

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	16
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf1330-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-2:CAPACITOR SELECTION FOR
CRYSTAL OSCILLATOR

Osc Type	Crystal	Typical Capa Tes	acitor Values ted:	
	Fieq	C1	C2	
LP	32 kHz	30 pF	30 pF	
XT	1 MHz 4 MHz	15 pF 15 pF	15 pF 15 pF	
HS	4 MHz 10 MHz 20 MHz 25 MHz	15 pF 15 pF 15 pF 15 pF	15 pF 15 pF 15 pF 15 pF	

Capacitor values are for design guidance only.

Different capacitor values may be required to produce acceptable oscillator operation. The user should test the performance of the oscillator over the expected VDD and temperature range for the application.

See the notes following this table for additional information.

- **Note 1:** Higher capacitance increases the stability of the oscillator but also increases the start-up time.
 - When operating below 3V VDD, or when using certain ceramic resonators at any voltage, it may be necessary to use the HS mode or switch to a crystal oscillator.
 - 3: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.
 - Rs may be required to avoid overdriving crystals with low drive level specification.
 - 5: Always verify oscillator performance over the VDD and temperature range that is expected for the application.

An external clock source may also be connected to the OSC1 pin in the HS mode, as shown in Figure 3-2.

3.3 External Clock Input

The EC and ECIO Oscillator modes require an external clock source to be connected to the OSC1 pin. There is no oscillator start-up time required after a Power-on Reset or after an exit from Sleep mode.

In the EC Oscillator mode, the oscillator frequency divided by 4 is available on the OSC2 pin. This signal may be used for test purposes or to synchronize other logic. Figure 3-3 shows the pin connections for the EC Oscillator mode.

EXTERNAL CLOCK INPUT OPERATION (EC CONFIGURATION)

The ECIO Oscillator mode functions like the EC mode, except that the OSC2 pin becomes an additional general purpose I/O pin. The I/O pin becomes bit 6 of PORTA (RA6). Figure 3-4 shows the pin connections for the ECIO Oscillator mode.

FIGURE 3-4:

EXTERNAL CLOCK INPUT OPERATION (ECIO CONFIGURATION)

4.1.3 CLOCK TRANSITIONS AND STATUS INDICATORS

The length of the transition between clock sources is the sum of two cycles of the old clock source and three to four cycles of the new clock source. This formula assumes that the new clock source is stable.

Three bits indicate the current clock source and its status. They are:

- OSTS (OSCCON<3>)
- IOFS (OSCCON<2>)
- T1RUN (T1CON<6>)

In general, only one of these bits will be set while in a given power-managed mode. When the OSTS bit is set, the primary clock is providing the device clock. When the IOFS bit is set, the INTOSC output is providing a stable 8 MHz clock source to a divider that actually drives the device clock. When the T1RUN bit is set, the Timer1 oscillator is providing the clock. If none of these bits are set, then either the INTRC clock source is clocking the device, or the INTOSC source is not yet stable.

If the internal oscillator block is configured as the primary clock source by the FOSC3:FOSC0 Configuration bits, then both the OSTS and IOFS bits may be set when in PRI_RUN or PRI_IDLE modes. This indicates that the primary clock (INTOSC output) is generating a stable 8 MHz output. Entering another power-managed RC mode at the same frequency would clear the OSTS bit.

- Note 1: Caution should be used when modifying a single IRCF bit. If VDD is less than 3V, it is possible to select a higher clock speed than is supported by the low VDD. Improper device operation may result if the VDD/FOSC specifications are violated.
 - 2: Executing a SLEEP instruction does not necessarily place the device into Sleep mode. It acts as the trigger to place the controller into either the Sleep mode or one of the Idle modes, depending on the setting of the IDLEN bit.

4.1.4 MULTIPLE SLEEP COMMANDS

The power-managed mode that is invoked with the SLEEP instruction is determined by the setting of the IDLEN bit at the time the instruction is executed. If another SLEEP instruction is executed, the device will enter the power-managed mode specified by IDLEN at that time. If IDLEN has changed, the device will enter the new power-managed mode specified by the new setting.

4.2 Run Modes

In the Run modes, clocks to both the core and peripherals are active. The difference between these modes is the clock source.

4.2.1 PRI_RUN MODE

The PRI_RUN mode is the normal, full power execution mode of the microcontroller. This is also the default mode upon a device Reset unless Two-Speed Start-up is enabled (see **Section 20.3 "Two-Speed Start-up"** for details). In this mode, the OSTS bit is set. The IOFS bit may be set if the internal oscillator block is the primary clock source (see **Section 3.7.1 "Oscillator Control Register"**).

4.2.2 SEC_RUN MODE

The SEC_RUN mode is the compatible mode to the "clock switching" feature offered in other PIC18 devices. In this mode, the CPU and peripherals are clocked from the Timer1 oscillator. This gives users the option of lower power consumption while still using a high accuracy clock source.

SEC_RUN mode is entered by setting the SCS1:SCS0 bits to '01'. The device clock source is switched to the Timer1 oscillator (see Figure 4-1), the primary oscillator is shut down, the T1RUN bit (T1CON<6>) is set and the OSTS bit is cleared.

Note: The Timer1 oscillator should already be running prior to entering SEC_RUN mode. If the T1OSCEN bit is not set when the SCS1:SCS0 bits are set to '01', entry to SEC_RUN mode will not occur. If the Timer1 oscillator is enabled, but not yet running, device clocks will be delayed until the oscillator has started. In such situations, initial oscillator operation is far from stable and unpredictable operation may result.

On transitions from SEC_RUN to PRI_RUN mode, the peripherals and CPU continue to be clocked from the Timer1 oscillator while the primary clock is started. When the primary clock becomes ready, a clock switch back to the primary clock occurs (see Figure 4-2). When the clock switch is complete, the T1RUN bit is cleared, the OSTS bit is set and the primary clock is providing the clock. The IDLEN and SCS bits are not affected by the wake-up; the Timer1 oscillator continues to run.

4.5.4 EXIT WITHOUT AN OSCILLATOR START-UP DELAY

Certain exits from power-managed modes do not invoke the OST at all. There are two cases:

- PRI_IDLE mode, where the primary clock source is not stopped; and
- the primary clock source is not any of the LP, XT, HS or HSPLL modes.

In these instances, the primary clock source either does not require an oscillator start-up delay since it is already running (PRI_IDLE), or normally does not require an oscillator start-up delay (RC, EC and INTIO Oscillator modes). However, a fixed delay of interval TCSD following the wake event is still required when leaving Sleep and Idle modes to allow the CPU to prepare for execution. Instruction execution resumes on the first clock cycle following this delay.

TABLE 4-2:EXIT DELAY ON WAKE-UP BY RESET FROM SLEEP MODE OR ANY IDLE MODE
(BY CLOCK SOURCES)

Clock Source before Wake-up	Clock Source after Wake-up	Exit Delay	Clock Ready Status Bit (OSCCON)	
	LP, XT, HS			
Primary Device Clock	HSPLL	тоор(1)	OSTS	
(PRI_IDLE mode)	EC, RC			
	INTOSC ⁽²⁾		IOFS	
	LP, XT, HS	Tost ⁽³⁾		
71000	HSPLL	Tost + t _{rc} (3)	OSTS	
HOSE	EC, RC	TCSD ⁽¹⁾		
	INTOSC ⁽¹⁾	TIOBST ⁽⁴⁾	IOFS	
	LP, XT, HS	Tost ⁽⁴⁾		
	HSPLL	Tost + t _{rc} ⁽³⁾	OSTS	
	EC, RC	TCSD ⁽¹⁾		
	INTOSC ⁽¹⁾	None	IOFS	
	LP, XT, HS	Tost ⁽³⁾		
None	HSPLL	Tost + t _{rc} (3)	OSTS	
(Sleep mode)	EC, RC	TCSD ⁽¹⁾]	
	INTOSC ⁽¹⁾	TIOBST ⁽⁴⁾	IOFS	

Note 1: TCSD (parameter 38) is a required delay when waking from Sleep and all Idle modes and runs concurrently with any other required delays (see Section 4.4 "Idle Modes"). On Reset, INTOSC defaults to 1 MHz.

2: Includes both the INTOSC 8 MHz source and postscaler derived frequencies.

3: TOST is the Oscillator Start-up Timer (parameter 32). t_{rc} is the PLL Lock-out Timer (parameter F12); it is also designated as TPLL.

4: Execution continues during TIOBST (parameter 39), the INTOSC stabilization period.

FIGURE 5-7: TIME-OUT SEQUENCE ON POR W/PLL ENABLED (MCLR TIED TO VDD)

6.3.2 ACCESS BANK

While the use of the BSR with an embedded 8-bit address allows users to address the entire range of data memory, it also means that the user must always ensure that the correct bank is selected. Otherwise, data may be read from or written to the wrong location. This can be disastrous if a GPR is the intended target of an operation, but an SFR is written to instead. Verifying and/or changing the BSR for each read or write to data memory can become very inefficient.

To streamline access for the most commonly used data memory locations, the data memory is configured with an Access Bank, which allows users to access a mapped block of memory without specifying a BSR. The Access Bank consists of the first 128 bytes of memory (00h-7Fh) in Bank 0 and the last 128 bytes of memory (80h-FFh) in Block 15. The lower half is known as the "Access RAM" and is composed of GPRs. The upper half is where the device's SFRs are mapped. These two areas are mapped contiguously in the Access Bank and can be addressed in a linear fashion by an 8-bit address (Figure 6-5).

The Access Bank is used by core PIC18 instructions that include the Access RAM bit (the 'a' parameter in the instruction). When 'a' is equal to '1', the instruction uses the BSR and the 8-bit address included in the opcode for the data memory address. When 'a' is '0',

however, the instruction is forced to use the Access Bank address map; the current value of the BSR is ignored entirely.

Using this "forced" addressing allows the instruction to operate on a data address in a single cycle without updating the BSR first. For 8-bit addresses of 80h and above, this means that users can evaluate and operate on SFRs more efficiently. The Access RAM below 80h is a good place for data values that the user might need to access rapidly, such as immediate computational results or common program variables. Access RAM also allows for faster and more code efficient context saving and switching of variables.

The mapping of the Access Bank is slightly different when the extended instruction set is enabled (XINST Configuration bit = 1). This is discussed in more detail in Section 6.5.3 "Mapping the Access Bank in Indexed Literal Offset Addressing Mode".

6.3.3 GENERAL PURPOSE REGISTER FILE

PIC18 devices may have banked memory in the GPR area. This is data RAM which is available for use by all instructions. GPRs start at the bottom of Bank 0 (address 000h) and grow upwards towards the bottom of the SFR area. GPRs are not initialized by a Power-on Reset and are unchanged on all other Resets.

6.3.5 STATUS REGISTER

The STATUS register, shown in Register 6-2, contains the arithmetic status of the ALU. As with any other SFR, it can be the operand for any instruction.

If the STATUS register is the destination for an instruction that affects the Z, DC, C, OV or N bits, the results of the instruction are not written; instead, the STATUS register is updated according to the instruction performed. Therefore, the result of an instruction with the STATUS register as its destination may be different than intended. As an example, CLRF STATUS will set the Z bit and leave the remaining Status bits unchanged ('000u u1uu'). It is recommended that only BCF, BSF, SWAPF, MOVFF and MOVWF instructions are used to alter the STATUS register because these instructions do not affect the Z, C, DC, OV or N bits in the STATUS register.

For other instructions that do not affect Status bits, see the instruction set summaries in Table 22-2 and Table 22-3.

Note: The C and DC bits operate as the borrow and digit borrow bits, respectively, in subtraction.

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	—	—	N	OV	Z	DC ⁽¹⁾	C ⁽²⁾
bit 7							bit 0
Legend:							
R = Read	able bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7-5	Unimplemen	ited: Read as '	0'				
bit 4	N: Negative b This bit is use negative (ALU 1 = Result wa 0 = Result wa	bit ed for signed ar U MSB = 1). as negative as positive	ithmetic (2's d	complement). I	t indicates whe	ther the result w	vas
bit 3	OV: Overflow This bit is use magnitude wh 1 = Overflow 0 = No overflo	/ bit ed for signed ar hich causes the occurred for sig ow occurred	ithmetic (2's sign bit (bit 7 gned arithme	complement). I 7 of the result) t tic (in this arithr	t indicates an c to change state netic operation	verflow of the 7 .)	-bit
bit 2	Z: Zero bit 1 = The result of an arithmetic or logic operation is zero						
bit 1	 The result of an antimetic of logic operation is not zero DC: Digit Carry/borrow bit⁽¹⁾ For ADDWF, ADDLW, SUBLW and SUBWF instructions: 1 = A carry-out from the 4th low-order bit of the result occurred 0 = No carry-out from the 4th low-order bit of the result 						
bit 0	C: Carry/borr For ADDWF, A 1 = A carry-o 0 = No carry-	ow bit ⁽²⁾ DDLW, SUBLW a ut from the Mos out from the Mos	nd SUBWF ins st Significant ost Significan	structions: bit of the result t bit of the resu	occurred It occurred		
Note 1: 2:	 For borrow, the polarity is reversed. A subtraction is executed by adding the 2's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either bit 4 or bit 3 of the source register. For borrow, the polarity is reversed. A subtraction is executed by adding the 2's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low-order bit of the source register. 						of the second ource register. of the second er bit of the

REGISTER 6-2: STATUS REGISTER

8.3 Reading the Data EEPROM Memory

To read a data memory location, the user must write the address to the EEADR register, clear the EEPGD control bit (EECON1<7>) and then set control bit RD (EECON1<0>). The data is available for the very next instruction cycle; therefore, the EEDATA register can be read by the next instruction. EEDATA will hold this value until another read operation, or until it is written to by the user (during a write operation).

8.4 Writing to the Data EEPROM Memory

To write an EEPROM data location, the address must first be written to the EEADR register and the data written to the EEDATA register. The sequence in Example 8-2 must be followed to initiate the write cycle.

The write will not begin if this sequence is not exactly followed (write 55h to EECON2, write 0AAh to EECON2, then set WR bit) for each byte. It is strongly recommended that interrupts be disabled during this code segment.

Additionally, the WREN bit in EECON1 must be set to enable writes. This mechanism prevents accidental writes to data EEPROM due to unexpected code execution (i.e., runaway programs). The WREN bit should be kept clear at all times, except when updating the EEPROM. The WREN bit is not cleared by hardware. After a write sequence has been initiated, EECON1, EEADR and EEDATA cannot be modified. The WR bit will be inhibited from being set unless the WREN bit is set. The WREN bit must be set on a previous instruction. Both WR and WREN cannot be set with the same instruction.

At the completion of the write cycle, the WR bit is cleared in hardware and the EEPROM Interrupt Flag bit (EEIF) is set. The user may either enable this interrupt or poll this bit. EEIF must be cleared by software.

8.5 Write Verify

Depending on the application, good programming practice may dictate that the value written to the memory should be verified against the original value. This should be used in applications where excessive writes can stress bits near the specification limit.

8.6 Protection Against Spurious Write

There are conditions when the device may not want to write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been built-in. On power-up, the WREN bit is cleared. Also, the Power-up Timer (72 ms duration) prevents EEPROM write.

The write initiate sequence and the WREN bit together help prevent an accidental write during brown-out, power glitch, or software malfunction.

EXAMPLE 8-1: DATA EEPROM READ

MOVLWDATA_EE_ADDR;MOVWFEEADR; Data Memory Address to readBCFEECON1, EEPGD; Point to DATA memoryBSFEECON1, RD; EEPROM ReadMOVFEEDATA, W; W = EEDATA

EXAMPLE 8-2: DATA EEPROM WRITE

	MOVLW MOVWF MOVLW MOVWF BCF BSF	DATA_EE_ADDR EEADR DATA_EE_DATA EEDATA EECON1, EEPGD EECON1 WREN	; ; Data Memory Address to write ; ; Data Memory Value to write ; Point to DATA memory ; Enable writes	
	BCF	INTCON, GIE	; Disable Interrupts	
	MOVLW	55h	;	
Required	MOVWF	EECON2	; Write 55h	
Sequence	MOVLW	0AAh	;	
	MOVWF	EECON2	; Write OAAh	
	BSF	EECON1, WR	; Set WR bit to begin write	
	BSF	INTCON, GIE	; Enable Interrupts	
	BTFSC 1	EECON1, WR	; Wait for write to complete	
	BRA \$-3	2		
	SLEEP		; Wait for interrupt to signal write complete	
	BCF	EECON1, WREN	; Disable writes	

10.2 PORTB, TRISB and LATB Registers

PORTB is an 8-bit wide, bidirectional port. The corresponding Data Direction register is TRISB. Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., put the contents of the output latch on the selected pin).

The Output Latch register (LATB) is also memory mapped. Read-modify-write operations on the LATB register read and write the latched output value for PORTB.

EXAMPLE 10-2:	INITIALIZING PORTB
---------------	--------------------

CLRF	PORTB	; Initialize PORTB by
		; clearing output
		; data latches
CLRF	LATB	; Alternate method
		; to clear output
		; data latches
MOVLW	0Fh	; Set RB<4:0> as
MOVWF	ADCON1	; digital I/O pins
		; (required if config bit
		; PBADEN is set)
MOVLW	OCFh	; Value used to
		; initialize data
		; direction
MOVWF	TRISB	; Set RB<3:0> as inputs
		; RB<5:4> as outputs
		; RB<7:6> as inputs
MOVLW MOVWF MOVLW MOVWF	0Fh ADCON1 0CFh TRISB	<pre>; to clear output ; data latches ; Set RB<4:0> as ; digital I/O pins ; (required if config bit ; PBADEN is set) ; Value used to ; initialize data ; direction ; Set RB<3:0> as inputs ; RB<5:4> as outputs ; RB<7:6> as inputs</pre>

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit, RBPU (INTCON2<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

Note: On a Power-on Reset, PORTB is configured as digital inputs except for RB2 and RB3.
 RB2 and RB3 are configured as analog inputs when the T1OSCMX bit of Configuration Register 3H is cleared. Otherwise, RB2 and RB3 are also configured as digital inputs.

Pins RB0, RB1 and RB4:RB7 are multiplexed with the Power Control PWM outputs.

Pins RB2 and RB3 are multiplexed with external interrupt inputs, interrupt-on-change input, the analog comparator inputs and the Timer1 oscillator input and output to become RB2/INT2/KBI2/CMP2/T10S0/T1CKI and RB3/INT3/KNBI3/CMP1/T10SI, respectively.

When the interrupt-on-change feature is enabled, only pins configured as inputs can cause this interrupt to occur (i.e., any RB2, RB3, RA0 and RA1 pin configured as an output is excluded from the interrupt-on-change comparison). The input pins (RB2, RB3, RA0 and RA1) are compared with the old value latched on the last read of PORTA and PORTB. The "mismatch" outputs of these pins are ORed together to generate the RB Port Change Interrupt with Flag bit, RBIF (INTCON<0>).

This interrupt can wake the device from Sleep mode, or any of the Idle modes. The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB (except with the MOVFF (ANY), PORTB instruction).
- b) 1 TCY
- c) Clear flag bit, RBIF.

A mismatch condition will continue to set flag bit, RBIF. Reading PORTB and waiting 1 TCY will end the mismatch condition and allow flag bit, RBIF, to be cleared. Additionally, if the port pin returns to its original state, the mismatch condition will be cleared.

The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTA and PORTB are used for the interrupton-change feature. Polling of PORTA and PORTB is not recommended while using the interrupt-on-change feature.

REGISTER 11-11: IPR2: PERIPHERAL INTERRUPT PRIORITY REGISTER 2

R/W-1	U-0	U-0	R/W-1	U-0	R/W-1	U-0	U-0
OSCFIP	—	—	EEIP	—	LVDIP		—
bit 7							bit 0
Legend:							
R = Readable I	oit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	nown
bit 7	OSCFIP: Osc	illator Fail Inter	rupt Priority b	it			
	1 = High prior	rity					
	0 = Low prior	ity					
bit 6-5	Unimplement	ted: Read as '	כ'				
bit 4	EEIP: Data El	EPROM/Flash	Write Operation	on Interrupt Pr	iority bit		
	1 = High prior	rity					
	0 = Low prior	ity					
bit 3	Unimplement	ted: Read as '	כ'				
bit 2	LVDIP: Low-V	/oltage Detect	Interrupt Prior	ity bit			
	1 = High prior	rity					
	0 = Low prior	ity					
bit 1-0	Unimplement	ted: Read as '	כי				

REGISTER 11-12: IPR3: PERIPHERAL INTERRUPT PRIORITY REGISTER 3

U-0	U-0	U-0	R/W-1	U-0	U-0	U-0	U-0
—	—	—	PTIP	—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 7-5 Unimplemented: Read as '0'
- bit 4 **PTIP:** PWM Time Base Interrupt Priority bit
 - 1 = High priority
 - 0 = Low priority
- bit 3-0 Unimplemented: Read as '0'

11.6 INTx Pin Interrupts

External interrupts on the RA0/INT0, RA1/INT1, RB2/ INT2 and RB3/INT3 pins are edge-triggered. If the corresponding INTEDGx bit in the INTCON2 register is set (= 1), the interrupt is triggered by a rising edge; if the bit is clear, the trigger is on the falling edge. When a valid edge appears on the pin, the corresponding flag bit, INTxIF, is set. This interrupt can be disabled by clearing the corresponding enable bit, INTxIE. Flag bit, INTxIF, must be cleared in software in the Interrupt Service Routine before re-enabling the interrupt.

All external interrupts (INT0, INT1, INT2 and INT3) can wake-up the processor from Idle or Sleep modes if bit INTxIE was set prior to going into those modes. If the Global Interrupt Enable bit, GIE, is set, the processor will branch to the interrupt vector following wake-up.

Interrupt priority for INT1, INT2 and INT3 is determined by the value contained in the interrupt priority bits, INT1IP (INTCON3<6>), INT2IP (INTCON3<7>) and INT3IP (INTCON2<1>). There is no priority bit associated with INT0. It is always a high-priority interrupt source.

11.7 TMR0 Interrupt

In 8-bit mode (which is the default), an overflow in the TMR0 register (FFh \rightarrow 00h) will set flag bit, TMR0IF. In 16-bit mode, an overflow in the TMR0H:TMR0L register pair (FFFFh \rightarrow 0000h) will set TMR0IF. The interrupt can be enabled/disabled by setting/clearing enable bit, TMR0IE (INTCON<5>). Interrupt priority for Timer0 is determined by the value contained in the interrupt priority bit, TMR0IP (INTCON2<2>). See Section 12.0 "Timer0 Module" for further details on the Timer0 module.

11.8 Interrupt-on-Change

An input change on PORTA<1:0> and/or PORTB<2:3> sets flag bit, RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit, RBIE (INTCON<3>). Interrupt priority for interrupt-on-change is determined by the value contained in the interrupt priority bit, RBIP (INTCON2<0>).

11.9 Context Saving During Interrupts

During interrupts, the return PC address is saved on the stack. Additionally, the WREG, STATUS and BSR registers are saved on the fast return stack. If a fast return from interrupt is not used (see **Section 6.3 "Data Memory Organization"**), the user may need to save the WREG, STATUS and BSR registers on entry to the Interrupt Service Routine. Depending on the user's application, other registers may also need to be saved. Example 11-1 saves and restores the WREG, STATUS and BSR registers during an Interrupt Service Routine.

EXAMPLE 11-1: SAVING STATUS, WREG AND BSR REGISTERS IN RAM

MOVWF MOVFF MOVFF	W_TEMP STATUS, STATUS_TEMP BSR, BSR_TEMP	; W_TEMP is in virtual bank ; STATUS_TEMP located anywhere ; BSR_TMEP located anywhere
; ; USER ;	ISR CODE	
MOVFF	BSR_TEMP, BSR	; Restore BSR
MOVE	W_TEMP, W	; Restore WREG
MOVFF	STATUS_TEMP, STATUS	, Restore STATUS

14.3.1 FREE-RUNNING MODE

In the Free-Running mode, the PWM time base (PTMRL and PTMRH) will begin counting upwards until the value in the PWM Time Base Period register, PTPER (PTPERL and PTPERH), is matched. The PTMR registers will be reset on the following input clock edge and the time base will continue counting upwards as long as the PTEN bit remains set.

14.3.2 SINGLE-SHOT MODE

In the Single-Shot mode, the PWM time base will begin counting upwards when the PTEN bit is set. When the value in the PTMR register matches the PTPER register, the PTMR register will be reset on the following input clock edge and the PTEN bit will be cleared by the hardware to halt the time base.

14.3.3 CONTINUOUS UP/DOWN COUNT MODES

In Continuous Up/Down Count modes, the PWM time base counts upwards until the value in the PTPER register matches the PTMR register. On the following input clock edge, the timer counts downwards. The PTDIR bit in the PTCON1 register is read-only and indicates the counting direction. The PTDIR bit is set when the timer counts downwards.

Note: Since the PWM compare outputs are driven to the active state when the PWM time-base is counting downwards and matches the duty cycle value, the PWM outputs are held inactive during the first half of the first period of the Continuous Up/Down Count mode until the PTMR begins to count down from the PTPER value.

14.3.4 PWM TIME BASE PRESCALER

The input clock to PTMR (Fosc/4) has prescaler options of 1:1, 1:4, 1:16 or 1:64. These are selected by control bits, PTCKPS<1:0>, in the PTCON0 register. The prescaler counter is cleared when any of the following occurs:

- Write to the PTMR register
- Write to the PTCON (PTCON0 or PTCON1) register
- Any device Reset

Note: The PTMR register is not cleared when PTCONx is written.

Table 14-1 shows the minimum PWM frequencies that can be generated with the PWM time base and the prescaler. An operating frequency of 40 MHz (FCYC = 10 MHz) and PTPER = 0xFFF are assumed in the table. The PWM module must be capable of generating PWM signals at the line frequency (50 Hz or 60 Hz) for certain power control applications.

ΤΔRI F 14-1·	MINIMUM	PWM	FREQUENCY
IADLL 14-1.			INLQULNCI

Minimum PWM Frequencies vs. Prescaler Value for FcYc = 10 MIPS (PTPER = 0FFFh)						
Prescale	PWM Frequency Edge-Aligned	PWM Frequency Center-Aligned				
1:1	2441 Hz	1221 Hz				
1:4	610 Hz	305 Hz				
1:16	153 Hz	76 Hz				
1:64	38 Hz	19 Hz				

14.3.5 PWM TIME BASE POSTSCALER

The match output of PTMR can optionally be postscaled through a 4-bit postscaler (which gives a 1:1 to 1:16 scaling inclusive) to generate an interrupt. The postscaler counter is cleared when any of the following occurs:

- Write to the PTMR register
- · Write to the PTCONx register
- Any device Reset

The PTMR register is not cleared when PTCONx is written.

14.4 PWM Time Base Interrupts

The PWM timer can generate interrupts based on the modes of operation selected by the PTMOD<1:0> bits and the postscaler bits (PTOPS<3:0>).

14.4.1 INTERRUPTS IN FREE-RUNNING MODE

When the PWM time base is in the Free-Running mode (PTMOD < 1:0 > = 00), an interrupt event is generated each time a match with the PTPER register occurs. The PTMR register is reset to zero in the following clock edge.

Using a postscaler selection other than 1:1 will reduce the frequency of interrupt events.

FIGURE 15-12: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

TABLE 15-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	47
PIR1	—	ADIF	RCIF	TXIF	CMP2IF	CMP1IF	CMP0IF	TMR1IF	49
PIE1	—	ADIE	RCIE	TXIE	CMP2IE	CMP1IE	CMP0IE	TMR1IE	49
IPR1	—	ADIP	RCIP	TXIP	CMP2IP	CMP1IP	CMP0IP	TMR1IP	49
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	48
TXREG	EUSART T	ransmit Reg	ister						48
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	48
BAUDCON	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	_	WUE	ABDEN	48
SPBRGH	EUSART E	aud Rate G	enerator Re	gister High	Byte				48
SPBRG	EUSART E	aud Rate G	enerator Re	gister Low	Byte				48

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous master transmission.

16.5 Operation in Power-Managed Modes

The selection of the automatic acquisition time and A/D conversion clock is determined in part by the clock source and frequency while in a power-managed mode.

If the A/D is expected to operate while the device is in a power-managed mode, the ACQT2:ACQT0 and ADCS2:ADCS0 bits in ADCON2 should be updated in accordance with the clock source to be used in that mode. After entering the mode, an A/D acquisition or conversion may be started. Once started, the device should continue to be clocked by the same clock source until the conversion has been completed.

If desired, the device may be placed into the corresponding Idle mode during the conversion. If the device clock frequency is less than 1 MHz, the A/D RC clock source should be selected.

Operation in Sleep mode requires the A/D FRC clock to be selected. If bits ACQT2:ACQT0 are set to '000' and a conversion is started, the conversion will be delayed one instruction cycle to allow execution of the SLEEP instruction and entry to Sleep mode. The IDLEN bit (OSCCON<7>) must have already been cleared prior to starting the conversion.

16.6 Configuring Analog Port Pins

The ADCON1 and TRISA registers configure the A/D port pins. The port pins needed as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS1:CHS0 bits and the TRIS bits.

- Note 1: When reading the PORT register, all pins configured as analog input channels will read as cleared (a low level). Pins configured as digital inputs will convert as analog inputs. Analog levels on a digitally configured input will be accurately converted.
 - 2: Analog levels on any pin defined as a digital input may cause the digital input buffer to consume current out of the device's specification limits.

21.11 PICSTART Plus Development Programmer

The PICSTART Plus Development Programmer is an easy-to-use, low-cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. The PICSTART Plus Development Programmer supports most PIC devices in DIP packages up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus Development Programmer is CE compliant.

21.12 PICkit 2 Development Programmer

The PICkit[™] 2 Development Programmer is a low-cost programmer and selected Flash device debugger with an easy-to-use interface for programming many of Microchip's baseline, mid-range and PIC18F families of Flash memory microcontrollers. The PICkit 2 Starter Kit includes a prototyping development board, twelve sequential lessons, software and HI-TECH's PICC[™] Lite C compiler, and is designed to help get up to speed quickly using PIC[®] microcontrollers. The kit provides everything needed to program, evaluate and develop applications using Microchip's powerful, mid-range Flash memory family of microcontrollers.

21.13 Demonstration, Development and Evaluation Boards

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart[®] battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Check the Microchip web page (www.microchip.com) and the latest *"Product Selector Guide"* (DS00148) for the complete list of demonstration, development and evaluation kits.

PIC18F1230/1330

DEC	FSZ	Decremer	nt f, Skip	if O		DCFSN
Synta	ax:	DECFSZ f	{,d {,a}}			Syntax:
Oper	ands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$				Operand
Oper	ation:	(f) – 1 \rightarrow de skip if result	est, t = 0			Operatio
Statu	s Affected:	None				Status A
Enco	ding:	0010	11da	ffff	ffff	Encodin
Desc	ription:	The content decremente placed in W placed back If the result which is alru and a NOP i it a two-cyc If 'a' is '0', tf If 'a' is '0', tf GPR bank. If 'a' is '0' an set is enable in Indexed I mode when Section 22 Bit-Oriente Literal Offs	ts of regist ed. If 'd' is '1 (If 'd' is '1 (in registe is '0', the leady fetch s executed le instructione Access ne BSR is lead and the extern ed, this ins Literal Offs ever $f \le 95$ (2.3 "Byte d Instruct set Mode"	er 'f' are ', the re r 'f'. next ins ed, is di d instead on. Bank is used to ended ir truction et Addr 5 (5Fh). - Orient for deta	e result is sult is truction, scarded d, making selected. select the astruction operates essing See ed and Indexed ails.	Descrip
Word	IS:	1				Mordo
Cycle	es:	1(2) Note: 3 cy by a	cles if skip 2-word in	and fol	llowed n.	Cycles:
QC	ycle Activity:					
	Q1	Q2	Q3		Q4	Q Cycl
	Decode	Read register 'f'	Proces Data	s \ de	Write to	
lf sk	ip:			1		
	Q1	Q2	Q3		Q4	lf skip:
	No	No	No		No	
ال مار	operation	operation	operatio	n o	peration	
IT SK		a by 2-wora in:			04	lf skip a
	No	No	No		No	
	operation	operation	operatio	n o	peration	
	No	No	No		No	
	operation	operation	operatio	n o	peration	
Exan	nple:	HERE CONTINUE	DECFSZ GOTO	CN1 LOC	F, 1, 1)P	Example
	Before Instruc PC	tion = Address	(HERE)			Ве
	CNT If CNT PC If CNT PC	= CNT – 1 = 0; = Address ≠ 0; = Address	G (CONTI) G (HERE	NUE) + 2)		Aft

FSNZ	Decremer	nt f, Skip if N	lot 0
ntax:	DCFSNZ	f {,d {,a}}	
erands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$		
eration:	(f) – 1 \rightarrow de skip if result	est, t ≠ 0	
itus Affected:	None		
coding:	0100	11da fff	f ffff
scription:	The content	ts of register 'f	' are
ords:	laced in W placed in W placed back If the result instruction, discarded a instruction. If 'a' is '0', tf If 'a' is '0', tf If 'a' is '0', tf If 'a' is '0', tf GPR bank. If 'a' is '0' a set is enabl in Indexed I mode when Section 22 Bit-Oriente Literal Offs 1	If d is 0, 1 d. If d is 0, 1, th is not '0', the i which is alread nd a NOP is ey- king it a two-c the Access Bar the BSR is used and the extended ed, this instruct Literal Offset A ever $f \le 95$ (5F .2.3 "Byte-Ori d Instructions set Mode" for	he result is e result is hext dy fetched, is eccuted ycle k is selected. d to select the ed instruction tion operates addressing Fh). See ented and s in Indexed details.
	1(2)		
Cuelo Activity	Note: 3 c	cycles if skip a a 2-word instr	nd followed uction.
	02	03	04
Decode	Read	Process	Write to
Dooddo	register 'f'	Data	destination
skip:	-		
Q1	Q2	Q3	Q4
No	No	No	No
operation	operation	operation	operation
skip and followed	by 2-word in	struction:	
Q1	Q2	Q3	Q4
No	N0 operation	No	No
No	No	No	No
operation	operation	operation	operation
ample:	HERE I ZERO : NZERO :	DCFSNZ TEM : :	P, 1, 0
Before Instruct TEMP	ion =	?	
TEMP If TEMP PC If TEMP	" = = ≠	TEMP – 1 0; Address (2 0;	ZERO)
PC	=	Address (1	NZERO)

22.2 Extended Instruction Set

In addition to the standard 75 instructions of the PIC18 instruction set, PIC18F1230/1330 devices also provide an optional extension to the core CPU functionality. The added features include eight additional instructions that augment indirect and indexed addressing operations and the implementation of Indexed Literal Offset Addressing mode for many of the standard PIC18 instructions.

The additional features of the extended instruction set are disabled by default. To enable them, users must set the XINST Configuration bit.

The instructions in the extended set (with the exception of CALLW, MOVSF and MOVSS) can all be classified as literal operations, which either manipulate the File Select Registers, or use them for indexed addressing. Two of the instructions, ADDFSR and SUBFSR, each have an additional special instantiation for using FSR2. These versions (ADDULNK and SUBULNK) allow for automatic return after execution.

The extended instructions are specifically implemented to optimize re-entrant program code (that is, code that is recursive or that uses a software stack) written in high-level languages, particularly C. Among other things, they allow users working in high-level languages to perform certain operations on data structures more efficiently. These include:

- Dynamic allocation and deallocation of software stack space when entering and leaving subroutines
- Function Pointer invocation
- Software Stack Pointer manipulation
- Manipulation of variables located in a software stack

A summary of the instructions in the extended instruction set is provided in Table 22-3. Detailed descriptions are provided in **Section 22.2.2** "**Extended Instruction Set**". The opcode field descriptions in Table 22-1 (page 216) apply to both the standard and extended PIC18 instruction sets.

Note: The instruction set extension and the Indexed Literal Offset Addressing mode were designed for optimizing applications written in C; the user may likely never use these instructions directly in the assembler. The syntax for these commands is provided as a reference for users who may be reviewing code that has been generated by a compiler.

22.2.1 EXTENDED INSTRUCTION SYNTAX

Most of the extended instructions use indexed arguments, using one of the File Select Registers and some offset to specify a source or destination register. When an argument for an instruction serves as part of indexed addressing, it is enclosed in square brackets ("[]"). This is done to indicate that the argument is used as an index or offset. The MPASMTM Assembler will flag an error if it determines that an index or offset value is not bracketed.

When the extended instruction set is enabled, brackets are also used to indicate index arguments in byteoriented and bit-oriented instructions. This is in addition to other changes in their syntax. For more details, see Section 22.2.3.1 "Extended Instruction Syntax with Standard PIC18 Commands".

Note: In the past, square brackets have been used to denote optional arguments in the PIC18 and earlier instruction sets. In this text and going forward, optional arguments are denoted by braces ("{ }").

Mnemonic,		Description	Cyclos	16-Bit Instruction Word				Status
Opera	nds	Description	Cycles	MSb LSb		Affected		
ADDFSR	f, k	Add Literal to FSR	1	1110	1000	ffkk	kkkk	None
ADDULNK	k	Add Literal to FSR2 and Return	2	1110	1000	11kk	kkkk	None
CALLW		Call Subroutine using WREG	2	0000	0000	0001	0100	None
MOVSF	z _s , f _d	Move z _s (source) to 1st word	2	1110	1011	0zzz	ZZZZ	None
		f _d (destination) 2nd word		1111	ffff	ffff	ffff	
MOVSS	z _s , z _d	Move z _s (source) to 1st word	2	1110	1011	lzzz	ZZZZ	None
		z _d (destination) 2nd word		1111	xxxx	XZZZ	ZZZZ	
PUSHL	k	Store Literal at FSR2,	1	1110	1010	kkkk	kkkk	None
		Decrement FSR2						
SUBFSR	f, k	Subtract Literal from FSR	1	1110	1001	ffkk	kkkk	None
SUBULNK	k	Subtract Literal from FSR2 and	2	1110	1001	11kk	kkkk	None
		Return						

TABLE 22-3: EXTENSIONS TO THE PIC18 INSTRUCTION SET

22.2.5 SPECIAL CONSIDERATIONS WITH MICROCHIP MPLAB[®] IDE TOOLS

The latest versions of Microchip's software tools have been designed to fully support the extended instruction set of the PIC18F1230/1330 family of devices. This includes the MPLAB C18 C Compiler, MPASM Assembly language and MPLAB Integrated Development Environment (IDE).

When selecting a target device for software development, MPLAB IDE will automatically set default Configuration bits for that device. The default setting for the XINST Configuration bit is '0', disabling the extended instruction set and Indexed Literal Offset Addressing mode. For proper execution of applications developed to take advantage of the extended instruction set, XINST must be set during programming.

To develop software for the extended instruction set, the user must enable support for the instructions and the Indexed Addressing mode in their language tool(s). Depending on the environment being used, this may be done in several ways:

- A menu option, or dialog box within the environment, that allows the user to configure the language tool and its settings for the project
- · A command line option
- · A directive in the source code

These options vary between different compilers, assemblers and development environments. Users are encouraged to review the documentation accompanying their development systems for the appropriate information.

23.2 DC Characteristics: Power-Down and Supply Current PIC18F1230/1330 (Industrial) PIC18LF1230/1330 (Industrial) (Continued)

PIC18LF1 (Indus	230/1330 trial)	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				$\begin{array}{llllllllllllllllllllllllllllllllllll$			
PIC18F12 (Indus	30/1330 trial, Extended)	Standa Operat	ing temp	rating (perature	Conditions (unlessed) e -40°C ≤ TA -40°C ≤ TA	ss otherwise sta \leq +85°C for indus \leq +125°C for exte	ted) strial ended		
Param No.	Device	Тур	Max	Units	Conditions				
	Module Differential Currer	nts (∆lw	от, ∆ івс	or, ∆Ilv	D, Δ IOSCB, Δ IAD)				
D026	A/D Converter	1.0	1.6	μA	-40°C to +85°C VDD = 2.0V				
(∆IAD)		1.0	1.6	μA	-40°C to +85°C	VDD = 3.0V	A/D on not converting		
		1.0	1.6	μA	-40°C to +85°C	$V_{DD} = 5.0V$	Arb on, not converting		
		2.0	7.6	μA	-40°C to +125°C	vuu – 5.0v			

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or VSS;

MCLR = VDD; WDT enabled/disabled as specified.

3: Low-power Timer1 oscillator selected.

4: BOR and LVD enable internal band gap reference. With both modules enabled, current consumption will be less than the sum of both specifications.

PIC18F1230/1330

MOVLW	241
MOVWF	241
MULLW	242
MULWF	242
NEGF	243
NOP	243
Opcode Field Descriptions	216
POP	244
PUSH	244
RCALL	245
RESET	245
RETFIE	246
RETLW	
RETURN	247
RLCF	247
RLNCF	
RRCF	
RRNCF	249
SETF	249
SETF (Indexed Literal Offset Mode)	
SLEEP	
Standard Instructions	215
SUBFWB	
SUBLW	
SUBWF	
SUBWFB	
SWAPF	
TBLRD	
TBLWT	
TSTFSZ	
XORLW	
XORWF	
INTCON Registers	95–97
Internal Oscillator Block	24
Adjustment	24
INTIO Modes	24
INTOSC Frequency Drift	24
INTOSC Output Frequency	24
OSCTUNE Register	24
PLL in INTOSC Modes	24
Internal RC Oscillator	
Use with WDT	
Internet Address	
Interrupt Sources	
A/D Conversion Complete	
INTx Pin	
PORTB. Interrupt-on-Change	
TMR0	
TMR1 Overflow	
Interrupts	
Interrupts, Flag Bits	
Interrupt-on-Change Flag (RBIF Bit)	90
INTOSC INTRC See Internal Oscillator Block	
IORI W	238
IORWE	230 238
IPR Registers	<u>2</u> 00 102

L

	220
LFOR	239
Applications	107
Applications	. 190
Associated Registers	190
	283
Current Consumption	189
Effects of a Reset	190
Operation	188
During Sleep	190
Setup	189
Start-up Time	189
Typical Application	190
Low-Voltage ICSP Programming. See Single-Supply	ICSP
Programming	
LVD. See Low-Voltage Detect	187
M	
Master Clear (MCLR)	41
Memory Organization	51
Data Memory	57
Program Memory	51
Memory Programming Requirements	281
Microchip Internet Web Site	314
Migration from Baseline to Enhanced Devices	305
Migration from High-End to Enhanced Devices	306
Migration from Mid-Range to Enhanced Devices	306
MOVE	239
MOV/FE	240
	240
	240
	241
	209
	200
MDLAD AOMOO Assessibles Listers Librarian	241
MPLAB ASM30 Assembler, Linker, Librarian	212
MPLAB ICD 2 In-Circuit Debugger	213
MPLAB ICE 2000 High-Performance Universal In-Circui	t Em-
ulator	213
MPLAB Integrated Development Environment Software	. 211
MPLAB PM3 Device Programmer	213
MPLAB REAL ICE In-Circuit Emulator System	213
MPLINK Object Linker/MPLIB Object Librarian	212
MULLW	242
MULWF	242
NI	
IN	
NEGF	243
NOP	243
•	

Oscillator Configuration	
EC	
ECIO	
HS	
HSPLL	
Internal Oscillator Block	
INTIO1	
INTIO2	
LP	
RC	
RCIO	
ХТ	
Oscillator Selection	191
Oscillator Start-up Timer (OST)	
Oscillator Switching	
-	

PIC18F1230/1330

Oscillator Transitions
P
Packaging
Details
Marking Information
PICSTART Plus Development Programmer
PIE Registers
Pin Functions
AVD 16
AVss 16
$\frac{1}{MCLP}/PA5/FLTA$
NC 16
RA0/AN0/INT0/RBI0/CMF0
RA I/AN I/INT I/RBTL
RA2/1X/CK
RA3/RX/D1
RA4/10CKI/AN2//VREF+
RA6/OSC2/CLKO/110SO/11CKI/AN3
RA7/OSC1/CLKI/T1OSI/FLTA13
RB0/PWM015
RB1/PWM115
RB2/INT2/KBI2/CMP2/T1OSO/T1CKI
RB3/INT3/KBI3/CMP1/T1OSI15
RB4/PWM215
RB5/PWM315
RB6/PWM4/PGC
RB7/PWM5/PGD
VD 16
Vss 16
Pinout I/O Descriptions
DIC18E1230/1330 13
FICTOF 1250/1550
PIR Registers
PLL Frequency Multiplier
HSPLL Oscillator Mode
Use with INTOSC
POP
POR. See Power-on Reset.
PORTA
Associated Registers
LATA Register87
PORTA Register87
TRISA Register87
PORTB
Associated Registers92
Interrupt-on-Change Flag (RBIF Bit)90
LATB Register90
PORTB Register90
TRISB Register
Power Control PWM
Associated Registers145
Control Registers
Functionality 120
Power-Managed Modes 31
and A/D Operation 176
Clock Sources 31
Clock Transitions and Status Indicators 22
Effects on Clock Sources
Entering 24
Entering Idle and Sloop Medaa
Exiting fore and Sleep Modes
By Interrupt
By Reset
By WDT Time-out
Without an Oscillator Start-up Delay
iale Modes

PRI IDLE	36
	37
SEC_IDLE	
Multiple Sleep Commands	32
Pun Modos	32
PRI_RUN	32
RC RUN	33
SEC_RUN	
Selecting	31
Sleen Mode	35
Summary (table)	31
Power-on Reset (POR)	
Time out Sequence	12
Power-up Delays	
Power-up Timer (PWRT)	29
	400
Prescaler, Timeru	109
PRI IDLE Mode	
PPI PLIN Modo	30
Program Counter	52
PCL_PCH and PCU Registers	52
POLATH and POLATO Registers	
Program Memory	
and Extended Instruction Set	69
Instructions	56
Two-Word	
Interrunt Vector	51
Look-up Tables	54
Map and Stack (diagram)	51
Deast Vestor	E1
Resel vector	
Program Verification	207
Programming Device Instructions	215
PUSH	
PUSH and POP Instructions	53
	260
PUSHL	260
PUSHL PWM	260
PUSHL PWM Fault Input	260
PUSHL PWM Fault Input	260
PUSHL PWM Fault Input Output and Polarity Control	260 142 141
PUSHL PWM Fault Input Output and Polarity Control Single-Pulse Operation	260 142 141 138
PUSHL PWM Fault Input Output and Polarity Control Single-Pulse Operation Special Event Trigger	260 142 141 138 144
PUSHL PWM Fault Input Output and Polarity Control Single-Pulse Operation Special Event Trigger	260 142 141 138 144
PUSHL PWM Fault Input Output and Polarity Control Single-Pulse Operation Special Event Trigger Update Lockout	260 142 141 138 144 144
PUSHL PWM Fault Input Output and Polarity Control Single-Pulse Operation Special Event Trigger Update Lockout PWM Dead-Time	
PUSHL PWM Fault Input Output and Polarity Control Single-Pulse Operation Special Event Trigger Update Lockout PWM Dead-Time Decrementing the Counter	
PUSHL PWM Fault Input Output and Polarity Control Single-Pulse Operation Special Event Trigger Update Lockout PWM Dead-Time Decrementing the Counter Distortion	
PUSHL PWM Fault Input Output and Polarity Control Single-Pulse Operation Special Event Trigger Update Lockout PWM Dead-Time Decrementing the Counter Distortion	
PUSHL PWM Fault Input Output and Polarity Control Single-Pulse Operation Special Event Trigger Update Lockout PWM Dead-Time Decrementing the Counter Distortion Generators	260 142 141 138 144 144 144 136 137 135
PUSHL PWM Fault Input Output and Polarity Control Single-Pulse Operation Special Event Trigger Update Lockout PWM Dead-Time Decrementing the Counter Distortion Generators Insertion	260
PUSHL PWM Fault Input Output and Polarity Control Single-Pulse Operation Special Event Trigger Update Lockout PWM Dead-Time Decrementing the Counter Distortion Generators Insertion Decremention	260
PUSHL PWM Fault Input Output and Polarity Control Single-Pulse Operation Special Event Trigger Update Lockout PWM Dead-Time Decrementing the Counter Distortion Generators Insertion Ranges	260 142 141 138 144 144 136 135 135 135 136
PUSHL PWM Fault Input Output and Polarity Control Single-Pulse Operation Special Event Trigger Update Lockout PWM Dead-Time Decrementing the Counter Distortion Generators Insertion Ranges PWM Duty Cycle	260 142 141 138 144 144 144 136 137 135 135 135 136 136 131
PUSHL PWM Fault Input Output and Polarity Control Single-Pulse Operation Special Event Trigger Update Lockout PWM Dead-Time Decrementing the Counter Distortion Generators Insertion Ranges PWM Duty Cycle Center-Aligned	260
PUSHL PWM Fault Input Output and Polarity Control Single-Pulse Operation Special Event Trigger Update Lockout PWM Dead-Time Decrementing the Counter Distortion Generators Insertion Ranges PWM Duty Cycle Center-Aligned	260 142 141 138 144 136 136 135 136 131 131 131
PUSHL PWM Fault Input Output and Polarity Control Single-Pulse Operation Special Event Trigger Update Lockout PWM Dead-Time Decrementing the Counter Distortion Generators Insertion Ranges PWM Duty Cycle Center-Aligned Complementary Operation	260 142 141 138 144 144 144 136 137 135 135 135 136 131 133 133
PUSHL PWM Fault Input Output and Polarity Control Single-Pulse Operation Special Event Trigger Update Lockout PWM Dead-Time Decrementing the Counter Distortion Generators Insertion Ranges PWM Duty Cycle Center-Aligned Complementary Operation Edge-Aligned	260 142 141 138 144 144 136 137 135 135 135 136 131 131 133 134 132
PUSHL PWM Fault Input Output and Polarity Control Single-Pulse Operation Special Event Trigger Update Lockout PWM Dead-Time Decrementing the Counter Distortion Generators Insertion Ranges PWM Duty Cycle Center-Aligned Complementary Operation Edge-Aligned Pagieter Buffers	260 142 141 138 144 136 136 135 136 136 131 133 134 132 134 132
PUSHL PWM Fault Input Output and Polarity Control Single-Pulse Operation Special Event Trigger Update Lockout PWM Dead-Time Decrementing the Counter Distortion Generators Insertion Ranges PWM Duty Cycle Center-Aligned Complementary Operation Edge-Aligned Register Buffers	260
PUSHL PWM Fault Input Output and Polarity Control Single-Pulse Operation Special Event Trigger Update Lockout PWM Dead-Time Decrementing the Counter Distortion Generators Insertion Ranges PWM Duty Cycle Center-Aligned Complementary Operation Edge-Aligned Register Buffers Registers	260 142 141 138 144 144 144 136 137 135 135 135 136 131 133 134 132 132 132
PUSHL PWM Fault Input Output and Polarity Control Single-Pulse Operation Special Event Trigger Update Lockout PWM Dead-Time Decrementing the Counter Distortion Generators Insertion Ranges PWM Duty Cycle Center-Aligned Complementary Operation Edge-Aligned Registers Buffers Registers PWM Output Override	260 142 141 138 144 144 136 137 135 135 135 135 135 136 131 133 134 132 132 132 132
PUSHL PWM Fault Input Output and Polarity Control Single-Pulse Operation Special Event Trigger Update Lockout PWM Dead-Time Decrementing the Counter Distortion Generators Insertion Ranges PWM Duty Cycle Center-Aligned Complementary Operation Edge-Aligned Registers PWM Output Override Complementary Mode	260 142 141 138 144 144 136 135 135 135 135 136 131 133 134 132 132 131 138 132 131 138 132 132 132
PUSHL PWM Fault Input Output and Polarity Control Single-Pulse Operation Special Event Trigger Update Lockout PWM Dead-Time Decrementing the Counter Distortion Generators Insertion Ranges PWM Duty Cycle Center-Aligned Complementary Operation Edge-Aligned Register Buffers Registers PWM Output Override Complementary Mode	260 142 141 138 144 144 144 136 137 135 135 135 135 136 131 133 134 132 132 132 131 138 138 138
PUSHL PWM Fault Input Output and Polarity Control Single-Pulse Operation Special Event Trigger Update Lockout PWM Dead-Time Decrementing the Counter Distortion Generators Insertion Ranges PWM Duty Cycle Center-Aligned Complementary Operation Edge-Aligned Register Buffers Registers PWM Output Override Complementary Mode Examples	260 142 141 138 144 144 144 136 137 135 135 135 135 136 131 131 133 134 132 132 132 131 138 138 138 138
PUSHL PWM Fault Input Output and Polarity Control Single-Pulse Operation Special Event Trigger Update Lockout PWM Dead-Time Decrementing the Counter Distortion Generators Insertion Ranges PWM Duty Cycle Center-Aligned Complementary Operation Edge-Aligned Register Buffers Registers PWM Output Override Complementary Mode Examples Synchronization	260 142 141 138 144 144 136 137 135 135 135 135 136 131 133 134 132 132 132 132 132 132 134 138 138 138 138
PUSHL PWM Fault Input Output and Polarity Control Single-Pulse Operation Special Event Trigger Update Lockout PWM Dead-Time Decrementing the Counter Distortion Generators Insertion Ranges PWM Duty Cycle Center-Aligned Complementary Operation Edge-Aligned Register Buffers Registers PWM Output Override Complementary Mode Examples Synchronization	260
PUSHL PWM Fault Input Output and Polarity Control Single-Pulse Operation Special Event Trigger Update Lockout PWM Dead-Time Decrementing the Counter Distortion Generators Insertion Ranges PWM Duty Cycle Center-Aligned Complementary Operation Edge-Aligned Register Buffers Registers PWM Output Override Complementary Mode Examples Synchronization	260 142 141 138 144 144 144 136 137 135 135 135 135 135 135 135 133 134 132 131 138 138 138 138 138 138 138
PUSHL PWM Fault Input Output and Polarity Control Single-Pulse Operation Special Event Trigger Update Lockout PWM Dead-Time Decrementing the Counter Distortion Generators Insertion Ranges PWM Duty Cycle Center-Aligned Complementary Operation Edge-Aligned Register Buffers Registers PWM Output Override Complementary Mode Examples Synchronization PWM Period PWM Time Base	260 142 141 138 144 144 136 137 135 135 135 135 136 131 131 133 134 132 132 132 131 138 138 138 138 138 138 129 120
PUSHL PWM Fault Input Output and Polarity Control Single-Pulse Operation Special Event Trigger Update Lockout PWM Dead-Time Decrementing the Counter Distortion Generators Insertion Ranges PWM Duty Cycle Center-Aligned Complementary Operation Edge-Aligned Register Buffers Registers PWM Output Override Complementary Mode Examples Synchronization PWM Period PWM Time Base Continuous Up/Down Count Modes	260
PUSHL PWM Fault Input Output and Polarity Control Single-Pulse Operation Special Event Trigger Update Lockout PWM Dead-Time Decrementing the Counter Distortion Generators Insertion Ranges PWM Duty Cycle Center-Aligned Complementary Operation Edge-Aligned Register Buffers Registers PWM Output Override Complementary Mode Examples Synchronization PWM Period PWM Time Base Continuous Up/Down Count Modes Erae Punnan Mode	260
PUSHL PWM Fault Input Output and Polarity Control Single-Pulse Operation Special Event Trigger Update Lockout PWM Dead-Time Decrementing the Counter Distortion Generators Insertion Ranges PWM Duty Cycle Center-Aligned Complementary Operation Edge-Aligned Register Buffers Registers PWM Output Override Complementary Mode Examples Synchronization PWM Period PWM Time Base Continuous Up/Down Count Modes Free-Running Mode	260 142 141 138 144 144 144 136 137 135 135 135 135 135 136 131 131 133 134 132 132 131 138 138 138 138 138 129 120 125 125
PUSHL PWM Fault Input Output and Polarity Control Single-Pulse Operation Special Event Trigger Update Lockout PWM Dead-Time Decrementing the Counter Distortion Generators Insertion Ranges PWM Duty Cycle Center-Aligned Complementary Operation Edge-Aligned Registers PWM Output Override Complementary Mode Examples Synchronization PWM Period PWM Time Base Continuous Up/Down Count Modes Free-Running Mode Interrupts	260
PUSHL PWM Fault Input Output and Polarity Control Single-Pulse Operation Special Event Trigger Update Lockout PWM Dead-Time Decrementing the Counter Distortion Generators Insertion Ranges PWM Duty Cycle Center-Aligned Complementary Operation Edge-Aligned Register Buffers Registers PWM Output Override Complementary Mode Examples Synchronization PWM Period PWM Time Base Continuous Up/Down Count Modes Free-Running Mode Interrupts In Continuous Up/Down Count Modes	260
PUSHL PWM Fault Input Output and Polarity Control Single-Pulse Operation Special Event Trigger Update Lockout PWM Dead-Time Decrementing the Counter Distortion Generators Insertion Ranges PWM Duty Cycle Center-Aligned Complementary Operation Edge-Aligned Register Buffers Registers PWM Output Override Complementary Mode Examples Synchronization PWM Period PWM Time Base Continuous Up/Down Count Modes Free-Running Mode Interrupts In Continuous Up/Down Count Mode	260 142 141 138 144 144 136 137 135 135 135 135 135 136 131 133 134 132 132 131 138 138 138 138 138 129 120 125 125 125 125 125 125 125
PUSHL PWM Fault Input Output and Polarity Control Single-Pulse Operation Special Event Trigger Update Lockout PWM Dead-Time Decrementing the Counter Distortion Generators Insertion Ranges PWM Duty Cycle Center-Aligned Complementary Operation Edge-Aligned Register Buffers Registers PWM Output Override Complementary Mode Examples Synchronization PWM Time Base Continuous Up/Down Count Modes Free-Running Mode In Continuous Up/Down Count Mode In Double Update Mode	260 142 141 138 144 144 136 137 135 135 135 135 135 136 131 133 134 132 132 131 138 138 138 138 138 138 129 120 125 125 125 125 125 126 128
PUSHL PWM Fault Input Output and Polarity Control Single-Pulse Operation Special Event Trigger Update Lockout PWM Dead-Time Decrementing the Counter Distortion Generators Insertion Ranges PWM Duty Cycle Center-Aligned Complementary Operation Edge-Aligned Register Buffers Registers PWM Output Override Complementary Mode Examples Synchronization PWM Period PWM Time Base Continuous Up/Down Count Modes Free-Running Mode In Continuous Up/Down Count Mode In Double Update Mode In Free-Running Mode	260
PUSHL PWM Fault Input Output and Polarity Control Single-Pulse Operation Special Event Trigger Update Lockout PWM Dead-Time Decrementing the Counter Distortion Generators Insertion Ranges PWM Duty Cycle Center-Aligned Complementary Operation Edge-Aligned Register Buffers Registers PWM Output Override Complementary Mode Examples Synchronization PWM Time Base Continuous Up/Down Count Modes Free-Running Mode In Continuous Up/Down Count Mode In Double Update Mode In Double Update Mode In Free-Running Mode In Single-Shot Mode	260