

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	16
Program Memory Size	4KB (2K x 16)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf1230-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC18F1230/1330

Register	Applicable Devices		Power-on Reset, Brown-out Reset	MCLR Resets, WDT Reset, RESET Instruction, Stack Resets	Wake-up via WDT or Interrupt
INDF2	1230	1330	N/A	N/A	N/A
POSTINC2	1230	1330	N/A	N/A	N/A
POSTDEC2	1230	1330	N/A	N/A	N/A
PREINC2	1230	1330	N/A	N/A	N/A
PLUSW2	1230	1330	N/A	N/A	N/A
FSR2H	1230	1330	0000	0000	uuuu
FSR2L	1230	1330	xxxx xxxx	uuuu uuuu	uuuu uuuu
STATUS	1230	1330	x xxxx	u uuuu	u uuuu
TMR0H	1230	1330	0000 0000	0000 0000	uuuu uuuu
TMR0L	1230	1330	xxxx xxxx	uuuu uuuu	uuuu uuuu
TOCON	1230	1330	1111 1111	1111 1111	นนนน นนนน
OSCCON	1230	1330	0100 q000 0100 q000		uuuu uuqu
LVDCON	1230	1330	00 010100 0101		uu uuuu
WDTCON	1230	1330	0	0	u
RCON ⁽⁴⁾	1230	1330	0q-1 11q0	0q-q qquu	uq-u qquu
TMR1H	1230	1330	XXXX XXXX	uuuu uuuu	uuuu uuuu
TMR1L	1230	1330	xxxx xxxx	սսսս սսսս	uuuu uuuu
T1CON	1230	1330	0000 0000	u0uu uuuu	uuuu uuuu
ADRESH	1230	1330	XXXX XXXX	uuuu uuuu	uuuu uuuu
ADRESL	1230	1330	xxxx xxxx	uuuu uuuu	uuuu uuuu
ADCON0	1230	1330	0 0000	0 0000	u uuuu
ADCON1	1230	1330	0 1111	0 1111	u uuuu
ADCON2	1230	1330	0-00 0000	0-00 0000	u-uu uuuu
BAUDCON	1230	1330	01-00 0-00	01-00 0-00	uu-uu u-uu
CVRCON	1230	1330	0-00 0000	0-00 0000	u-uu uuuu
CMCON	1230	1330	000000	000000	uuuuuu
SPBRGH	1230	1330	0000 0000	0000 0000	นนนน นนนน
SPBRG	1230	1330	0000 0000	0000 0000	นนนน นนนน
RCREG	1230	1330	0000 0000 0000 0000 C		นนนน นนนน
TXREG	1230	1330	0000 0000	0000 0000	นนนน นนนน
TXSTA	1230	1330	0000 0010	0000 0010	นนนน นนนน
RCSTA	1230	1330	0000 000x	0000 000x	นนนน นนนน

TABLE 5-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

- **2:** When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).
- **3:** When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.
- 4: See Table 5-3 for Reset value for specific condition.
- **5:** Bits 6 and 7 of PORTA, LATA and TRISA are enabled depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read as '0'.
- 6: Reset condition of PWMEN bits depends on the PWMPIN Configuration bit of CONFIG3L.

6.1.2.4 Stack Full and Underflow Resets

Device Resets on stack overflow and stack underflow conditions are enabled by setting the STVREN bit in Configuration Register 4L. When STVREN is set, a full or underflow will set the appropriate STKFUL or STKUNF bit and then cause a device Reset. When STVREN is cleared, a full or underflow condition will set the appropriate STKFUL or STKUNF bit but not cause a device Reset. The STKFUL or STKUNF bit is cleared by the user software or a Power-on Reset.

6.1.3 FAST REGISTER STACK

A Fast Register Stack is provided for the STATUS, WREG and BSR registers, to provide a "fast return" option for interrupts. The stack for each register is only one level deep and is neither readable nor writable. It is loaded with the current value of the corresponding register when the processor vectors for an interrupt. All interrupt sources will push values into the Stack registers. The values in the registers are then loaded back into their associated registers if the RETFIE, FAST instruction is used to return from the interrupt.

If both low and high-priority interrupts are enabled, the Stack registers cannot be used reliably to return from low-priority interrupts. If a high-priority interrupt occurs while servicing a low-priority interrupt, the Stack register values stored by the low-priority interrupt will be overwritten. In these cases, users must save the key registers in software during a low-priority interrupt.

If interrupt priority is not used, all interrupts may use the Fast Register Stack for returns from interrupt. If no interrupts are used, the Fast Register Stack can be used to restore the STATUS, WREG and BSR registers at the end of a subroutine call. To use the Fast Register Stack for a subroutine call, a CALL label, FAST instruction must be executed to save the STATUS, WREG and BSR registers to the Fast Register Stack. A RETURN, FAST instruction is then executed to restore these registers from the Fast Register Stack.

Example 6-1 shows a source code example that uses the Fast Register Stack during a subroutine call and return.

EXAMPLE 6-1: FAST REGISTER STACK CODE EXAMPLE

CALL	SUB1, FAST •	;STATUS, WREG, BSR ;SAVED IN FAST REGISTER ;STACK
SUB1	• • RETURN, FAST	RESTORE VALUES SAVED
		;IN FAST REGISTER STACK

6.1.4 LOOK-UP TABLES IN PROGRAM MEMORY

There may be programming situations that require the creation of data structures, or look-up tables, in program memory. For PIC18 devices, look-up tables can be implemented in two ways:

- Computed GOTO
- Table Reads

6.1.4.1 Computed GOTO

A computed GOTO is accomplished by adding an offset to the program counter. An example is shown in Example 6-2.

A look-up table can be formed with an ADDWF PCL instruction and a group of RETLW nn instructions. The W register is loaded with an offset into the table before executing a call to that table. The first instruction of the called routine is the ADDWF PCL instruction. The next instruction executed will be one of the RETLW nn instructions that returns the value 'nn' to the calling function.

The offset value (in WREG) specifies the number of bytes that the program counter should advance and should be multiples of 2 (LSb = 0).

In this method, only one data byte may be stored in each instruction location and room on the return address stack is required.

EXAMPLE 6-2: COMPUTED GOTO USING AN OFFSET VALUE

	MOVF	OFFSET,	W
ORG	nn00h	IADUB	
TABLE	ADDWF	PCL	
	RETLW	nnh	
	RETLW	nnh	
	RETLW	nnh	
	•		
	•		

6.1.4.2 Table Reads and Table Writes

A better method of storing data in program memory allows two bytes of data to be stored in each instruction location.

Look-up table data may be stored two bytes per program word by using table reads and writes. The Table Pointer (TBLPTR) register specifies the byte address and the Table Latch (TABLAT) register contains the data that is read from or written to program memory. Data is transferred to or from program memory one byte at a time.

Table read and table write operations are discussed further in Section 7.1 "Table Reads and Table Writes".

6.2.3 INSTRUCTIONS IN PROGRAM MEMORY

The program memory is addressed in bytes. Instructions are stored as two bytes or four bytes in program memory. The Least Significant Byte of an instruction word is always stored in a program memory location with an even address (LSb = 0). To maintain alignment with instruction boundaries, the PC increments in steps of 2 and the LSb will always read '0' (see Section 6.1.1 "Program Counter").

Figure 6-4 shows an example of how instruction words are stored in the program memory.

The CALL and GOTO instructions have the absolute program memory address embedded into the instruction. Since instructions are always stored on word boundaries, the data contained in the instruction is a word address. The word address is written to PC<20:1>, which accesses the desired byte address in program memory. Instruction #2 in Figure 6-4 shows how the instruction, GOTO 0006h, is encoded in the program memory. Program branch instructions, which encode a relative address offset, operate in the same manner. The offset value stored in a branch instruction represents the number of single-word instructions that the PC will be offset by. Section 22.0 "Instruction Set Summary" provides further details of the instruction set.

1100KL 0-4.		KUCHU					
							Word Address
					LSB = 1	LSB = 0	\downarrow
		Program M	lemory				000000h
		Byte Locat	ions \rightarrow				000002h
							000004h
							000006h
	Instruction 1:	MOVLW	055h		0Fh	55h	000008h
	Instruction 2:	GOTO	0006h		EFh	03h	00000Ah
					F0h	00h	00000Ch
	Instruction 3:	MOVFF	123h,	456h	C1h	23h	00000Eh
					F4h	56h	000010h
							000012h
							000014h
							000014h

FIGURE 6-4: INSTRUCTIONS IN PROGRAM MEMORY

6.2.4 TWO-WORD INSTRUCTIONS

The standard PIC18 instruction set has four two-word instructions: CALL, MOVFF, GOTO and LSFR. In all cases, the second word of the instructions always has '1111' as its four Most Significant bits; the other 12 bits are literal data, usually a data memory address.

The use of '1111' in the 4 MSbs of an instruction specifies a special form of NOP. If the instruction is executed in proper sequence – immediately after the first word – the data in the second word is accessed

and used by the instruction sequence. If the first word is skipped for some reason and the second word is executed by itself, a NOP is executed instead. This is necessary for cases when the two-word instruction is preceded by a conditional instruction that changes the PC. Example 6-4 shows how this works.

Note:	See Section 6.6 "PIC18 Instruction
	Execution and the Extended Instruc-
	tion Set" for information on two-word
	instructions in the extended instruction set.

EXAMPLE 6-4: TV	VO-WORD IN	ISTRUCTIONS
-----------------	------------	-------------

CASE 1:								
Object Code	Source Code							
0110 0110 0000 0000	TSTFSZ REG1	; is RAM location 0?						
1100 0001 0010 0011	MOVFF REG1, REG2	; No, skip this word						
1111 0100 0101 0110		; Execute this word as a NOP						
0010 0100 0000 0000	ADDWF REG3	; continue code						
CASE 2:	CASE 2:							
Object Code	Source Code							
0110 0110 0000 0000	TSTFSZ REG1	; is RAM location 0?						
1100 0001 0010 0011	MOVFF REG1, REG2	; Yes, execute this word						
1111 0100 0101 0110		; 2nd word of instruction						
0010 0100 0000 0000	ADDWF REG3	; continue code						

7.2.2 TABLAT – TABLE LATCH REGISTER

The Table Latch (TABLAT) is an 8-bit register mapped into the SFR space. The Table Latch register is used to hold 8-bit data during data transfers between program memory and data RAM.

7.2.3 TBLPTR – TABLE POINTER REGISTER

The Table Pointer (TBLPTR) register addresses a byte within the program memory. The TBLPTR is comprised of three SFR registers: Table Pointer Upper Byte, Table Pointer High Byte and Table Pointer Low Byte (TBLPTRU:TBLPTRH:TBLPTRL). These three registers join to form a 22-bit wide pointer. The low-order 21 bits allow the device to address up to 2 Mbytes of program memory space. The 22nd bit allows access to the device ID, the user ID and the Configuration bits.

The Table Pointer register, TBLPTR, is used by the TBLRD and TBLWT instructions. These instructions can update the TBLPTR in one of four ways based on the table operation. These operations are shown in Table 7-1. These operations on the TBLPTR only affect the low-order 21 bits.

7.2.4 TABLE POINTER BOUNDARIES

TBLPTR is used in reads, writes and erases of the Flash program memory.

When a TBLRD is executed, all 22 bits of the TBLPTR determine which byte is read from program memory into TABLAT.

When the timed write to program memory begins (via the WR bit), the 19 MSbs of the TBLPTR (TBLPTR<21:3>) determine which program memory block of 8 bytes is written to. The Table Pointer register's three LSBs (TBLPTR<2:0>) are ignored. For more detail, see Section 7.5 "Writing to Flash Program Memory".

When an erase of program memory is executed, the 16 MSbs of the Table Pointer register (TBLPTR<21:6>) point to the 64-byte block that will be erased. The Least Significant bits (TBLPTR<5:0>) are ignored.

Figure 7-3 describes the relevant boundaries of TBLPTR based on Flash program memory operations.

TABLE 7-1:	TABLE POINTER OPERATIONS WITH TBLRD AND TBLWT INSTRUCTIONS
------------	--

Example	Operation on Table Pointer
TBLRD* TBLWT*	TBLPTR is not modified
TBLRD*+ TBLWT*+	TBLPTR is incremented after the read/write
TBLRD*- TBLWT*-	TBLPTR is decremented after the read/write
TBLRD+* TBLWT+*	TBLPTR is incremented before the read/write

FIGURE 7-3: TABLE POINTER BOUNDARIES BASED ON OPERATION

EXAMPLE 7-3: WRITING TO FLASH PROGRAM MEMORY (CONTINUED)

PROGRAM_MEMOR	Y				
	BSF	EECON1,	EEPGD	;	point to Flash program memory
	BCF	EECON1,	CFGS	;	access Flash program memory
	BSF	EECON1,	WREN	;	enable write to memory
	BCF	INTCON,	GIE	;	disable interrupts
	MOVLW	55h			
Required	MOVWF	EECON2		;	write 55h
Sequence	MOVLW	0AAh			
	MOVWF	EECON2		;	write OAAh
	BSF	EECON1,	WR	;	start program (CPU stall)
	BSF	INTCON,	GIE	;	re-enable interrupts
	BCF	EECON1,	WREN	;	disable write to memory

7.5.2 WRITE VERIFY

Depending on the application, good programming practice may dictate that the value written to the memory should be verified against the original value. This should be used in applications where excessive writes can stress bits near the specification limit.

7.5.3 UNEXPECTED TERMINATION OF WRITE OPERATION

If a write is terminated by an unplanned event, such as loss of power or an unexpected Reset, the memory location just programmed should be verified and reprogrammed, if needed. If the write operation is interrupted by a MCLR Reset or a WDT Time-out Reset during normal operation, the user can check the WRERR bit and rewrite the location(s) as needed.

7.5.4 PROTECTION AGAINST SPURIOUS WRITES

To protect against spurious writes to Flash program memory, the write initiate sequence must also be followed. See **Section 20.0** "**Special Features of the CPU**" for more detail.

7.6 Flash Program Operation During Code Protection

See Section 20.5 "Program Verification and Code Protection" for details on code protection of Flash program memory.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
TBLPTRU	—	—	bit 21	Program Mer	mory Table Po	ointer Upper B	yte (TBLPTR·	<20:16>)	47
TBPLTRH	Program Mer	mory Table Po	inter High	Byte (TBLPT	R<15:8>)				47
TBLPTRL	Program Memory Table Pointer Low Byte (TBLPTR<7:0>)								
TABLAT	Program Mer	mory Table La	tch						47
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	47
EECON2	EEPROM Control Register 2 (not a physical register)								49
EECON1	EEPGD	CFGS	_	FREE	WRERR	WREN	WR	RD	49
IPR2	OSCFIP	—	_	EEIP	_	LVDIP	—	—	49
PIR2	OSCFIF	_	_	EEIF	_	LVDIF	—	—	49
PIE2	OSCFIE	_	—	EEIE	_	LVDIE	—	—	49

TABLE 7-2: REGISTERS ASSOCIATED WITH PROGRAM FLASH MEMORY

Legend: — = unimplemented, read as '0'. Shaded cells are not used during Flash/EEPROM access.

14.0 POWER CONTROL PWM MODULE

The Power Control PWM module simplifies the task of generating multiple, synchronized Pulse-Width Modulated (PWM) outputs for use in the control of motor controllers and power conversion applications. In particular, the following power and motion control applications are supported by the PWM module:

- Three-Phase and Single-Phase AC Induction Motors
- Switched Reluctance Motors
- Brushless DC (BLDC) Motors
- Uninterruptible Power Supplies (UPS)
- Multiple DC Brush Motors

The PWM module has the following features:

- Up to six PWM I/O pins with three duty cycle generators. Pins can be paired to acquire a complete half-bridge control.
- Up to 14-bit resolution, depending upon the PWM period.
- "On-the-fly" PWM frequency changes.
- Edge and Center-Aligned Output modes.
- · Single-Pulse Generation mode.
- Programmable dead-time control between paired PWMs.
- Interrupt support for asymmetrical updates in Center-Aligned mode.
- Output override for Electrically Commutated Motor (ECM) operation; for example, BLDC.
- Special Event Trigger comparator for triggering A/D conversion.
- PWM outputs disable feature sets PWM outputs to their inactive state when in Debug mode.

The Power Control PWM module supports three PWM generators and six output channels on PIC18F1230/ 1330 devices. A simplified block diagram of the module is shown in Figure 14-1. Figure 14-2 and Figure 14-3 show how the module hardware is configured for each PWM output pair for the Complementary and Independent Output modes.

Each functional unit of the PWM module will be discussed in subsequent sections.

			DA(4(1))	11.0		D /// 0	D/// 0	
0-0				0-0	R/W-U	R/W-U	R/W-U	
	PWMEN2	PWMEN1	PWMEN0		PMOD2	PMOD1	PMOD0	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown	
bit 7	bit 7 Unimplemented: Read as '0'							
bit 6-4	PWMEN2:PV	VMENO: PWN	1 Module Enal	ble bits ⁽¹⁾				
	111 = All odd	PWM I/O pins	enabled for F	WM output				
	110 = PWM1	, PWM3 pins e	nabled for PW	/M output				
	10x = All PW	M I/O pins ena	bled for PWM	output				
	011 = PWM0	, PWM1, PWM	2 and PWM3	I/O pins enabl	ed for PWM out	put		
	010 = PVVM0	and PWM1 pil	is enabled for	PWM output				
	001 = PWMI	nodule disable	d: all PWM I/C) nins are den	eral nurnose I/O			
hit 3		ted: Read as '	∩'	phile are gen				
bit 2.0	DMOD2-DMC		∪ put Dair Mada	bito				
DIL 2-0				; DIIS				
	1 = PWM I/O) nin nair (PWN	10 PWM1) is i	in the Indepen	dent mode			
	0 = PWM I/O) pin pair (PWN	10, PWM1) is i	in the Complei	mentary mode			
	For PMOD1:		. ,		5			
	1 = PWM I/O pin pair (PWM2, PWM3) is in the Independent mode							
0 = PWM I/O pin pair (PWM2, PWM3) is in the Complementary mode								
	For PMOD2:							
	1 = PWM I/O	pin pair (PWN	14, PWM5) is i	in the Indepen	dent mode			
	0 = PWM I/O pin pair (PWM4, PWM5) is in the Complementary mode							

REGISTER 14-3: PWMCON0: PWM CONTROL REGISTER 0

Note 1: Reset condition of PWMEN bits depends on the PWMPIN Configuration bit of CONFIG3L.

15.1.3 AUTO-BAUD RATE DETECT

The Enhanced USART module supports the automatic detection and calibration of baud rate. This feature is active only in Asynchronous mode and while the WUE bit is clear.

The automatic baud rate measurement sequence (Figure 15-1) begins whenever a Start bit is received and the ABDEN bit is set. The calculation is self-averaging.

In the Auto-Baud Rate Detect (ABD) mode, the clock to the BRG is reversed. Rather than the BRG clocking the incoming RX signal, the RX signal is timing the BRG. In ABD mode, the internal Baud Rate Generator is used as a counter to time the bit period of the incoming serial byte stream.

Once the ABDEN bit is set, the state machine will clear the BRG and look for a Start bit. The Auto-Baud Rate Detect must receive a byte with the value 55h (ASCII "U", which is also the LIN/J2602 bus Sync character) in order to calculate the proper bit rate. The measurement is taken over both a low and a high bit time in order to minimize any effects caused by asymmetry of the incoming signal. After a Start bit, the SPBRG begins counting up, using the preselected clock source on the first rising edge of RX. After eight bits on the RX pin or the fifth rising edge, an accumulated value totalling the proper BRG period is left in the SPBRGH:SPBRG register pair. Once the 5th edge is seen (this should correspond to the Stop bit), the ABDEN bit is automatically cleared.

If a rollover of the BRG occurs (an overflow from FFFFh to 0000h), the event is trapped by the ABDOVF status bit (BAUDCON<7>). It is set in hardware by BRG rollovers and can be set or cleared by the user in software. ABD mode remains active after rollover events and the ABDEN bit remains set (Figure 15-2).

While calibrating the baud rate period, the BRG registers are clocked at 1/8th the preconfigured clock rate. Note that the BRG clock can be configured by the BRG16 and BRGH bits. The BRG16 bit must be set to use both SPBRG1 and SPBRGH1 as a 16-bit counter. This allows the user to verify that no carry occurred for 8-bit modes by checking for 00h in the SPBRGH register. Refer to Table 15-4 for counter clock rates to the BRG.

While the ABD sequence takes place, the EUSART state machine is held in Idle. The RCIF interrupt is set once the fifth rising edge on RX is detected. The value in the RCREG needs to be read to clear the RCIF interrupt. The contents of RCREG should be discarded.

- Note 1: If the WUE bit is set with the ABDEN bit, Auto-Baud Rate Detection will occur on the byte *following* the Break character.
 - 2: It is up to the user to determine that the incoming character baud rate is within the range of the selected BRG clock source. Some combinations of oscillator frequency and EUSART baud rates are not possible due to bit error rates. Overall system timing and communication baud rates must be taken into consideration when using the Auto-Baud Rate Detection feature.
 - 3: To maximize baud rate range, it is recommended to set the BRG16 bit if the autobaud feature is used.

TABLE 15-4:BRG COUNTERCLOCK RATES

BRG16	BRGH	BRG Counter Clock
0	0	Fosc/512
0	1	Fosc/128
1	0	Fosc/128
1	1	Fosc/32

15.1.3.1 ABD and EUSART Transmission

Since the BRG clock is reversed during ABD acquisition, the EUSART transmitter cannot be used during ABD. This means that whenever the ABDEN bit is set, TXREG cannot be written to. Users should also ensure that ABDEN does not become set during a transmit sequence. Failing to do this may result in unpredictable EUSART operation.

16.1 Triggering A/D Conversions

The A/D conversion can be triggered by setting the GO/ DONE bit. This bit can either be set manually by the programmer or by setting the SEVTEN bit of ADCON0. When the SEVTEN bit is set, the Special Event Trigger from the Power Control PWM module triggers the A/D conversion. For more information, see **Section 14.14 "PWM Special Event Trigger"**.

16.2 A/D Acquisition Requirements

For the A/D Converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 16-3. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD). The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 2.5 k Ω . After the analog input channel is

selected (changed), the channel must be sampled for at least the minimum acquisition time before starting a conversion.

Note:	When	the	conversion	is	started,	the
	holding	capa	acitor is disco	nne	ected from	the
	input pi	in.				

To calculate the minimum acquisition time, Equation 16-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

Example 16-3 shows the calculation of the minimum required acquisition time, TACQ. This calculation is based on the following application system assumptions:

CHOLD	=	25 pF
Rs	=	2.5 kΩ
Conversion Error	\leq	1/2 LSb
Vdd	=	$5V \rightarrow Rss = 2 k\Omega$
Temperature	=	85°C (system max.)

EQUATION 16-1: ACQUISITION TIME

TACQ = Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient = TAMP + TC + TCOFF

EQUATION 16-2: A/D MINIMUM CHARGING TIME

VH	OLD	=	$(\text{VREF} - (\text{VREF}/2048)) \bullet (1 - e^{(-\text{TC/CHOLD}(\text{Ric} + \text{Rss} + \text{Rs}))})$
or			
TC		=	-(Chold)(Ric + Rss + Rs) ln(1/2048)

EQUATION 16-3: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME

TACQ	=	TAMP + TC + TCOFF
TAMP	=	0.2 μs
TCOFF	=	(Temp – 25°C)(0.02 μs/°C) (85°C – 25°C)(0.02 μs/°C) 1.2 μs
Tempera	ture c	befficient is only required for temperatures $> 25^{\circ}$ C. Below 25° C, TCOFF = 0 ms.
ТС	=	-(Chold)(Ric + Rss + Rs) $\ln(1/2047)$ -(25 pF) (1 k Ω + 2 k Ω + 2.5 k Ω) $\ln(0.0004883)$ 1.05 µs
TACQ	=	0.2 μs + 1 μs + 1.2 μs 2.4 μs

19.0 LOW-VOLTAGE DETECT (LVD)

PIC18F1230/1330 devices have a Low-Voltage Detect module (LVD). This is a programmable circuit that allows the user to specify the device voltage trip point. If the device experiences an excursion past the trip point, an interrupt flag is set. If the interrupt is enabled, the program execution will branch to the interrupt vector address and the software can then respond to the interrupt. The Low-Voltage Detect Control register (Register 19-1) completely controls the operation of the LVD module. This allows the circuitry to be "turned off" by the user under software control, which minimizes the current consumption for the device.

The block diagram for the LVD module is shown in Figure 19-1.

REGISTER 19-1: LVDCON: LOW-VOLTAGE DETECT CONTROL REGISTER

U-0	U-0	R-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1
—	—	IRVST	LVDEN	LVDL3 ⁽¹⁾	LVDL2 ⁽¹⁾	LVDL1 ⁽¹⁾	LVDL0 ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	Unimplemented: Read as 10 [°]
bit 5	IRVST: Internal Reference Voltage Stable Flag bit
	1 = Indicates that the voltage detect logic will generate the interrupt flag at the specified voltage trip point
	 Indicates that the voltage detect logic will not generate the interrupt flag at the specified voltage trip point and the LVD interrupt should not be enabled
bit 4	LVDEN: Low-Voltage Detect Power Enable bit
	1 = LVD enabled
	0 = LVD disabled
bit 3-0	LVDL3:LVDL0: Voltage Detection Limit bits ⁽¹⁾
	1111 = Reserved
	1110 = Maximum setting
	•
	•
	0000 = Minimum setting
N	

Note 1: See Table 23-4 in Section 23.0 "Electrical Characteristics" for the specifications.

. .. - .

.. .

. . .

PIC18F1230/1330

REGISTER 20-1: CONFIG1H: CONFIGURATION REGISTER 1 HIGH (BYTE ADDRESS 300001h)

R/P-0	R/P-0	U-0	U-0	R/P-0	R/P-1	R/P-1	R/P-1
IESO	FCMEN	—	_	FOSC3	FOSC2	FOSC1	FOSC0
bit 7							bit 0
Legend:							
R = Readable bit P = Programmable bit U = Unimplemented bit, read as '0'							
-n = Value when device is unprogrammed				u = Unchang	ed from progran	nmed state	
bit 7 IESO: Internal/External Oscillator Switchover bit 1 = Oscillator Switchover mode enabled 0 = Oscillator Switchover mode disabled							
bit 6	FCMEN: Fail-Safe Clock Monitor Enable bit 1 = Fail-Safe Clock Monitor enabled 0 = Fail-Safe Clock Monitor disabled						
bit 5-4	Unimplemen	ted: Read as '	כ'				
bit 3-0	FOSC3:FOS	C0: Oscillator S	election bits				
	 FOSC3: FOSC0: Oscillator Selection bits 11xx = External RC oscillator, CLKO function on RA6 101x = External RC oscillator, CLKO function on RA6 1001 = Internal oscillator block, CLKO function on RA6, port function on RA7 1000 = Internal oscillator block, port function on RA6 and RA7 0111 = External RC oscillator, port function on RA6 0100 = HS oscillator, PLL enabled (Clock Frequency = 4 x FOSC1) 0101 = EC oscillator, port function on RA6 0100 = EC oscillator, CLKO function on RA6 0011 = External RC oscillator, CLKO function on RA6 0100 = EC oscillator, CLKO function on RA6 0011 = External RC oscillator, CLKO function on RA6 0011 = External RC oscillator, CLKO function on RA6 0011 = External RC oscillator, CLKO function on RA6 0010 = HS oscillator 0010 = HS oscillator 0010 = HS oscillator 						

TABLE 22-1: OPCODE FIELD DESCRIPTIONS

Field	Description
a	RAM access bit
	a = 0: RAM location in Access RAM (BSR register is ignored)
	a = 1: RAM bank is specified by BSR register
bbb	Bit address within an 8-bit file register (0 to 7).
BSR	Bank Select Register. Used to select the current RAM bank.
C, DC, Z, OV, N	ALU Status bits: Carry, Digit Carry, Zero, Overflow, Negative.
d	d = 0; store result in WREG
	d = 0: store result in file register f
dest	Destination: either the WREG register or the specified register file location.
f	8-bit Register file address (00h to FFh) or 2-bit FSR designator (0h to 3h).
f	12-bit Register file address (000h to FFFh). This is the source address.
fd	12-bit Register file address (000h to FFFh). This is the destination address.
GIE	Global Interrupt Enable bit.
k	Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value).
label	Label name.
mm	The mode of the TBLPTR register for the table read and table write instructions.
	Only used with table read and table write instructions:
*	No change to register (such as TBLPTR with table reads and writes)
*+	Post-Increment register (such as TBLPTR with table reads and writes)
*_	Post-Decrement register (such as TBLPTR with table reads and writes)
+*	Pre-Increment register (such as TBLPTR with table reads and writes)
n	The relative address (2's complement number) for relative branch instructions or the direct address for
	Call/Branch and Return instructions.
PC	Program Counter.
PCL	Program Counter Low Byte.
PCH	Program Counter High Byte.
PCLATH	Program Counter High Byte Latch.
PCLATU	Program Counter Upper Byte Latch.
PD	Power-Down bit.
PRODH	Product of Multiply High Byte.
PRODL	Product of Multiply Low Byte.
S	Fast Gall/Return mode select bit
	s = 0. do not update into/nom shadow registers (Fast mode)
TBLPTR	21-bit Table Pointer (points to a program memory location).
TABLAT	8-bit Table Latch.
TO	Time-out bit
TOS	Top-of-Stack.
u	Unused or unchanged.
WDT	Watchdog Timer.
WREG	Working register (accumulator).
x	Don't care ('0' or '1'). The assembler will generate code with $x = 0$. It is the recommended form of use for
	compatibility with all Microchip software tools.
zs	7-bit offset value for indirect addressing of register files (source).
zd	7-bit offset value for indirect addressing of register files (destination).
{ }	Optional argument.
[text]	Indicates an indexed address.
(text)	The contents of text.
[expr] <n></n>	Specifies bit n of the register indicated by the pointer expr.
\rightarrow	Assigned to.
< >	Register bit field.
E	In the set of.
italics	User-defined term (font is Courier New).

PIC18F1230/1330

SUB	LW	S	Subtract W from Literal					
Synta	ax:	S	UBLW	k				
Oper	ands:	0	$\leq k \leq 2$	55				
Oper	ation:	k	$k-(W)\toW$					
Statu	s Affected:	Ν	N, OV, C, DC, Z					
Encoding:			0000	1000	kk}	ĸk	kkkk	
Description		V	W is subtracted from the eight-bit literal 'k'. The result is placed in W.					
Word	ls:	1						
Cycle	es:	1						
QC	ycle Activity:							
Q1			Q2	Q3			Q4	
	Decode	l lit	Read eral 'k'	Proce Data	:SS a	W	rite to W	
Exan	nple 1:	S	UBLW	02h				
	Before Instruc W C After Instructio W C Z N	tion = on = = = =	01h ? 01h 1 ; 0	result is p	ositiv	е		
Exan	nple 2:	S	SUBLW 02h					
	Before Instruc W C After Instructic W C Z N	tion = = n = = =	02h ? 00h 1 ; 1	result is z	ero			
Exan	nple 3:	S	UBLW	02h				
	Before Instruc W C After Instructic W C Z N	tion = = n = = =	03h ? FFh 0 1	; (2's comp ; result is r	bleme negati	nt) ve		

SUB	WF		Subtract W from f						
Synta	ax:		SUBWF f {,d {,a}}						
Operands:			$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$						
Operation:			(f) – (W) —	→ dest				
Statu	s Affected:		N, OV, 0	C, I	DC, Z				
Encoding:			0101		11da fff	f ffff			
Description:			Subtract W from register 'f' (2's complement method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 22.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details						
Words:			1						
Cycles:			1						
Q Cycle Activity:									
	Q1		Q2		Q3	Q4			
	Decode		Read	,	Process	Write to			
		Γ	egister t		Data	destination			
Exan	nple 1:		SUBWF		REG, 1, 0				
	Before Instruc REG W C	tior = = =	1 3 2 ?						
	After Instructio	n_	1						
	W	=	2		rocult in positiv	10			
	Z	=	0	,	result is positiv	/e			
Even	N anio 2:	=	0		DEG 0 0				
Exan	<u>lipie z.</u> Refore Instruc	tior	SUBWF		REG, U, U				
	REG W C	=	2 2 ?						
After Instruction REG = W =		on = = =	2 0 1		result is zero				
	Z	=	1	,					
IN =		U		PFG 1 0					
	Before Instruc	tior	ואססט		REG, 1, 0				
	REG W C	= = =	1 2 ?						
	After Instructio	n =	FEh	•7	2's compleme	nt)			
	W	=	2	,(
	Z	=	0	;	result is negati	ve			
	N	=	1						

22.2.2 EXTENDED INSTRUCTION SET

ADD	DFSR	Add Lite	Add Literal to FSR						
Synta	ax:	ADDFSR	ADDFSR f, k						
Oper	ands:	$0 \le k \le 63$	$0 \le k \le 63$						
		f ∈ [0, 1,	2]						
Oper	ation:	FSR(f) + I	$c \rightarrow FSR($	f)					
Statu	is Affected:	None							
Enco	oding:	1110	1000	ffkk	kkkk				
Desc	cription:	The 6-bit contents of	The 6-bit literal 'k' is added to the contents of the FSR specified by 'f'.						
Word	ls:	1	1						
Cycle	es:	1	1						
QC	ycle Activity:								
	Q1	Q2	Q3		Q4				
	Decode	Read	Process		Write to				
		literal 'k'	Data	FSR					
Exan	nple:	ADDFSR 2	, 23h						
Before Instruction FSR2 = 03FFh									
	After Instructio	n							

0422h

FSR2 =

Enco	ding:	1110	1000	11kk	kkkk
Desc	ription:	The 6-b contents execute TOS. The inst execute second This ma case of f = 3 (bi FSR2.	it literal ' s of FSR d by load rruction t ; a NOP i cycle. y be tho the ADD nary '11'	k' is added to 2. A RETURN ding the PC v akes two cyc s performed ught of as a s FSR instructio); it operates	o the is then vith the les to during the special on, where only on
Word	ls:	1			
Cycle	es:	2			
Q Cy	cle Activity:				
	Q1	Q	2	Q3	Q4
	Decode	Rea litera	ad II 'k'	Process Data	Write to FSR
	No	N	C	No	No

ADDULNK k

FSR2 + k \rightarrow FSR2, $(TOS) \rightarrow PC$

 $0 \leq k \leq 63$

None

Add Literal to FSR2 and Return

Decode	Read	Process	Write to
	literal 'k'	Data	FSR
No	No	No	No
Operation	Operation	Operation	Operation

Example: ADDULNK 23h

ADDULNK

Syntax:

Operands:

Operation:

Status Affected:

Before Instru	ction	
FSR2	=	03FFh
PC	=	0100h
After Instructi	on	
FSR2	=	0422h
PC	=	(TOS)

Note: All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in symbolic addressing. If a label is used, the instruction syntax then becomes: {label} instruction argument(s).

23.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings^(†)

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD and MCLR)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss	-0.3V to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0V to +13.25V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	
Maximum current into VDD pin	250 mA
Input clamp current, Iık (VI < 0 or VI > VDD)	±20 mA
Output clamp current, Iok (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by any I/O pin	
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by all ports	
Maximum current sourced by all ports	

Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD $-\sum$ IOH} + \sum {(VDD - VOH) x IOH} + \sum (VOL x IOL)

2: Voltage spikes below Vss at the MCLR/VPP/RA5/FLTA pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR/ VPP/RA5/FLTA pin, rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

23.2 DC Characteristics: Power-Down and Supply Current PIC18F1230/1330 (Industrial) PIC18LF1230/1330 (Industrial) (Continued)

PIC18LF1 (Indus	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial								
PIC18F1230/1330 (Industrial, Extended)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended							
Param No.	Device	Тур	Max	Units	Conditions				
	Supply Current (IDD) ⁽²⁾								
	PIC18LF1230/1330	0.8	1.83	mA	-40°C				
		0.8	1.83	mA	+25°C	VDD = 2.0V			
		0.8	1.83	mA	+85°C				
	PIC18LF1230/1330	1.3	2.93	mA	-40°C	Vdd = 3.0V	Fosc = 4 MHz (RC_RUN mode, INTOSC source)		
		1.3	2.93	mA	+25°C				
		1.3	2.93	mA	+85°C				
	All devices	2.5	4.73	mA	-40°C				
		2.5	4.73	mA	+25°C	VDD = 5 0V			
		2.5	4.73	mA	+85°C	100 0.01			
	Extended devices only	2.5	10.0	mA	+125°C				
	PIC18LF1230/1330	2.9	7.6	μΑ	-40°C				
		3.1	7.6	μΑ	+25°C	VDD = 2.0V			
		3.6	10.6	μA	+85°C				
	PIC18LF1230/1330	4.5	10.6	μΑ	-40°C				
		4.8	10.6	μA	+25°C	VDD = 3.0V	(RC IDI F mode		
		5.8	14.6	μΑ	+85°C		INTRC source)		
	All devices	9.2	15.6	μA	-40°C				
		9.8	15.6	μΑ	+25°C	VDD = 5.0V			
		11.4	35.6	μΑ	+85°C				
	Extended devices only	21	179	μA	+125°C				

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or VSS;

MCLR = VDD; WDT enabled/disabled as specified.

3: Low-power Timer1 oscillator selected.

4: BOR and LVD enable internal band gap reference. With both modules enabled, current consumption will be less than the sum of both specifications.

23.2 DC Characteristics: Power-Down and Supply Current PIC18F1230/1330 (Industrial) PIC18LF1230/1330 (Industrial) (Continued)

PIC18LF1 (Indus	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial								
PIC18F1230/1330 (Industrial, Extended)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended							
Param No.	Device	Тур	Max	Units	Conditions				
	Supply Current (IDD) ⁽²⁾								
	PIC18LF1230/1330	165	347	μA	-40°C				
		175	347	μA	+25°C	VDD = 2.0V			
		190	347	μA	+85°C				
	PIC18LF1230/1330	250	497	μA	-40°C	VDD = 3.0V	Fosc = 1 MHz (RC_IDLE mode, INTOSC source)		
		270	497	μA	+25°C				
		290	497	μA	+85°C				
	All devices	500	930	μA	-40°C				
		520	930	μA	+25°C	Vpp = 5 0V			
		550	930	μA	+85°C	VDD - 0.0V			
	Extended devices only	0.6	2.9	mA	+125°C				
	PIC18LF1230/1330	340	497	μA	-40°C				
		350	497	μA	+25°C	VDD = 2.0V			
		360	497	μA	+85°C				
	PIC18LF1230/1330	520	830	μΑ	-40°C				
		540	830	μA	+25°C	VDD = 3.0V	FOSC = 4 MHZ		
-		580	830	μΑ	+85°C		INTOSC source)		
	All devices	1.0	1.33	mA	-40°C		,		
		1.1	1.33	mA	+25°C	VDD = 5 0V			
		1.1	1.33	mA	+85°C	VDD - 0.0V			
	Extended devices only	1.1	5.0	mA	+125°C				

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or Vss and all features that add delta current disabled (such as WDT, Timer1 oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or VSS;

 $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.

3: Low-power Timer1 oscillator selected.

4: BOR and LVD enable internal band gap reference. With both modules enabled, current consumption will be less than the sum of both specifications.

23.2 DC Characteristics: Power-Down and Supply Current PIC18F1230/1330 (Industrial) PIC18LF1230/1330 (Industrial) (Continued)

PIC18LF1 (Indus	230/1330 trial)	Standa Operat	ted) strial					
PIC18F12 (Indus	$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$							
Param No.	Device	Тур	Max	Units	Conditions			
	Module Differential Currer	nts (∆lw	от, ∆ івс	dr, ∆Ilv	D, Δ IOSCB, Δ IAD)			
D026	A/D Converter	1.0	1.6	μA	-40°C to +85°C	VDD = 2.0V		
(∆IAD)		1.0	1.6	μA	-40°C to +85°C	VDD = 3.0V	A/D on not converting	
		1.0	1.6	μA	-40°C to +85°C	$V_{DD} = 5.0V$	Arb on, not converting	
		2.0	7.6	μA	-40°C to +125°C	vuu – 5.0v		

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or VSS;

MCLR = VDD; WDT enabled/disabled as specified.

3: Low-power Timer1 oscillator selected.

4: BOR and LVD enable internal band gap reference. With both modules enabled, current consumption will be less than the sum of both specifications.

PIC18F1230/1330

125
125
125
90
23
23

RCIO Oscillator Mode	23
RC_IDLE Mode	37
RC_RUN Mode	33
RCALL	245
RCON Register	
Bit Status During Initialization	46
Reader Response	315
Register File Summary61	-63
Registers	
ADCON0 (A/D Control 0)	169
ADCON1 (A/D Control 1)	170
ADCON2 (A/D Control 2)	171
BAUDCON (Baud Rate Control)	150
CMCON (Comparator Control)	179
CONFIG1H (Configuration 1 High)	192
CONFIG2H (Configuration 2 High)	194
CONFIG2L (Configuration 2 Low)	193
CONFIG3H (Configuration 3 High)	196
CONFIG3L (Configuration 3 Low)	195
CONFIG4L (Configuration 4 Low)	197
CONFIG5H (Configuration 5 High)	198
CONFIG5L (Configuration 5 Low)	198
CONFIG6H (Configuration 6 High)	199
CONFIG6L (Configuration 6 Low)	199
CONFIG7H (Configuration 7 High)	200
CONFIG7L (Configuration 7 Low)	200
CVRCON (Comparator Voltage Reference Control)	184
DEVID1 (Device ID 1)	201
DEVID2 (Device ID 2)	201
DTCON (Dead-Time Control)	136
EECON1 (EEPROM Control 1)73	3, 82
FLTCONFIG (Fault Configuration)	143
INTCON (Interrupt Control)	95
INTCON2 (Interrupt Control 2)	96
INTCON3 (Interrupt Control 3)	97
IPR1 (Peripheral Interrupt Priority 1)	102
IPR2 (Peripheral Interrupt Priority 2)	103
IPR3 (Peripheral Interrupt Priority 3)	103
LVDCON (Low-Voltage Detect Control)	187
OSCCON (Oscillator Control)	28
OSCTUNE (Oscillator Tuning)	25
OVDCOND (Output Override Control)	140
OVDCONS (Output State)	140
PIE1 (Peripheral Interrupt Enable 1)	100
PIE2 (Peripheral Interrupt Enable 2)	101
PIE3 (Peripheral Interrupt Enable 3)	101
PIR1 (Peripheral Interrupt Request (Flag) 1)	98
PIR2 (Peripheral Interrupt Request (Flag) 2)	99
PIR3 (Peripheral Interrupt Request (Flag) 3)	99
PTCON0 (PWM Timer Control 0)	122
PTCON1 (PWM Timer Control 1)	122
PWMCON0 (PWM Control 0)	123
PWMCON1 (PWM Control 1)	124
RCON (Reset Control)40,	104
RCSTA (Receive Status and Control)	149
STATUS	64
STKPTR (Stack Pointer)	53
T0CON (Timer0 Control)	107

T1CON (Timer1 Control)	111
TXSTA (Transmit Status and Control)	148
WDTCON (Watchdog Timer Control)	203
RESET	245
Reset State of Registers	46
Resets	. 39, 191
Brown-out Reset (BOR)	191
Oscillator Start-up Timer (OST)	191
Power-on Reset (POR)	191
Power-up Timer (PWRT)	191
RETFIE	246
RETLW	246
RETURN	247
Return Address Stack	52
Associated Registers	52
Return Stack Pointer (STKPTR)	53
Revision History	303
RLCF	247
RLNCF	248
RRCF	248
RRNCF	249

S

SEC_IDLE Mode	36
SEC_RUN Mode	32
SETF	249
Single-Supply ICSP Programming	210
Single-Supply ICSP Programming.	
SLEEP	250
Sleep	
OSC1 and OSC2 Pin States	29
Software Simulator (MPLAB SIM)	212
Special Features of the CPU	191
Special Function Registers	
Мар	60
Stack Full/Underflow Resets	54
SUBFSR	
SUBFWB	250
SUBLW	251
SUBULNK	
SUBWF	251
SUBWFB	252
SWAPF	252

Т

Table Reads/Table Writes 9 TBLRD 25 TBLWT 25	54 53 54
Time-out in Various Situations (table)	43
Timer0 10	07
16-Bit Mode Timer Reads and Writes 10	09
Associated Registers 10	09
Clock Source Edge Select (T0SE Bit) 10	09
Clock Source Select (T0CS Bit) 10	09
Interrupt10	09
Operation	09
Prescaler	09
Switching the Assignment10	09
Prescaler Assignment (PSA Bit) 10	09
Prescaler Select (T0PS2:T0PS0 Bits) 10	09
Prescaler. See Prescaler, Timer0.	

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo, IN Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4080

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-6578-300 Fax: 886-3-6578-370

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

03/26/09