

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	16
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf1330-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

18/20/28-Pin Enhanced Flash Microcontrollers with nanoWatt Technology, High-Performance PWM and A/D

Power-Managed Modes:

- Run: CPU on, peripherals on
- · Idle: CPU off, peripherals on
- Sleep: CPU off, peripherals off
- Ultra Low 50 nA Input Leakage
- Run mode currents down to 15 μA, typical
- Idle mode currents down to 3.7 μA, typical
- Sleep mode current down to 100 nA, typical
- Timer1 Oscillator: 1.8 μA, typical; 32 kHz; 2V
- Watchdog Timer (WDT): 1.4 μA, typical; 2V
- Two-Speed Oscillator Start-up

14-Bit Power Control PWM Module:

- · Up to 6 PWM Channel Outputs
- Complementary or independent outputs
- Edge or Center-Aligned Operation
- Flexible Dead-Band Generator
- Hardware Fault Protection Input
- · Simultaneous Update of Duty Cycle and Period:
- Flexible Special Event Trigger output

Flexible Oscillator Structure:

- · Four Crystal modes, up to 40 MHz
- 4x Phase Lock Loop (PLL) Available for Crystal and Internal Oscillators
- Two External RC modes, up to 4 MHz
- Fast wake-up from Sleep and Idle, 1 μs, typical
- Two External Clock modes, up to 40 MHz
- Internal Oscillator Block:
 - 8 user-selectable frequencies from 31 kHz to 8 MHz
 - Provides a complete range of clock speeds from 31 kHz to 32 MHz when used with PLL
- User-tunable to compensate for frequency drift
- Secondary Oscillator using Timer1 @ 32 kHz
- · Fail-Safe Clock Monitor:
 - Allows for safe shutdown if peripheral clock stops

Peripheral Highlights:

- High-Current Sink/Source 25 mA/25 mA
- Up to 4 Programmable External Interrupts
- Four Input Change Interrupts
- Enhanced Addressable USART module:
 - Supports RS-485, RS-232 and LIN/J2602
 - RS-232 operation using internal oscillator block (no external crystal required)
 - Auto-wake-up on Start bit
 - Auto-Baud Detect
- 10-Bit, up to 4-Channel Analog-to-Digital Converter module (A/D):
 - Auto-acquisition capability
 - Conversion available during Sleep
- · Up to 3 Analog Comparators
- Programmable Reference Voltage for Comparators
- Programmable, 15-Level Low-Voltage Detection (LVD) module:
 - Supports interrupt on Low-Voltage Detection

Special Microcontroller Features:

- C Compiler Optimized Architecture with Optional Extended Instruction Set
- Flash Memory Retention: > 40 years
- Self-Programmable under Software Control
- · Priority Levels for Interrupts
- 8 x 8 Single-Cycle Hardware Multiplier
- Extended Watchdog Timer (WDT):
- Programmable period from 4 ms to 131s
- Programmable Code Protection
- Single-Supply In-Circuit Serial Programming™ (ICSP™) via Two Pins
- · In-Circuit Debug (ICD) via Two Pins
- Wide Operating Voltage Range (2.0V to 5.5V)

Device	Program Memory		Data Memory			10-Bit		Analog	14 Dit	Timoro
	Flash (bytes)	# Single-Word Instructions	SRAM (bytes)	EEPROM (bytes)	I/O	ADC Channel	EUSART	Comparator	PWM (ch)	16-Bit
PIC18F1230	4096	2048	256	128	16	4	Yes	3	6	2
PIC18F1330	8192	4096	256	128	16	4	Yes	3	6	2

Features	PIC18F1230	PIC18F1330
Operating Frequency	DC – 40 MHz	DC – 40 MHz
Program Memory (Bytes)	4096	8192
Program Memory (Instructions)	2048	4096
Data Memory (Bytes)	256	256
Data EEPROM Memory (Bytes)	128	128
Interrupt Sources	17	17
I/O Ports	Ports A, B	Ports A, B
Timers	2	2
Power Control PWM Module	6 Channels	6 Channels
Serial Communications	Enhanced USART	Enhanced USART
10-Bit Analog-to-Digital Module	4 Input Channels	4 Input Channels
Resets (and Delays)	POR, BOR, RESET Instruction, Stack Full, Stack Underflow (PWRT, OST), MCLR (optional), WDT	POR, BOR, RESET Instruction, Stack Full, Stack Underflow (PWRT, OST), MCLR (optional), WDT
Programmable Low-Voltage Detect	Yes	Yes
Programmable Brown-out Reset	Yes	Yes
Instruction Set	75 Instructions; 83 with Extended Instruction Set enabled	75 Instructions; 83 with Extended Instruction Set enabled
Packages	18-Pin PDIP 18-Pin SOIC 20-Pin SSOP 28-Pin QFN	18-Pin PDIP 18-Pin SOIC 20-Pin SSOP 28-Pin QFN

TABLE 1-1: DEVICE FEATURES

	Pin Number			Din Buffor		
Pin Name	PDIP, SOIC	SSOP	QFN	Туре	Туре	Description
MCLR/Vpp/RA5/FLTA	4	4	1			Master Clear (input), programming voltage (input)
						or Fault detect input.
MCLR				I	ST	Master Clear (Reset) input. This pin is an
						active-low Reset to the device.
VPP				I	Analog	Programming voltage input.
RA5				I	ST	Digital input.
FLTA ⁽¹⁾				I	ST	Fault detect input for PWM.
RA7/OSC1/CLKI/	16	18	21			Oscillator crystal, external clock input, Timer1
T1OSI/FLTA						oscillator input or Fault detect input.
RA7				I/O	ST	Digital I/O.
OSC1				I	Analog	Oscillator crystal input or external clock source
						input.
CLKI				I	—	External clock source input.
$T10SI^{(2)}$				I	Analog	Timer1 oscillator input.
FLTA				I	ST	Fault detect input for PWM.
RA6/OSC2/CLKO/	15	17	20			Oscillator crystal, clock output, Timer1 oscillator
T1OSO/T1CKI/AN3						output or analog input.
RA6				I/O	ST	Digital I/O.
OSC2				0	—	Oscillator crystal output or external clock
						source input.
CLKO				0	—	External clock source output.
T10SO(2)				0	—	Timer1 oscillator output.
TICKI(2)					ST	Timer1 clock input.
AN3					Analog	Analog input 3.
Legend: TTL = TTL co	ompatible	e input			CMC	DS = CMOS compatible input or output
ST = Schmit	tt Triggei	r input w	ith CMC	S level	s I	= Input
O = Output	t				Р	= Power

TABLE 1-2:	PIC18F1230/1330 PINOUT I/O DESCRIPTIONS

Note 1: Placement of FLTA depends on the value of Configuration bit, FLTAMX, of CONFIG3H.

2: Placement of T1OSI and T1OSO/T1CKI depends on the value of Configuration bit, T1OSCMX, of CONFIG3H.

	Pi	n Numb	ber	Din	Buffor	
Pin Name	PDIP, SOIC	SSOP	QFN	Туре	Туре	Description
						PORTB is a bidirectional I/O port.
RB0/PWM0 RB0 PWM0	8	9	9	I/O O	TTL	Digital I/O. PWM module output PWM0.
RB1/PWM1 RB1 PWM1	9	10	10	I/O O	TTL	Digital I/O. PWM module output PWM1.
RB2/INT2/KBI2/CMP2/ T1OSO/T1CKI RB2	17	19	23	1/0	TTL	Digital I/O.
INT2 KBI2 CMP2 T1OSO ⁽²⁾ T1CKI ⁽²⁾				 	ST TTL Analog — ST	External interrupt 2. Interrupt-on-change pin. Comparator 2 input. Timer1 oscillator output. Timer1 clock input.
RB3/INT3/KBI3/CMP1/ T1OSI	18	20	24			
RB3 INT3 KBI3 CMP1 T1OSI ⁽²⁾				/O 	TTL ST TTL Analog Analog	Digital I/O. External interrupt 3. Interrupt-on-change pin. Comparator 1 input. Timer1 oscillator input.
RB4/PWM2 RB4 PWM2	10	11	12	I/O O	TTL	Digital I/O. PWM module output PWM2.
RB5/PWM3 RB5 PWM3	11	12	13	I/O O	TTL	Digital I/O. PWM module output PWM3.
RB6/PWM4/PGC RB6 PWM4 PGC	12	13	15	I/O O I	TTL — ST	Digital I/O. PWM module output PWM4. In-Circuit Debugger and ICSP™ programming clock pin.
RB7/PWM5/PGD RB7 PWM5 PGD	13	14	16	I/O O O	TTL — —	Digital I/O. PWM module output PWM5. In-Circuit Debugger and ICSP programming data pin.
Legend: TTL = TTL co ST = Schmi O = Output	ompatible tt Trigge t	e input r input w	vith CMC)S level	CMC Is I P	DS = CMOS compatible input or output = Input = Power
Note 1: Placement of	FI TA de	epends o	on the va	lue of (Configurat	ion bit FLTAMX of CONFIG3H

TABLE 1-2: PIC18F1230/1330 PINOUT I/O DESCRIPTIONS (CONTINUED)

Placement of T1OSI and T1OSO/T1CKI depends on the value of Configuration bit, T1OSCMX, of CONFIG3H.

FIGURE 14-14: DUTY CYCLE UPDATE TIMES IN CONTINUOUS UP/DOWN COUNT MODE WITH DOUBLE UPDATES

14.6.4 CENTER-ALIGNED PWM

Center-aligned PWM signals are produced by the module when the PWM time base is configured in a Continuous Up/Down Count mode (see Figure 14-15). The PWM compare output is driven to the active state when the value of the Duty Cycle register matches the value of PTMR and the PWM time base is counting downwards (PTDIR = 1). The PWM compare output will be driven to the inactive state when the PWM time base is counting upwards (PTDIR = 0) and the value in the PTMR register matches the duty cycle value. If the value in a particular Duty Cycle register is zero, then the output on the corresponding PWM pin will be

inactive for the entire PWM period. In addition, the output on the PWM pin will be active for the entire PWM period if the value in the Duty Cycle register is equal to or greater than the value in the PTPER register.

Note: When the PWM is started in Center-Aligned mode, the PWM Time Base Period register (PTPER) is loaded into the PWM Time Base register (PTMR) and the PTMR is configured automatically to start down counting. This is done to ensure that all the PWM signals don't start at the same time.

FIGURE 14-15: START OF CENTER-ALIGNED PWM

REGISTER 14-5: DTCON: DEAD-TIME CONTROL REGISTER

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| DTPS1 | DTPS0 | DT5 | DT4 | DT3 | DT2 | DT1 | DT0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	DTPS1:DTPS0: Dead-Time Unit A Prescale Select bits
	11 = Clock source for dead-time unit is Fosc/16
	10 = Clock source for dead-time unit is Fosc/8
	01 = Clock source for dead-time unit is Fosc/4
	00 = Clock source for dead-time unit is Fosc/2
bit 5-0	DT5:DT0: Unsigned 6-Bit Dead-Time Value for Dead-Time Unit bits

14.7.2 DEAD-TIME RANGES

The amount of dead time provided by the dead-time unit is selected by specifying the input clock prescaler value and a 6-bit unsigned value defined in the DTCON register. Four input clock prescaler selections have been provided to allow a suitable range of dead times based on the device operating frequency. Fosc/2, Fosc/4, Fosc/8 and Fosc/16 are the clock prescaler options available using the DTPS1:DTPS0 control bits in the DTCON register.

After selecting an appropriate prescaler value, the dead time is adjusted by loading a 6-bit unsigned value into DTCON<5:0>. The dead-time unit prescaler is cleared on any of the following events:

- On a load of the down timer due to a duty cycle comparison edge event;
- · On a write to the DTCON register; or
- On any device Reset.

14.7.3 DECREMENTING THE DEAD-TIME COUNTER

The dead-time counter is clocked from any of the Q clocks based on the following conditions.

- 1. The dead-time counter is clocked on Q1 when:
 - The DTPS bits are set to any of the following dead-time prescaler settings: Fosc/4, Fosc/8, Fosc/16
 - The PWM Time Base Prescale bits (PTCKPS<1:0>) are set to any of the following prescale ratios: FOSC/16, FOSC/64, FOSC/256
- The dead-time counter is clocked by a pair of Q clocks when the PWM Time Base Prescale bits are set to 1:1 (PTCKPS<1:0> = 00, Fosc/4) and the dead-time counter is clocked by the Fosc/2 (DTPS<1:0> = 00).
- 3. The dead-time counter is clocked using every other Q clock, depending on the two LSbs in the Duty Cycle registers:
 - If the PWM duty cycle match occurs on Q1 or Q3, then the dead-time counter is clocked using every Q1 and Q3
 - If the PWM duty cycles match occurs on Q2 or Q4, then the dead-time counter is clocked using every Q2 and Q4
- 4. When the DTPS<1:0> bits are set to any of the other dead-time prescaler settings (i.e., Fosc/4, Fosc/8 or Fosc/16) and the PWM time base prescaler is set to 1:1, the dead-time counter is clocked by the Q clock corresponding to the Q clocks on which the PWM duty cycle match occurs.

NOTES:

15.1 Baud Rate Generator (BRG)

The BRG is a dedicated 8-bit or 16-bit generator that supports both the Asynchronous and Synchronous modes of the EUSART. By default, the BRG operates in 8-bit mode; setting the BRG16 bit (BAUDCON<3>) selects 16-bit mode.

The SPBRGH:SPBRG register pair controls the period of a free-running timer. In Asynchronous mode, bits BRGH (TXSTA<2>) and BRG16 (BAUDCON<3>) also control the baud rate. In Synchronous mode, BRGH is ignored. Table 15-1 shows the formula for computation of the baud rate for different EUSART modes which only apply in Master mode (internally generated clock).

Given the desired baud rate and FOSC, the nearest integer value for the SPBRGH:SPBRG registers can be calculated using the formulas in Table 15-1. From this, the error in baud rate can be determined. An example calculation is shown in Example 15-1. Typical baud rates and error values for the various Asynchronous modes are shown in Table 15-2. It may be advantageous to use the high baud rate (BRGH = 1), or the 16-bit BRG to reduce the baud rate error, or achieve a slow baud rate for a fast oscillator frequency.

Writing a new value to the SPBRGH:SPBRG registers causes the BRG timer to be reset (or cleared). This ensures the BRG does not wait for a timer overflow before outputting the new baud rate.

Note:	A BRG value of '0' is not supported.

15.1.1 OPERATION IN POWER-MANAGED MODES

The device clock is used to generate the desired baud rate. When one of the power-managed modes is entered, the new clock source may be operating at a different frequency. This may require an adjustment to the value in the SPBRG register pair.

15.1.2 SAMPLING

The data on the RX pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RX pin when SYNC is clear or when both BRG16 and BRGH are not set. The data on the RX pin is sampled once when SYNC is set or when BRGH16 and BRGH are both set.

C	Configuration Bits			Poud Poto Formula		
SYNC	BRG16	BRGH	BRG/EUSART Mode	Baud Rate Formula		
0	0	0	8-bit/Asynchronous	Fosc/[64 (n + 1)]		
0	0	1	8-bit/Asynchronous			
0	1	0	16-bit/Asynchronous	FUSC/[18 (II + 1)]		
0	1	1	16-bit/Asynchronous			
1	0	x	8-bit/Synchronous	Fosc/[4 (n + 1)]		
1	1	x	16-bit/Synchronous]		

TABLE 15-1: BAUD RATE FORMULAS

Legend: x = Don't care, n = value of SPBRGH:SPBRG register pair

15.4 EUSART Synchronous Slave Mode

Synchronous Slave mode is entered by clearing bit, CSRC (TXSTA<7>). This mode differs from the Synchronous Master mode in that the shift clock is supplied externally at the CK pin (instead of being supplied internally in Master mode). This allows the device to transfer or receive data while in any low-power mode.

15.4.1 EUSART SYNCHRONOUS SLAVE TRANSMISSION

The operation of the Synchronous Master and Slave modes are identical, except in the case of the Sleep mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in the TXREG register.
- c) Flag bit, TXIF, will not be set.
- d) When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit, TXIF, will now be set.
- e) If enable bit, TXIE, is set, the interrupt will wake the chip from Sleep. If the global interrupt is enabled, the program will branch to the interrupt vector.

To set up a Synchronous Slave Transmission:

- Enable the synchronous slave serial port by setting bits, SYNC and SPEN, and clearing bit, CSRC.
- 2. Clear bits, CREN and SREN.
- 3. If interrupts are desired, set enable bit, TXIE.
- 4. If the signal from the CK pin is to be inverted, set the TXCKP bit.
- 5. If 9-bit transmission is desired, set bit, TX9.
- 6. Enable the transmission by setting enable bit, TXEN.
- 7. If 9-bit transmission is selected, the ninth bit should be loaded in bit, TX9D.
- 8. Start transmission by loading data to the TXREG register.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	47
PIR1	—	ADIF	RCIF	TXIF	CMP2IF	CMP1IF	CMP0IF	TMR1IF	49
PIE1	_	ADIE	RCIE	TXIE	CMP2IE	CMP1IE	CMP0IE	TMR1IE	49
IPR1	—	ADIP	RCIP	TXIP	CMP2IP	CMP1IP	CMP0IP	TMR1IP	49
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	48
TXREG	EUSART T	ransmit Regi	ister						48
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	48
BAUDCON	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	—	WUE	ABDEN	48
SPBRGH	EUSART Baud Rate Generator Register High Byte								
SPBRG	EUSART E	aud Rate Ge	enerator Re	gister Low I	Byte				48

TABLE 15-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous slave transmission.

16.5 Operation in Power-Managed Modes

The selection of the automatic acquisition time and A/D conversion clock is determined in part by the clock source and frequency while in a power-managed mode.

If the A/D is expected to operate while the device is in a power-managed mode, the ACQT2:ACQT0 and ADCS2:ADCS0 bits in ADCON2 should be updated in accordance with the clock source to be used in that mode. After entering the mode, an A/D acquisition or conversion may be started. Once started, the device should continue to be clocked by the same clock source until the conversion has been completed.

If desired, the device may be placed into the corresponding Idle mode during the conversion. If the device clock frequency is less than 1 MHz, the A/D RC clock source should be selected.

Operation in Sleep mode requires the A/D FRC clock to be selected. If bits ACQT2:ACQT0 are set to '000' and a conversion is started, the conversion will be delayed one instruction cycle to allow execution of the SLEEP instruction and entry to Sleep mode. The IDLEN bit (OSCCON<7>) must have already been cleared prior to starting the conversion.

16.6 Configuring Analog Port Pins

The ADCON1 and TRISA registers configure the A/D port pins. The port pins needed as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS1:CHS0 bits and the TRIS bits.

- Note 1: When reading the PORT register, all pins configured as analog input channels will read as cleared (a low level). Pins configured as digital inputs will convert as analog inputs. Analog levels on a digitally configured input will be accurately converted.
 - 2: Analog levels on any pin defined as a digital input may cause the digital input buffer to consume current out of the device's specification limits.

REGISTER 20-15: WDTCON: WATCHDOG TIMER CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	
—	—	—	—	—	—	_	SWDTEN ⁽¹⁾	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'					
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		

bit 7-1	Unimplemented: Read as '0'
bit 0	SWDTEN: Software Controlled Watchdog Timer Enable bit ⁽¹⁾
	1 = Watchdog Timer is on
	0 = Watchdog Timer is off

Note 1: This bit has no effect if the Configuration bit, WDTEN, is enabled.

TABLE 20-2: SUMMARY OF WATCHDOG TIMER REGISTERS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
RCON	IPEN	SBOREN ⁽¹⁾	_	RI	TO	PD	POR	BOR	48
WDTCON		—	_	—	—	—		SWDTEN ⁽²⁾	48

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Watchdog Timer.

Note 1: The SBOREN bit is only available when the BOREN1:BOREN0 Configuration bits = 01; otherwise, it is disabled and reads as '0'. See Section 5.4 "Brown-out Reset (BOR)".

2: This bit has no effect if the Configuration bit, WDTEN, is enabled.

20.5 Program Verification and Code Protection

The overall structure of the code protection on the PIC18 Flash devices differs significantly from other $\text{PIC}^{\textcircled{R}}$ devices.

The user program memory is divided into three blocks. One of these is a Boot Block of variable size (maximum 2 Kbytes). The remainder of the memory is divided into two blocks on binary boundaries. Each of the three blocks has three code protection bits associated with them. They are:

- Code-Protect bit (CPx)
- Write-Protect bit (WRTx)
- External Block Table Read bit (EBTRx)

Figure 20-5 shows the program memory organization for 4 and 8-Kbyte devices and the specific code protection bit associated with each block. The actual locations of the bits are summarized in Table 20-3.

FIGURE 20-5: CODE-PROTECTED PROGRAM MEMORY FOR PIC18F1230/1330

4 Kbytes C18F1230)	8 Kbytes (PIC18F1330)	Address Range	Controlled By:				
oot Block		•	Controlled By:				
		000000h 0003FFh	CPB, WRTB, EBTRB				
Block 0	Boot Block	000400h 0007FFh	CP0, WRT0, EBTR0				
Block 1	Block 0	000800h 000FFFh	CP1, WRT1, EBTR1				
nplemented Read '0's	Block 1	001000h 001FFFh	CP2, WRT2, EBTR2				
nplemented Read '0's	Unimplemented Read '0's	002000h 1FFFFFh	(Unimplemented Memory Space)				
	Block 0 Block 1 nplemented Read '0's	Block 0 Block 1 Block	Block 0 Block 1 Unimplemented Read '0's IFFFFh IFFFFh				

TABLE 20-3: SUMMARY OF CODE PROTECTION REGISTERS

File Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
300008h	CONFIG5L		_	_	—	_	_	CP1	CP0
300009h	CONFIG5H	CPD	CPB	—	—	—	—	—	_
30000Ah	CONFIG6L	-	—	—	—	—	—	WRT1	WRT0
30000Bh	CONFIG6H	WRTD	WRTB	WRTC	—	—	—	—	—
30000Ch	CONFIG7L	_	—	—	—	—	—	EBTR1	EBTR0
30000Dh	CONFIG7H	_	EBTRB	_	_	_	_	_	_

Legend: Shaded cells are unimplemented.

21.11 PICSTART Plus Development Programmer

The PICSTART Plus Development Programmer is an easy-to-use, low-cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. The PICSTART Plus Development Programmer supports most PIC devices in DIP packages up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus Development Programmer is CE compliant.

21.12 PICkit 2 Development Programmer

The PICkit[™] 2 Development Programmer is a low-cost programmer and selected Flash device debugger with an easy-to-use interface for programming many of Microchip's baseline, mid-range and PIC18F families of Flash memory microcontrollers. The PICkit 2 Starter Kit includes a prototyping development board, twelve sequential lessons, software and HI-TECH's PICC[™] Lite C compiler, and is designed to help get up to speed quickly using PIC[®] microcontrollers. The kit provides everything needed to program, evaluate and develop applications using Microchip's powerful, mid-range Flash memory family of microcontrollers.

21.13 Demonstration, Development and Evaluation Boards

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart[®] battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Check the Microchip web page (www.microchip.com) and the latest *"Product Selector Guide"* (DS00148) for the complete list of demonstration, development and evaluation kits.

TABLE 22-2:	PIC18FXXXX INSTRUCTION SET	(CONTINUED))

Mnemonic, Operands		Description	Cycles	16-Bit Instruction Word				Status	Netes
		Description	Cycles	MSb			LSb	Affected	Notes
LITERAL	OPERAT	IONS							
ADDLW	k	Add Literal and WREG	1	0000	1111	kkkk	kkkk	C, DC, Z, OV, N	
ANDLW	k	AND Literal with WREG	1	0000	1011	kkkk	kkkk	Z, N	
IORLW	k	Inclusive OR Literal with WREG	1	0000	1001	kkkk	kkkk	Z, N	
LFSR	f, k	Move Literal (12-bit)2nd word	2	1110	1110	00ff	kkkk	None	
		to FSR(f) 1st word		1111	0000	kkkk	kkkk		
MOVLB	k	Move Literal to BSR<3:0>	1	0000	0001	0000	kkkk	None	
MOVLW	k	Move Literal to WREG	1	0000	1110	kkkk	kkkk	None	
MULLW	k	Multiply Literal with WREG	1	0000	1101	kkkk	kkkk	None	
RETLW	k	Return with Literal in WREG	2	0000	1100	kkkk	kkkk	None	
SUBLW	k	Subtract WREG from Literal	1	0000	1000	kkkk	kkkk	C, DC, Z, OV, N	
XORLW	k	Exclusive OR Literal with WREG	1	0000	1010	kkkk	kkkk	Z, N	
DATA MEN	NORY ↔	PROGRAM MEMORY OPERATION	IS						
TBLRD*		Table Read	2	0000	0000	0000	1000	None	
TBLRD*+		Table Read with Post-Increment		0000	0000	0000	1001	None	
TBLRD*-		Table Read with Post-Decrement		0000	0000	0000	1010	None	
TBLRD+*		Table Read with Pre-Increment		0000	0000	0000	1011	None	
TBLWT*		Table Write	2	0000	0000	0000	1100	None	
TBLWT*+		Table Write with Post-Increment		0000	0000	0000	1101	None	
TBLWT*-		Table Write with Post-Decrement		0000	0000	0000	1110	None	
TBLWT+*		Table Write with Pre-Increment		0000	0000	0000	1111	None	

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, 'd' = 1), the prescaler will be cleared if assigned.

3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

DAW	Decimal A	djust W Re	gister	DEC	F	Decreme	nt f		
Syntax:	DAW			Synta	ax:	DECF f{,c	1 {,a}}		
Operands:	None			Oper	ands:	$0 \leq f \leq 255$			
Operation:	lf [W<3:0> > (W<3:0>) +	> 9] or [DC = 1 6 → W<3:0>;] then,			d ∈ [0,1] a ∈ [0,1]			
	else,	· · · · ,	- ,		ation:	(f) – 1 \rightarrow de	est		
	(W<3:0>) –	→ W<3:0>		Statu	Status Affected:		DV, Z		
	lf [W<7:4> -	+ DC > 9] or [C	; = 1] then,	Enco	oding:	0000	01da ff:	ff ffff	
	(W<7:4>) + else, (W<7:4>) +	$6 + DC \rightarrow W^{<}$ DC $\rightarrow W^{<7:43}$	<7:4> ;	Desc	cription:	Decrement result is sto result is sto	register 'f'. If ' red in W. If 'd' red back in re	d' is '0', the is '1', the gister 'f'.	
Status Affected:	Status Affected: C				lf 'a' is '0', t	he Access Ba	nk is selected.		
Encoding: 0000 0000 0000 0111				GPR bank	he BSR is use	d to select the			
Description:	DAW adjust resulting fro variables (e and produce result.	s the eight-bit m the earlier a ach in packed es a correct pa	value in W ddition of two BCD format) icked BCD			If 'a' is '0' a set is enabl in Indexed mode when Section 22 Bit-Oriente	nd the extend ed, this instruct Literal Offset A lever f ≤ 95 (5 .2.3 "Byte-Or ed Instruction	ed instruction ction operates Addressing Fh). See iented and s in Indexed	
vvoras:	1					Literal Offs	set Mode" for	details.	
Cycles:	1			Word	ds:	1			
Q Cycle Activity:	00	00	0.4	Cycle	es:	1			
Q1 Decede	Q2 Road	Q3 Procoss	Q4 Write	QC	ycle Activity:				
Decode	register W	Data	W		Q1	Q2	Q3	Q4	
Example 1:					Decode	Read	Process	Write to	
	DAW					register 'f	Data	destination	
Before Instruc	tion			Evan	nnlo		יידאיר 1 ח		
W	= A5h				<u>Poforo Instruc</u>	DECF (JN1, 1, U		
DC	= 0 = 0				CNT	= 01h			
After Instruction	on				Z	= 0			
W	= 05h				CNT	on = 00h			
DC	= 1 = 0				Z	= 1			
Example 2:									
Before Instruc	tion								
W C DC	= CEh = 0 = 0								
After Instructio	on c ::								
W C DC	= 34h = 1 = 0								

SUBWFB	Subtra	act W from	f with E	Borrow					
Syntax:	SUBW	SUBWFB f {,d {,a}}							
Operands:	$0 \le f \le 2$ $d \in [0, 1]$ $a \in [0, 1]$	255]]							
Operation:	$(f) - (W) - (\overline{C}) \rightarrow dest$								
Status Affected:	N, OV,	N, OV, C, DC, Z							
Encoding:	0101	10da	ffff	ffff					
Description:	Subtract from re- method in W. If in regis If 'a' is ' GPR ba If 'a' is ' set is e in Index Section Bit-Ori	t W and the gister 'f' (2's). If 'd' is '0', 'd' is '1', the ter 'f'. 0', the Acce: 1', the BSR ank. 0' and the enabled, this is ced Literal O whenever f \leq n 22.2.3 "By	Carry fla complem the result result is s ss Bank is is used to xtended i instruction ffset Add 95 (5Fh). te-Orien	g (borrow) hent It is stored stored back s selected. o select the nstruction n operates ressing . See ted and o Indoxod					
Mordo	Literal	Offset Mode	e" for det	ails.					
Cyclos:	1								
O Cycles.	I								
	02	0	3	04					
Decode	Read	l Proc	ess	Write to					
	register	ʻf' Da	ta c	destination					
Example 1:	SUBW	FB REG,	1, 0						
Before Instruct	tion	(000	1 1001						
REG W	= 19r	n (000	(0000 1101)						
C After Instructio	= 1								
REG	= 0C	n (000	(0000 1011)						
W C	= 0D	n (000	(0000 1101)						
Z	= 0								
IN Example 2:		; resu		live					
Before Instruct	SUBW.	'B REG, U	, 0						
REG W C	= 1BI = 1AI = 0	ו (000 ח (000	1 1011) 1 1010))					
After Instructio REG W	n = 1Bl = 00h	ו (000 ו	1 1011;)					
C Z N	= 1 = 1 = 0	; resu	ılt is zero						
Example 3:	SUBW	FB REG,	1, 0						
Before Instruct REG W C	tion = 03ł = 0El = 1	ו (000 ח (000	0 0011))					
Alter Instructio REG	'' = F5l	ו (111	1 0100)					
W C	= 0EI = 0	; [2's 1 (000	comp] 0 1101;)					
Z N	= 0 = 1	; resu	ılt is nega	ative					

SWAPF	Swap f							
Syntax:	SWAPF f	{,d {,a}}						
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$							
Operation:	$(f<3:0>) \rightarrow$ $(f<7:4>) \rightarrow$	(f<3:0>) → dest<7:4>, (f<7:4>) → dest<3:0>						
Status Affected:	None							
Encoding:	0011	10da	fff	f	ffff			
Description:	The upper a 'f' are excha- is placed in re If 'a' is '0', t If 'a' is '1', t GPR bank. If 'a' is '0' a set is enabl in Indexed mode when Section 22 Bit-Oriente Literal Offs	The upper and lower nibbles of register 'f' are exchanged. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in register 'f'. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 22.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed						
Words:	1							
Cycles:	1							
Q Cycle Activity:								
Q1	Q2	Q3	5		Q4			
Decode	Read register 'f'	Proce Dat	ess a	V de:	Vrite to stination			
Example: SWAPF REG, 1, 0 Before Instruction REG = 53h After Instruction REG = 35h								

22.2 Extended Instruction Set

In addition to the standard 75 instructions of the PIC18 instruction set, PIC18F1230/1330 devices also provide an optional extension to the core CPU functionality. The added features include eight additional instructions that augment indirect and indexed addressing operations and the implementation of Indexed Literal Offset Addressing mode for many of the standard PIC18 instructions.

The additional features of the extended instruction set are disabled by default. To enable them, users must set the XINST Configuration bit.

The instructions in the extended set (with the exception of CALLW, MOVSF and MOVSS) can all be classified as literal operations, which either manipulate the File Select Registers, or use them for indexed addressing. Two of the instructions, ADDFSR and SUBFSR, each have an additional special instantiation for using FSR2. These versions (ADDULNK and SUBULNK) allow for automatic return after execution.

The extended instructions are specifically implemented to optimize re-entrant program code (that is, code that is recursive or that uses a software stack) written in high-level languages, particularly C. Among other things, they allow users working in high-level languages to perform certain operations on data structures more efficiently. These include:

- Dynamic allocation and deallocation of software stack space when entering and leaving subroutines
- Function Pointer invocation
- Software Stack Pointer manipulation
- Manipulation of variables located in a software stack

A summary of the instructions in the extended instruction set is provided in Table 22-3. Detailed descriptions are provided in **Section 22.2.2** "**Extended Instruction Set**". The opcode field descriptions in Table 22-1 (page 216) apply to both the standard and extended PIC18 instruction sets.

Note: The instruction set extension and the Indexed Literal Offset Addressing mode were designed for optimizing applications written in C; the user may likely never use these instructions directly in the assembler. The syntax for these commands is provided as a reference for users who may be reviewing code that has been generated by a compiler.

22.2.1 EXTENDED INSTRUCTION SYNTAX

Most of the extended instructions use indexed arguments, using one of the File Select Registers and some offset to specify a source or destination register. When an argument for an instruction serves as part of indexed addressing, it is enclosed in square brackets ("[]"). This is done to indicate that the argument is used as an index or offset. The MPASMTM Assembler will flag an error if it determines that an index or offset value is not bracketed.

When the extended instruction set is enabled, brackets are also used to indicate index arguments in byteoriented and bit-oriented instructions. This is in addition to other changes in their syntax. For more details, see Section 22.2.3.1 "Extended Instruction Syntax with Standard PIC18 Commands".

Note: In the past, square brackets have been used to denote optional arguments in the PIC18 and earlier instruction sets. In this text and going forward, optional arguments are denoted by braces ("{ }").

Mnemonic, Operands		Description	Cycles	16-Bit Instruction Word				Status	
		Description	Cycles	MSb			LSb	Affected	
ADDFSR	f, k	Add Literal to FSR	1	1110	1000	ffkk	kkkk	None	
ADDULNK	k	Add Literal to FSR2 and Return	2	1110	1000	11kk	kkkk	None	
CALLW		Call Subroutine using WREG	2	0000	0000	0001	0100	None	
MOVSF	z _s , f _d	Move z _s (source) to 1st word	2	1110	1011	0zzz	ZZZZ	None	
		f _d (destination) 2nd word		1111	ffff	ffff	ffff		
MOVSS	z _s , z _d	Move z _s (source) to 1st word	2	1110	1011	lzzz	ZZZZ	None	
		z _d (destination) 2nd word		1111	xxxx	XZZZ	ZZZZ		
PUSHL	k	Store Literal at FSR2,	1	1110	1010	kkkk	kkkk	None	
		Decrement FSR2							
SUBFSR	f, k	Subtract Literal from FSR	1	1110	1001	ffkk	kkkk	None	
SUBULNK	k	Subtract Literal from FSR2 and	2	1110	1001	11kk	kkkk	None	
		Return							

TABLE 22-3: EXTENSIONS TO THE PIC18 INSTRUCTION SET

23.3 DC Characteristics: PIC18F1230/1330 (Industrial) PIC18LF1230/1330 (Industrial)

DC CHA	RACTE	RISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for extended} \end{array}$					
Param No.	Symbol	Characteristic	Min	Мах	Units	Conditions		
	VIL	Input Low Voltage						
		I/O ports:						
D030		with TTL buffer	Vss	0.15 Vdd	V	VDD < 4.5V		
D030A			—	0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$		
D031		with Schmitt Trigger buffer	Vss	0.2 VDD	V			
D031A		RC3 and RC4	Vss	0.3 Vdd	V	I ² C [™] enabled		
D031B			Vss	0.8	V	SMBus enabled		
D032		MCLR	Vss	0.2 Vdd	V			
D033		OSC1	Vss	0.3 VDD	V	HS, HSPLL modes		
D033A		OSC1	Vss	0.2 Vdd	V	RC, EC modes ⁽¹⁾		
D033B		OSC1	Vss	0.3	V	XT, LP modes		
D034			Vss	0.3	V			
	VIH	Input High Voltage						
		I/O ports:						
D040		with TTL buffer	0.25 VDD + 0.8V	VDD	V	VDD < 4.5V		
D040A			2.0	Vdd	V	$4.5V \le VDD \le 5.5V$		
D041		with Schmitt Trigger buffer	0.8 Vdd	Vdd	V	<u>_</u>		
D041A		RC3 and RC4	0.7 Vdd	Vdd	V	I ² C enabled		
D041B			2.1	Vdd		I ² C enabled		
D042		MCLR	0.8 Vdd	Vdd	V			
D043		OSC1	0.7 Vdd	Vdd	V	HS, HSPLL modes		
D043A		OSC1	0.8 VDD	VDD	V	EC mode		
D043B		OSC1	0.9 VDD	VDD		RC mode(')		
D043C			1.6	VDU VDD	V	AT, LF HOUES		
	lı∟	Input Leakage Current ^(2,3)			-			
D060		I/O ports	_	+200	nA	Vss < 5.5V		
						$Vss \le VPIN \le VDD$		
						Pin at high-impedance		
				±50	nA	Vss < 3V		
						Vss ≤ VPIN ≤ VDD Din at high impodance		
DOG1		MCLB		⊥4				
D063				±। ⊥1	μΑ			
0003	IDU	Week Bull-up Current		±1	μΑ			
070		POPTR work pull up ourront	50	400				
0100	IPUKB	FOR TE weak puil-up cutterit	50	400	μΑ	v DD - $5v$, v PIN = v SS		

Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the PIC[®] device be driven with an external clock while in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$							
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions			
		Data EEPROM Memory								
D120	ED	Byte Endurance	100K	1M	—	E/W	-40°C to +85°C			
D121	Vdrw	VDD for Read/Write	VMIN	_	5.5	V	Using EECON to read/write VMIN = Minimum operating voltage			
D122	TDEW	Erase/Write Cycle Time	3.59	4.10	4.86	ms				
D123	TRETD	Characteristic Retention	40	—	—	Year	Provided no other specifications are violated			
D124	Tref	Number of Total Erase/Write Cycles before Refresh ⁽¹⁾	1M	10M	—	E/W	-40°C to +85°C			
D125	IDDP	Supply Current during Programming	—	10	—	mA				
		Program Flash Memory								
D130	Eр	Cell Endurance	10K	100K	—	E/W	-40°C to +85°C			
D131	Vpr	VDD for Read	VMIN	_	5.5	V	Vмın = Minimum operating voltage			
D132B	VPEW	VDD for Self-Timed Write	VMIN	—	5.5	V	Vмın = Minimum operating voltage			
D133A	Tiw	Self-Timed Write Cycle Time	1.79	2.05	2.43	ms				
D134	TRETD	Characteristic Retention	40	100	_	Year	Provided no other specifications are violated			
D135	IDDP	Supply Current during Programming	-	10	_	mA				

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Refer to Section 7.8 for a more detailed discussion on data EEPROM endurance.

TABLE 23-9:	CLKO AND I/O TIMING REQUIREMENTS
-------------	---

Param No.	Symbol	Characteristi	Min	Тур	Мах	Units	Conditions	
10	TosH2ckL	OSC1 ↑ to CLKO $↓$	—	75	200	ns	(Note 1)	
11	TosH2ckH	OSC1 ↑ to CLKO ↑	—	75	200	ns	(Note 1)	
12	TckR	CLKO Rise Time	—	35	100	ns	(Note 1)	
13	TckF	CLKO Fall Time	—	35	100	ns	(Note 1)	
14	TckL2ioV	CLKO \downarrow to Port Out Valid	—	—	0.5 Tcy + 20	ns	(Note 1)	
15	TioV2ckH	Port In Valid before CLKO \uparrow	0.25 Tcy + 25	—	—	ns	(Note 1)	
16	TckH2iol	Port In Hold after CLKO ↑	0	—	—	ns	(Note 1)	
17	TosH2ioV	OSC1 ↑ (Q1 cycle) to Port O	—	50	150	ns		
18	TosH2iol	OSC1 ↑ (Q2 cycle) to Port	PIC18FXXXX	100	—	—	ns	
18A		Input Invalid (I/O in hold time)	PIC18LFXXXX	200	—	—	ns	VDD = 2.0V
19	TioV2osH	Port Input Valid to OSC1 \uparrow (I/C	0	—	—	ns		
20	TioR	Port Output Rise Time	PIC18FXXXX	—	10	25	ns	
20A			PIC18LFXXXX	—	—	60	ns	VDD = 2.0V
21	TioF	Port Output Fall Time	PIC18FXXXX	—	10	25	ns	
21A			PIC18LFXXXX	—	—	60	ns	VDD = 2.0V
22†	TINP	INTx Pin High or Low Time	Тсү	_	—	ns		
23†	TRBP	RB7:RB4 Change INTx High	Тсү		_	ns		

† These parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC mode, where CLKO output is 4 x Tosc.