVDCON (Low-Voltage Detect Control)	
OSCCON (Oscillator Control)	28
OSCTUNE (Oscillator Tuning)	
OVDCOND (Output Override Control)	
OVDCONS (Output State)	
PIE1 (Peripheral Interrupt Enable 1)	
PIE2 (Peripheral Interrupt Enable 2)	
PIE3 (Peripheral Interrupt Enable 3)	101
PIR1 (Peripheral Interrupt Request (Flag) 1)	98
PIR2 (Peripheral Interrupt Request (Flag) 2)	
PIR3 (Peripheral Interrupt Request (Flag) 3)	99
PTCON0 (PWM Timer Control 0)	
PTCON1 (PWM Timer Control 1)	
PWMCON0 (PWM Control 0)	
PWMCON1 (PWM Control 1)	
RCON (Reset Control)40,	
RCSTA (Receive Status and Control)	
STATUS	
STKPTR (Stack Pointer)	53
T0CON (Timer0 Control)	107

T1CON (Timer1 Control)	111
TXSTA (Transmit Status and Control)	
WDTCON (Watchdog Timer Control)	203
RESET	
Reset State of Registers	46
Resets	
Brown-out Reset (BOR)	191
Oscillator Start-up Timer (OST)	191
Power-on Reset (POR)	
Power-up Timer (PWRT)	191
RETFIE	246
RETLW	246
RETURN	247
Return Address Stack	52
Associated Registers	52
Return Stack Pointer (STKPTR)	53
Revision History	303
RLCF	247
RLNCF	248
RRCF	248
RRNCF	249

S

SEC_IDLE Mode	36
SEC_RUN Mode	32
SETF	249
Single-Supply ICSP Programming	210
Single-Supply ICSP Programming.	
SLEEP	250
Sleep	
OSC1 and OSC2 Pin States	29
Software Simulator (MPLAB SIM)	212
Special Features of the CPU	191
Special Function Registers	
Мар	60
Stack Full/Underflow Resets	54
SUBFSR	
SUBFWB	250
SUBLW	251
SUBULNK	
SUBWF	251
SUBWFB	252
SWAPF	252

Т

Table Reads/Table Writes 9 TBLRD 29 TBLWT 29	53 54
Time-out in Various Situations (table)	43
Timer0 10	07
16-Bit Mode Timer Reads and Writes 10	09
Associated Registers 10	09
Clock Source Edge Select (T0SE Bit) 10	09
Clock Source Select (T0CS Bit) 10	09
Interrupt10	09
Operation	09
Prescaler10	09
Switching the Assignment10	09
Prescaler Assignment (PSA Bit)10	09
Prescaler Select (T0PS2:T0PS0 Bits)	09
Prescaler. See Prescaler, Timer0.	

PIC18F1230/1330 PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	X /XX XXX T Temperature Package Pattern Range	Examples: a) PIC18LF1330-I/P 301 = Industrial temp., PDIP package, Extended VDD limits, QTP pattern #301. b) PIC18LF1230-I/SO = Industrial temp., SOIC
Device	PIC18F1230/1330 ⁽¹⁾ PIC18F1230/1330T ⁽²⁾ VDD range 4.2V to 5.5V PIC18LF1230/1330 ⁽¹⁾ PIC18LF1230/1330T ⁽²⁾ VDD range 2.0V to 5.5V	package, Extended VDD limits.
Temperature Range	I = -40° C to $+85^{\circ}$ C (Industrial) E = -40° C to $+125^{\circ}$ C (Extended)	
Package	SO=Plastic Small Outline (SOIC)SS=Plastic Shrink Small Outline (SSOP)P=Plastic Dual In-line (PDIP)ML=Plastic Quad Flat No Lead (QFN)	Note 1:F=Standard Voltage RangeLF=Wide Voltage Range2:T=in tape and reel
Pattern	QTP, SQTP, Code or Special Requirements (blank otherwise)	