



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                     |
|----------------------------|----------------------------------------------------------------------------|
| Core Processor             | PIC                                                                        |
| Core Size                  | 8-Bit                                                                      |
| Speed                      | 40MHz                                                                      |
| Connectivity               | UART/USART                                                                 |
| Peripherals                | Brown-out Detect/Reset, LVD, POR, PWM, WDT                                 |
| Number of I/O              | 16                                                                         |
| Program Memory Size        | 8KB (4K x 16)                                                              |
| Program Memory Type        | FLASH                                                                      |
| EEPROM Size                | 128 x 8                                                                    |
| RAM Size                   | 256 x 8                                                                    |
| Voltage - Supply (Vcc/Vdd) | 2V ~ 5.5V                                                                  |
| Data Converters            | A/D 4x10b                                                                  |
| Oscillator Type            | Internal                                                                   |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                          |
| Mounting Type              | Surface Mount                                                              |
| Package / Case             | 18-SOIC (0.295", 7.50mm Width)                                             |
| Supplier Device Package    | 18-SOIC                                                                    |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic18lf1330-i-so |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

#### Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, PIC<sup>32</sup> logo, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$  is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2009, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.



### QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL00® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

#### 3.8 Effects of Power-Managed Modes on the Various Clock Sources

When PRI\_IDLE mode is selected, the designated primary oscillator continues to run without interruption. For all other power-managed modes, the oscillator using the OSC1 pin is disabled. The OSC1 pin (and OSC2 pin, if used by the oscillator) will stop oscillating.

In secondary clock modes (SEC\_RUN and SEC\_IDLE), the Timer1 oscillator is operating and providing the device clock. The Timer1 oscillator may also run in all power-managed modes if required to clock Timer1 or Timer3.

In internal oscillator modes (RC\_RUN and RC\_IDLE), the internal oscillator block provides the device clock source. The 31 kHz INTRC output can be used directly to provide the clock and may be enabled to support various special features, regardless of the powermanaged mode (see Section 20.2 "Watchdog Timer (WDT)", Section 20.3 "Two-Speed Start-up" and Section 20.4 "Fail-Safe Clock Monitor" for more information on WDT, Fail-Safe Clock Monitor and Two-Speed Start-up). The INTOSC output at 8 MHz may be used directly to clock the device or may be divided down by the postscaler. The INTOSC output is disabled if the clock is provided directly from the INTRC output.

If the Sleep mode is selected, all clock sources are stopped. Since all the transistor switching currents have been stopped, Sleep mode achieves the lowest current consumption of the device (only leakage currents).

Enabling any on-chip feature that will operate during Sleep will increase the current consumed during Sleep. The INTRC is required to support WDT operation. The Timer1 oscillator may be operating to support a realtime clock. Other features may be operating that do not require a device clock source (i.e., INTx pins and others). Peripherals that may add significant current consumption are listed in **Section 23.0** "**Electrical Characteristics**".

### 3.9 Power-up Delays

Power-up delays are controlled by two timers, so that no external Reset circuitry is required for most applications. The delays ensure that the device is kept in Reset until the device power supply is stable under normal circumstances and the primary clock is operating and stable. For additional information on power-up delays, see **Section 5.5 "Device Reset Timers"**.

The first timer is the Power-up Timer (PWRT), which provides a fixed delay on power-up (parameter 33, Table 23-10). It is enabled by clearing (= 0) the PWRTEN Configuration bit.

The second timer is the Oscillator Start-up Timer (OST), intended to keep the chip in Reset until the crystal oscillator is stable (LP, XT and HS modes). The OST does this by counting 1024 oscillator cycles before allowing the oscillator to clock the device.

When the HSPLL Oscillator mode is selected, the device is kept in Reset for an additional 2 ms, following the HS mode OST delay, so the PLL can lock to the incoming clock frequency.

There is a delay of interval TCSD (parameter 38, Table 23-10), following POR, while the controller becomes ready to execute instructions. This delay runs concurrently with any other delays. This may be the only delay that occurs when any of the EC, RC or INTIO modes are used as the primary clock source.

| Oscillator Mode | OSC1 Pin                                              | OSC2 Pin                                              |
|-----------------|-------------------------------------------------------|-------------------------------------------------------|
| RC, INTIO1      | Floating, external resistor should pull high          | At logic low (clock/4 output)                         |
| RCIO            | Floating, external resistor should pull high          | Configured as PORTA, bit 6                            |
| INTIO2          | Configured as PORTA, bit 7                            | Configured as PORTA, bit 6                            |
| ECIO            | Floating, pulled by external clock                    | Configured as PORTA, bit 6                            |
| EC              | Floating, pulled by external clock                    | At logic low (clock/4 output)                         |
| LP, XT and HS   | Feedback inverter disabled at quiescent voltage level | Feedback inverter disabled at quiescent voltage level |

TABLE 3-3: OSC1 AND OSC2 PIN STATES IN SLEEP MODE

**Note:** See Table 5-2 in **Section 5.0 "Reset"** for time-outs due to Sleep and MCLR Reset.

### 7.0 FLASH PROGRAM MEMORY

The Flash program memory is readable, writable and erasable during normal operation over the entire VDD range.

A read from program memory is executed on one byte at a time. A write to program memory is executed on blocks of 8 bytes at a time. Program memory is erased in blocks of 64 bytes at a time. A bulk erase operation may not be issued from user code.

Writing or erasing program memory will cease instruction fetches until the operation is complete. The program memory cannot be accessed during the write or erase, therefore, code cannot execute. An internal programming timer terminates program memory writes and erases.

A value written to program memory does not need to be a valid instruction. Executing a program memory location that forms an invalid instruction results in a NOP.

#### 7.1 Table Reads and Table Writes

In order to read and write program memory, there are two operations that allow the processor to move bytes between the program memory space and the data RAM:

- Table Read (TBLRD)
- Table Write (TBLWT)

The program memory space is 16 bits wide, while the data RAM space is 8 bits wide. Table reads and table writes move data between these two memory spaces through an 8-bit register (TABLAT).

Table read operations retrieve data from program memory and place it into the data RAM space. Figure 7-1 shows the operation of a table read with program memory and data RAM.

Table write operations store data from the data memory space into holding registers in program memory. The procedure to write the contents of the holding registers into program memory is detailed in **Section 7.5** "**Writing to Flash Program Memory**". Figure 7-2 shows the operation of a table write with program memory and data RAM.

Table operations work with byte entities. A table block containing data, rather than program instructions, is not required to be word-aligned. Therefore, a table block can start and end at any byte address. If a table write is being used to write executable code into program memory, program instructions will need to be word-aligned.

FIGURE 7-1: TABLE READ OPERATION



### 13.0 TIMER1 MODULE

The Timer1 timer/counter module has the following features:

- 16-bit timer/counter (two 8-bit registers; TMR1H and TMR1L)
- Readable and writable (both registers)
- · Internal or external clock select
- Interrupt on overflow from FFFFh to 0000h
- · Status of system clock operation

Figure 13-1 is a simplified block diagram of the Timer1 module.

Register 13-1 details the Timer1 Control register. This register controls the operating mode of the Timer1 module and contains the Timer1 Oscillator Enable bit (T1OSCEN). Timer1 can be enabled or disabled by setting or clearing control bit, TMR1ON (T1CON<0>).

The Timer1 oscillator can be used as a secondary clock source in power-managed modes. When the T1RUN bit is set, the Timer1 oscillator provides the system clock. If the Fail-Safe Clock Monitor is enabled and the Timer1 oscillator fails while providing the system clock, polling the T1RUN bit will indicate whether the clock is being provided by the Timer1 oscillator or another source.

Timer1 can also be used to provide Real-Time Clock (RTC) functionality to applications with only a minimal addition of external components and code overhead.

#### REGISTER 13-1: T1CON: TIMER1 CONTROL REGISTER

| R/W-0 | R-0   | R/W-0   | R/W-0   | R/W-0   | R/W-0  | R/W-0  | R/W-0  |
|-------|-------|---------|---------|---------|--------|--------|--------|
| RD16  | T1RUN | T1CKPS1 | T1CKPS0 | T1OSCEN | T1SYNC | TMR1CS | TMR10N |
| bit 7 |       |         |         |         |        |        | bit 0  |

| Legend:       |                                                                                       |                                                                                                                                            |                                                                       |                    |
|---------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------|
| R = Readable  | e bit                                                                                 | W = Writable bit                                                                                                                           | U = Unimplemented bit,                                                | , read as '0'      |
| -n = Value at | POR                                                                                   | '1' = Bit is set                                                                                                                           | '0' = Bit is cleared                                                  | x = Bit is unknown |
| bit 7         | <b>RD16:</b> 16-B<br>1 = Enables<br>0 = Enables                                       | it Read/Write Mode Enable<br>s register read/write of Tim<br>s register read/write of Tim                                                  | e bit<br>ler1 in one 16-bit operation<br>ler1 in two 8-bit operations |                    |
| bit 6         | <b>T1RUN:</b> Tim<br>1 = Device<br>0 = Device                                         | her1 System Clock Status<br>clock is derived from Time<br>clock is derived from anot                                                       | bit<br>r1 oscillator<br>her source                                    |                    |
| bit 5-4       | <b>T1CKPS1:T</b><br>11 = 1:8 Pre<br>10 = 1:4 Pre<br>01 = 1:2 Pre<br>00 = 1:1 Pre      | <b>1CKPS0:</b> Timer1 Input Cl<br>escale value<br>escale value<br>escale value<br>escale value<br>escale value                             | ock Prescale Select bits                                              |                    |
| bit 3         | T1OSCEN:<br>1 = Timer1 o<br>0 = Timer1<br>The oscillato                               | Timer1 Oscillator Enable t<br>oscillator is enabled<br>oscillator is shut off<br>or inverter and feedback re                               | bit<br>esistor are turned off to elimin                               | ate power drain.   |
| bit 2         | T1SYNC: Ti<br>When TMR1<br>1 = Do not s<br>0 = Synchro<br>When TMR1<br>This bit is ig | mer1 External Clock Input<br>ICS = 1:<br>synchronize external clock<br>nize external clock input<br>ICS = 0:<br>nored. Timer1 uses the int | : Synchronization Select bit<br>input<br>ernal clock when TMR1CS =    | · 0.               |
| bit 1         | TMR1CS: T<br>1 = Externa<br>0 = Internal                                              | imer1 Clock Source Selec<br>I clock from T1OSO/T1Ck<br>clock (Fosc/4)                                                                      | t bit<br>(I (on the rising edge) <sup>(1)</sup>                       |                    |
| bit 0         | <b>TMR1ON:</b> T<br>1 = Enables<br>0 = Stops T                                        | imer1 On bit<br>s Timer1<br>imer1                                                                                                          |                                                                       |                    |
|               |                                                                                       |                                                                                                                                            |                                                                       |                    |

Note 1: Placement of T1OSI and T1OSO/T1CKI depends on the value of the Configuration bit, T1OSCMX, of CONFIG3H.





#### FIGURE 14-10: PWM PERIOD BUFFER UPDATES IN CONTINUOUS UP/DOWN COUNT MODES



NOTES:

#### EXAMPLE 15-1: CALCULATING BAUD RATE ERROR

| For a device with FOSC | of 16 MHz, desired baud rate of 9600, Asynchronous mode, 8-bit BRG: |
|------------------------|---------------------------------------------------------------------|
| Desired Baud Rate      | = Fosc/(64 ([SPBRGH:SPBRG] + 1))                                    |
| Solving for SPBRGH:S   | PBRG:                                                               |
| Х                      | = ((FOSC/Desired Baud Rate)/64) – 1                                 |
|                        | = ((1600000/9600)/64) - 1                                           |
|                        | = [25.042] = 25                                                     |
| Calculated Baud Rate   | = 1600000/(64(25+1))                                                |
|                        | = 9615                                                              |
| Error                  | = (Calculated Baud Rate – Desired Baud Rate)/Desired Baud Rate      |
|                        | = (9615 - 9600)/9600 = 0.16%                                        |
|                        |                                                                     |

TABLE 15-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

| Name    | Bit 7                                         | Bit 6 | Bit 5                          | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Reset Values<br>on Page: |
|---------|-----------------------------------------------|-------|--------------------------------|-------|-------|-------|-------|-------|--------------------------|
| TXSTA   | CSRC                                          | TX9   | TXEN                           | SYNC  | SENDB | BRGH  | TRMT  | TX9D  | 48                       |
| RCSTA   | SPEN                                          | RX9   | SREN CREN ADDEN FERR OERR RX9D |       |       |       |       | 48    |                          |
| BAUDCON | ABDOVF                                        | RCIDL | RXDTP                          | TXCKP | BRG16 | _     | WUE   | ABDEN | 48                       |
| SPBRGH  | EUSART Baud Rate Generator Register High Byte |       |                                |       |       |       |       |       | 48                       |
| SPBRG   | EUSART Baud Rate Generator Register Low Byte  |       |                                |       |       |       |       |       | 48                       |

**Legend:** — = unimplemented, read as '0'. Shaded cells are not used by the BRG.

#### 15.2.2 EUSART ASYNCHRONOUS RECEIVER

The receiver block diagram is shown in Figure 15-6. The data is received on the RX pin and drives the data recovery block. The data recovery block is actually a high-speed shifter operating at x16 times the baud rate, whereas the main receive serial shifter operates at the bit rate or at Fosc. This mode would typically be used in RS-232 systems.

To set up an Asynchronous Reception:

- 1. Initialize the SPBRGH:SPBRG registers for the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, set enable bit RCIE.
- 4. If 9-bit reception is desired, set bit RX9.
- 5. Enable the reception by setting bit CREN.
- Flag bit, RCIF, will be set when reception is complete and an interrupt will be generated if enable bit, RCIE, was set.
- Read the RCSTA register to get the 9th bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading the RCREG register.
- 9. If any error occurred, clear the error by clearing enable bit CREN.
- 10. If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

### 15.2.3 SETTING UP 9-BIT MODE WITH ADDRESS DETECT

This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address Detect Enable:

- 1. Initialize the SPBRGH:SPBRG registers for the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- 3. If interrupts are required, set the RCEN bit and select the desired priority level with the RCIP bit.
- 4. Set the RX9 bit to enable 9-bit reception.
- 5. Set the ADDEN bit to enable address detect.
- 6. Enable reception by setting the CREN bit.
- 7. The RCIF bit will be set when reception is complete. The interrupt will be Acknowledged if the RCIE and GIE bits are set.
- Read the RCSTA register to determine if any error occurred during reception, as well as read bit 9 of data (if applicable).
- 9. Read RCREG to determine if the device is being addressed.
- 10. If any error occurred, clear the CREN bit.
- 11. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and interrupt the CPU.



#### FIGURE 15-6: EUSART RECEIVE BLOCK DIAGRAM

#### 15.3.2 EUSART SYNCHRONOUS MASTER RECEPTION

Once Synchronous mode is selected, reception is enabled by setting either the Single Receive Enable bit, SREN (RCSTA<5>), or the Continuous Receive Enable bit, CREN (RCSTA<4>). Data is sampled on the RX pin on the falling edge of the clock.

If enable bit, SREN, is set, only a single word is received. If enable bit, CREN, is set, the reception is continuous until CREN is cleared. If both bits are set, then CREN takes precedence.

To set up a Synchronous Master Reception:

FIGURE 15-13:

- 1. If any error occurred, clear the error by clearing bit, CREN.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.
- Initialize the SPBRGH:SPBRG registers for the appropriate baud rate. Set or clear the BRG16 bit, as required, to achieve the desired baud rate.

- 4. Enable the synchronous master serial port by setting bits, SYNC, SPEN and CSRC.
- 5. Ensure bits, CREN and SREN, are clear.
- 6. If the signal from the CK pin is to be inverted, set the TXCKP bit.
- 7. If interrupts are desired, set enable bit, RCIE.
- 8. If 9-bit reception is desired, set bit, RX9.
- 9. If a single reception is required, set bit, SREN. For continuous reception, set bit, CREN.
- 10. Interrupt flag bit, RCIF, will be set when reception is complete and an interrupt will be generated if the enable bit, RCIE, was set.
- 11. Read the RCSTA register to get the 9th bit (if enabled) and determine if any error occurred during reception.
- 12. Read the 8-bit received data by reading the RCREG register.

| Q2 Q3 C                  | 4 Q1 Q2 Q3 Q4 | Q1 Q2 Q3 (             | Q4 Q1 Q2 Q3 Q4 | 4 Q1 Q2 Q3 Q4 | Q1 Q2 Q3 Q4      | Q1 Q2 Q3 Q4   | Q1 Q2 Q3 Q4 | 1 Q1 Q2 Q3 Q4 | 4 Q1 Q2 Q3 Q4 | Q1 Q2 Q3 Q4    |
|--------------------------|---------------|------------------------|----------------|---------------|------------------|---------------|-------------|---------------|---------------|----------------|
| RA3/RX/DT<br>pin         | :X            | bit 0                  | bit 1          | bit 2         | bit 3            | bit 4         | bit 5       | bit 6         | bit 7         |                |
| RA2/TX/CK pin<br>(TXCKP) | Ļ             |                        | ÷              | ;<br>         | ÷                | $\frac{1}{2}$ | :<br>:<br>  | $\frac{1}{2}$ | ;             | <br> <br> <br> |
| Write to<br>bit SREN     |               | 1<br><del>1</del><br>1 | •<br>•<br>•    | 1<br>1<br>1   | 1<br>+<br>1<br>1 | 1<br>1<br>1   | 1<br>1<br>1 | 1<br>         | 1<br>1<br>1   | •<br>•<br>•    |
| SREN bit                 |               |                        | ;              | •             | ,<br>,           | •             | •           | ;             | ;             |                |
| CREN bit <u>'0'</u>      | 1             | 1<br>1                 | 1              | 1             | 1                | 1<br>1        | 1           | 1             | 1             | ʻ0'            |
| RCIF bit<br>(Interrupt)  | ,<br>,<br>,   | ,<br>,<br>,            |                | ,<br>,<br>,   | ,<br>,<br>,      | ,<br>,<br>,   | ,<br>,<br>, | ,<br>,<br>,   | ;<br>;        |                |
| Read<br>RXREG            | 1<br>1        | 1<br>1<br>1            | 1<br>1<br>1    | 1<br>7<br>1   | 1<br>1<br>1      | ,<br>,<br>,   | 1<br>1<br>1 | 1<br>1<br>1   | 1<br>1<br>1   |                |
|                          | 1             | 1<br>1<br>1            | 1<br>1         |               | 1<br>1<br>1      |               | 1<br>1<br>1 | 1             | 1<br>1<br>1   |                |
| Note: Timing diagram     | demonstrate   | es Sync Ma             | aster mode w   | ith bit SREN  | = 1 and bit      | BRGH = 0.     |             |               |               |                |

SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

#### TABLE 15-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

| Name      | Bit 7       | Bit 6       | Bit 5         | Bit 4         | Bit 3         | Bit 2        | Bit 1      | Bit 0      | Reset<br>Values<br>on Page: |
|-----------|-------------|-------------|---------------|---------------|---------------|--------------|------------|------------|-----------------------------|
| INTCON    | GIE/GIEH    | PEIE/GIEL   | TMR0IE        | INT0IE        | RBIE          | TMR0IF       | INT0IF     | RBIF       | 47                          |
| PIR1      | _           | ADIF        | RCIF          | TXIF          | CMP2IF        | CMP1IF       | CMP0IF     | TMR1IF     | 49                          |
| PIE1      | —           | ADIE        | RCIE          | TXIE          | CMP2IE        | CMP1IE       | CMP0IE     | TMR1IE     | 49                          |
| IPR1      | —           | ADIP        | RCIP          | TXIP          | CMP2IP        | CMP1IP       | CMP0IP     | TMR1IP     | 49                          |
| RCSTA     | SPEN        | RX9         | SREN          | CREN          | ADDEN         | FERR         | OERR       | RX9D       | 48                          |
| RCREG     | EUSART R    | eceive Regi | ster          |               |               |              |            |            | 48                          |
| TXSTA     | CSRC        | TX9         | TXEN          | SYNC          | SENDB         | BRGH         | TRMT       | TX9D       | 48                          |
| BAUDCON   | ABDOVF      | RCIDL       | RXDTP         | TXCKP         | BRG16         | _            | WUE        | ABDEN      | 48                          |
| SPBRGH    | EUSART B    | aud Rate G  | enerator Re   | gister High E | Byte          |              |            |            | 48                          |
| SPBRG     | EUSART B    | aud Rate G  | enerator Re   | gister Low B  | Syte          |              |            |            | 48                          |
| Leaend: - | — = unimple | mented, rea | d as '0'. Sha | aded cells a  | re not used · | for synchror | ous master | reception. |                             |

| RET                                                                                                                   | FIE                                                     | om Interrupt                                                                                                                                 | 1                                                                                                                                                                                                               |                                                                                                                                            |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Synta                                                                                                                 | ax:                                                     | RETFIE {s                                                                                                                                    | RETFIE {s}                                                                                                                                                                                                      |                                                                                                                                            |  |  |  |  |  |
| Oper                                                                                                                  | ands:                                                   | $s \in [0,1]$                                                                                                                                | s ∈ [0,1]                                                                                                                                                                                                       |                                                                                                                                            |  |  |  |  |  |
| Oper                                                                                                                  | ation:                                                  | $(TOS) \rightarrow Pei$<br>$1 \rightarrow GIE/GI$<br>if s = 1,<br>$(WS) \rightarrow W$ ,<br>(STATUSS)<br>$(BSRS) \rightarrow I$<br>PCLATU, P | $(TOS) \rightarrow PC,$<br>$1 \rightarrow GIE/GIEH \text{ or PEIE/GIEL};$<br>if s = 1,<br>$(WS) \rightarrow W,$<br>$(STATUSS) \rightarrow STATUS,$<br>$(BSRS) \rightarrow BSR,$<br>PCLATU. PCLATH are unchanged |                                                                                                                                            |  |  |  |  |  |
| Statu                                                                                                                 | is Affected:                                            | GIE/GIEH,                                                                                                                                    | PEIE/GIEL                                                                                                                                                                                                       |                                                                                                                                            |  |  |  |  |  |
| Enco                                                                                                                  | oding:                                                  | 0000                                                                                                                                         | 0000 000                                                                                                                                                                                                        | 01 000s                                                                                                                                    |  |  |  |  |  |
| Description: Return<br>and Top<br>the PC.<br>setting<br>global i<br>content<br>STATU<br>their co<br>STATU<br>of these |                                                         |                                                                                                                                              | n interrupt. Sta<br>Stack (TOS) is<br>errupts are ena-<br>er the high or I<br>rupt enable bit<br>the shadow re<br>and BSRS, are<br>ponding regist<br>id BSR. If 's' =<br>gisters occurs.                        | ck is popped<br>a loaded into<br>abled by<br>ow-priority<br>. If 's' = 1, the<br>egisters, WS,<br>a loaded into<br>ers, W,<br>0, no update |  |  |  |  |  |
| Word                                                                                                                  | ds:                                                     | 1                                                                                                                                            | 1                                                                                                                                                                                                               |                                                                                                                                            |  |  |  |  |  |
| Cycle                                                                                                                 | es:                                                     | 2                                                                                                                                            | 2                                                                                                                                                                                                               |                                                                                                                                            |  |  |  |  |  |
| QC                                                                                                                    | ycle Activity:                                          |                                                                                                                                              |                                                                                                                                                                                                                 |                                                                                                                                            |  |  |  |  |  |
|                                                                                                                       | Q1                                                      | Q2                                                                                                                                           | Q3                                                                                                                                                                                                              | Q4                                                                                                                                         |  |  |  |  |  |
|                                                                                                                       | Decode                                                  | No<br>operation                                                                                                                              | No<br>operation                                                                                                                                                                                                 | POP PC<br>from stack<br>Set GIEH or<br>GIEL                                                                                                |  |  |  |  |  |
|                                                                                                                       | No                                                      | No                                                                                                                                           | No                                                                                                                                                                                                              | No                                                                                                                                         |  |  |  |  |  |
|                                                                                                                       | operation                                               | operation                                                                                                                                    | operation                                                                                                                                                                                                       | operation                                                                                                                                  |  |  |  |  |  |
| Exan                                                                                                                  | nple:                                                   | RETFIE 1                                                                                                                                     | 1                                                                                                                                                                                                               |                                                                                                                                            |  |  |  |  |  |
|                                                                                                                       | After Interrupt<br>PC<br>W<br>BSR<br>STATUS<br>GIE/GIEF | I, PEIE/GIEL                                                                                                                                 | = TOS<br>= WS<br>= BSRS<br>= STATU<br>= 1                                                                                                                                                                       | ISS                                                                                                                                        |  |  |  |  |  |

| RETLW                             | Return Li                                                               | teral to                                                    | W                                                    |                                               |
|-----------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|
| Syntax:                           | RETLW k                                                                 |                                                             |                                                      |                                               |
| Operands:                         | $0 \le k \le 255$                                                       |                                                             |                                                      |                                               |
| Operation:                        | $k \rightarrow W$ , (TOS) $\rightarrow P$ PCLATU, P                     | C,<br>CLATH :                                               | are uncha                                            | nged                                          |
| Status Affected:                  | None                                                                    |                                                             |                                                      |                                               |
| Encoding:                         | 0000                                                                    | 1100                                                        | kkkk                                                 | kkkk                                          |
| Description:                      | W is loaded<br>The program<br>top of the s<br>The high ad<br>remains un | l with the<br>m counte<br>tack (the<br>Idress la<br>changed | e eight-bit<br>er is loade<br>return ad<br>tch (PCL/ | literal 'k'.<br>d from the<br>dress).<br>\TH) |
| Words:                            | 1                                                                       |                                                             |                                                      |                                               |
| Cycles:                           | 2                                                                       |                                                             |                                                      |                                               |
| Q Cycle Activity:                 |                                                                         |                                                             |                                                      |                                               |
| Q1                                | Q2                                                                      | Q3                                                          | 3                                                    | Q4                                            |
| Decode                            | Read<br>literal 'k'                                                     | Proce<br>Dat                                                | ess F<br>a fro<br>W                                  | POP PC<br>om stack,<br>/rite to W             |
| No                                | No                                                                      | No                                                          | )                                                    | No                                            |
| operation                         | operation                                                               | opera                                                       | tion o                                               | peration                                      |
| <u>Example:</u><br>CALL TABLE     | ; W conta:<br>; offset<br>; W now ha<br>; table va                      | ins tak<br>value<br>as<br>alue                              | ble                                                  |                                               |
| :<br>TABLE                        |                                                                         |                                                             |                                                      |                                               |
| ADDWF PCL<br>RETLW k0<br>RETLW k1 | ; W = offs<br>; Begin ta<br>;                                           | set<br>able                                                 |                                                      |                                               |

:

RETLW kn ; End of table

value of kn

W = 07h

Before Instruction

After Instruction

W

| SUB   | LW                                                               | S                                   | Subtrac                     | t W from                     | n Lite            | eral         |                   |  |  |
|-------|------------------------------------------------------------------|-------------------------------------|-----------------------------|------------------------------|-------------------|--------------|-------------------|--|--|
| Synta | ax:                                                              | S                                   | UBLW                        | k                            |                   |              |                   |  |  |
| Oper  | ands:                                                            | 0                                   | $0 \le k \le 255$           |                              |                   |              |                   |  |  |
| Oper  | ation:                                                           | k                                   | – (W) –                     | → W                          |                   |              |                   |  |  |
| Statu | s Affected:                                                      | Ν                                   | I, OV, C                    | , DC, Z                      |                   |              |                   |  |  |
| Enco  | ding:                                                            | Γ                                   | 0000                        | 1000                         | kk}               | ĸk           | kkkk              |  |  |
| Desc  | ription                                                          | V                                   | V is sub<br>teral 'k'.      | tracted from<br>The result   | m the<br>t is pla | eigh<br>acec | nt-bit<br>I in W. |  |  |
| Word  | ls:                                                              | 1                                   |                             |                              |                   |              |                   |  |  |
| Cycle | es:                                                              | 1                                   |                             |                              |                   |              |                   |  |  |
| QC    | ycle Activity:                                                   |                                     |                             |                              |                   |              |                   |  |  |
|       | Q1                                                               |                                     | Q2                          | Q3                           |                   |              | Q4                |  |  |
|       | Decode                                                           | l<br>lit                            | Read<br>eral 'k'            | Proce<br>Data                | :SS<br>a          | W            | rite to W         |  |  |
| Exan  | nple 1:                                                          | S                                   | UBLW                        | 02h                          |                   |              |                   |  |  |
|       | Before Instruc<br>W<br>C<br>After Instructio<br>W<br>C<br>Z<br>N | tion<br>=<br>on<br>=<br>=<br>=<br>= | 01h<br>?<br>01h<br>1 ;<br>0 | result is p                  | ositiv            | е            |                   |  |  |
| Exan  | nple 2:                                                          | S                                   | UBLW                        | 02h                          |                   |              |                   |  |  |
|       | Before Instruc<br>W<br>C<br>After Instructic<br>W<br>C<br>Z<br>N | tion<br>=<br>=<br>n<br>=<br>=<br>=  | 02h<br>?<br>00h<br>1 ;<br>1 | result is z                  | ero               |              |                   |  |  |
| Exan  | nple <u>3:</u>                                                   | S                                   | UBLW                        | 02h                          |                   |              |                   |  |  |
|       | Before Instruc<br>W<br>C<br>After Instructic<br>W<br>C<br>Z<br>N | tion<br>=<br>=<br>n<br>=<br>=<br>=  | 03h<br>?<br>FFh<br>0<br>1   | ; (2's comp<br>; result is r | bleme<br>negati   | nt)<br>ve    |                   |  |  |

| SUB                    | WF                                |                     | Subtract W from f                                                                                                                                                                        |                                                                              |                                                                                                                                                                                                                                                                               |                                                                                                                                                                  |  |  |  |
|------------------------|-----------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Synta                  | ax:                               |                     | SUBWF                                                                                                                                                                                    |                                                                              | f {,d {,a}}                                                                                                                                                                                                                                                                   |                                                                                                                                                                  |  |  |  |
| Operands:              |                                   |                     | $0 \le f \le 255$<br>$d \in [0,1]$<br>$a \in [0,1]$                                                                                                                                      |                                                                              |                                                                                                                                                                                                                                                                               |                                                                                                                                                                  |  |  |  |
| Operation:             |                                   |                     | (f) – (W                                                                                                                                                                                 | ) —                                                                          | → dest                                                                                                                                                                                                                                                                        |                                                                                                                                                                  |  |  |  |
| Statu                  | s Affected:                       |                     | N, OV, 0                                                                                                                                                                                 | C, I                                                                         | DC, Z                                                                                                                                                                                                                                                                         |                                                                                                                                                                  |  |  |  |
| Enco                   | ding:                             |                     | 0101                                                                                                                                                                                     |                                                                              | 11da fff                                                                                                                                                                                                                                                                      | f ffff                                                                                                                                                           |  |  |  |
| Description:           |                                   |                     | Subtrac<br>complet<br>result is<br>result is<br>lf 'a' is '<br>selected<br>to selec<br>lf 'a' is '<br>set is er<br>operate<br>Address<br>$f \le 95$ (5<br>"Byte-C<br>Instruct<br>Mode" 1 | t V<br>me<br>st<br>o',<br>d. I<br>t th<br>o' a<br>s in<br>SFr<br>SFr<br>Orie | V from register<br>nt method). If<br>ored in W. If 'd<br>ored back in re<br>the Access Ba<br>f 'a' is '1', the I<br>ne GPR bank.<br>and the extended<br>oled, this instru-<br>n Indexed Liter<br>g mode where<br>the Section<br>ented and Bit-<br>ns in Indexed I<br>details. | 'f' (2's<br>'d' is '0', the<br>egister 'f'.<br>ank is<br>BSR is used<br>ed instruction<br>action<br>ral Offset<br>ever<br>n 22.2.3<br>Oriented<br>Literal Offset |  |  |  |
| Word                   | ls:                               |                     | 1                                                                                                                                                                                        |                                                                              |                                                                                                                                                                                                                                                                               |                                                                                                                                                                  |  |  |  |
| Cycle                  | es:                               |                     | 1                                                                                                                                                                                        |                                                                              |                                                                                                                                                                                                                                                                               |                                                                                                                                                                  |  |  |  |
| QC                     | ycle Activity:                    |                     |                                                                                                                                                                                          |                                                                              |                                                                                                                                                                                                                                                                               |                                                                                                                                                                  |  |  |  |
|                        | Q1                                |                     | Q2                                                                                                                                                                                       |                                                                              | Q3                                                                                                                                                                                                                                                                            | Q4                                                                                                                                                               |  |  |  |
|                        | Decode                            |                     | Read                                                                                                                                                                                     | ,                                                                            | Process                                                                                                                                                                                                                                                                       | Write to                                                                                                                                                         |  |  |  |
|                        |                                   | Γ                   | egister t                                                                                                                                                                                |                                                                              | Data                                                                                                                                                                                                                                                                          | destination                                                                                                                                                      |  |  |  |
| Exan                   | nple 1:                           |                     | SUBWF                                                                                                                                                                                    |                                                                              | REG, 1, 0                                                                                                                                                                                                                                                                     |                                                                                                                                                                  |  |  |  |
|                        | Before Instruc<br>REG<br>W<br>C   | tior<br>=<br>=<br>= | 1<br>3<br>2<br>?                                                                                                                                                                         |                                                                              |                                                                                                                                                                                                                                                                               |                                                                                                                                                                  |  |  |  |
|                        | After Instructio                  | n_                  | 1                                                                                                                                                                                        |                                                                              |                                                                                                                                                                                                                                                                               |                                                                                                                                                                  |  |  |  |
|                        | W                                 | =                   | 2                                                                                                                                                                                        |                                                                              | rocult in positiv                                                                                                                                                                                                                                                             | 10                                                                                                                                                               |  |  |  |
|                        | Z                                 | =                   | 0                                                                                                                                                                                        | ,                                                                            | result is positiv                                                                                                                                                                                                                                                             | /e                                                                                                                                                               |  |  |  |
| <b>Even</b>            | N<br>ania 2:                      | =                   | 0                                                                                                                                                                                        |                                                                              | DEG 0 0                                                                                                                                                                                                                                                                       |                                                                                                                                                                  |  |  |  |
| Exan                   | <u>IIPIE Z.</u><br>Refore Instruc | tior                | SUBWF                                                                                                                                                                                    |                                                                              | REG, 0, 0                                                                                                                                                                                                                                                                     |                                                                                                                                                                  |  |  |  |
|                        | REG<br>W<br>C                     | =                   | 2<br>2<br>?                                                                                                                                                                              |                                                                              |                                                                                                                                                                                                                                                                               |                                                                                                                                                                  |  |  |  |
|                        | After Instructio<br>REG<br>W<br>C | on<br>=<br>=<br>=   | 2<br>0<br>1                                                                                                                                                                              |                                                                              | result is zero                                                                                                                                                                                                                                                                |                                                                                                                                                                  |  |  |  |
|                        | Z                                 | =                   | 1                                                                                                                                                                                        | ,                                                                            |                                                                                                                                                                                                                                                                               |                                                                                                                                                                  |  |  |  |
| Example 3 <sup>.</sup> |                                   |                     | U                                                                                                                                                                                        |                                                                              | PFG 1 0                                                                                                                                                                                                                                                                       |                                                                                                                                                                  |  |  |  |
|                        | Before Instruc                    | tior                | ואססט                                                                                                                                                                                    |                                                                              | REG, 1, 0                                                                                                                                                                                                                                                                     |                                                                                                                                                                  |  |  |  |
|                        | REG<br>W<br>C                     | =<br>=<br>=         | 1<br>2<br>?                                                                                                                                                                              |                                                                              |                                                                                                                                                                                                                                                                               |                                                                                                                                                                  |  |  |  |
|                        | After Instructio                  | n<br>=              | FEh                                                                                                                                                                                      | •7                                                                           | 2's compleme                                                                                                                                                                                                                                                                  | nt)                                                                                                                                                              |  |  |  |
|                        | W                                 | =                   | 2                                                                                                                                                                                        | ,(                                                                           |                                                                                                                                                                                                                                                                               |                                                                                                                                                                  |  |  |  |
|                        | Z                                 | =                   | 0                                                                                                                                                                                        | ;                                                                            | result is negati                                                                                                                                                                                                                                                              | ve                                                                                                                                                               |  |  |  |
|                        | N                                 | =                   | 1                                                                                                                                                                                        |                                                                              |                                                                                                                                                                                                                                                                               |                                                                                                                                                                  |  |  |  |

| TBLWT             | Table W                                                                                                              | rite                                          |             |               |  |  |  |  |
|-------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------|---------------|--|--|--|--|
| Syntax:           | TBLWT ( *                                                                                                            | *; *+; *-; +*                                 | )           |               |  |  |  |  |
| Operands:         | None                                                                                                                 |                                               |             |               |  |  |  |  |
| Operation:        | if TBLWT*                                                                                                            | ·,                                            |             |               |  |  |  |  |
|                   | (TABLAT)                                                                                                             | $\rightarrow$ Holding                         | g Register  | ,             |  |  |  |  |
|                   | TBLPTR -                                                                                                             | - No Chan                                     | ge;         |               |  |  |  |  |
|                   | if TBLWT*                                                                                                            | +,                                            | . Desister  |               |  |  |  |  |
|                   | (TRI PTR)                                                                                                            | $\rightarrow$ Holding<br>+ 1 $\rightarrow$ TE | I PTR.      | ,             |  |  |  |  |
|                   | if TBLWT*                                                                                                            | -,                                            | , <u> </u>  |               |  |  |  |  |
|                   | (TABLAT)                                                                                                             | $\rightarrow$ Holding                         | g Register  | ,             |  |  |  |  |
|                   | (TBLPTR)                                                                                                             | $-1 \rightarrow TB$                           | SLPTR;      |               |  |  |  |  |
|                   |                                                                                                                      | ⊦*,<br>\                                      |             |               |  |  |  |  |
|                   | (TARLAT)                                                                                                             | $\rightarrow$ Holding                         | n Register  |               |  |  |  |  |
| Status Affected:  | None                                                                                                                 |                                               |             |               |  |  |  |  |
| Encoding:         |                                                                                                                      | 0000                                          | 0000        | 11nn          |  |  |  |  |
| Encouring.        | 0000                                                                                                                 | 0000                                          | 0000        | nn=0 *        |  |  |  |  |
|                   |                                                                                                                      |                                               |             | =1 *+         |  |  |  |  |
|                   |                                                                                                                      |                                               |             | =2 *-         |  |  |  |  |
|                   |                                                                                                                      |                                               |             | =3 +*         |  |  |  |  |
| Description:      | This instru                                                                                                          | uction uses                                   | s the 3 LS  | Bs of         |  |  |  |  |
|                   | IBLPIRt<br>8 holding                                                                                                 | o determir                                    | NE WHICH C  | of the        |  |  |  |  |
|                   | to. The ho                                                                                                           | Idina reais                                   | sters are u | ised to       |  |  |  |  |
|                   | program tl                                                                                                           | he content                                    | s of Progr  | am            |  |  |  |  |
|                   | Memory (I                                                                                                            | P.M.). (Ref                                   | ier to Sect | tion 7.0      |  |  |  |  |
|                   | "Flash Pr                                                                                                            | ogram Me                                      | emory" fo   | or additional |  |  |  |  |
|                   | details on programming Flash memory.)<br>The TBLPTR (a 21-bit pointer) points to<br>each byte in the program memory. |                                               |             |               |  |  |  |  |
|                   |                                                                                                                      |                                               |             |               |  |  |  |  |
|                   | TBLPTR h                                                                                                             | TBLPTR has a 2-Mbyte address range.           |             |               |  |  |  |  |
|                   | The LSb of the TBLPTR selects which                                                                                  |                                               |             |               |  |  |  |  |
|                   | byte of the program memory location to access                                                                        |                                               |             |               |  |  |  |  |
|                   | TBLPT                                                                                                                | R[0] = 0: L                                   | east Sign   | ificant Bvte  |  |  |  |  |
|                   | of Program Memory                                                                                                    |                                               |             |               |  |  |  |  |
|                   | TBLPTR[0] = 1: Most Significant Byte                                                                                 |                                               |             |               |  |  |  |  |
|                   | of Program Memory                                                                                                    |                                               |             |               |  |  |  |  |
|                   | The TBLW                                                                                                             | T instruct                                    | ion can m   | odify the     |  |  |  |  |
|                   | value of T                                                                                                           | BLPTR as                                      | follows:    | -             |  |  |  |  |
|                   | <ul> <li>no char</li> </ul>                                                                                          | nge                                           |             |               |  |  |  |  |
|                   | <ul> <li>post-inc</li> </ul>                                                                                         | crement                                       |             |               |  |  |  |  |
|                   | • post-de                                                                                                            | crement                                       |             |               |  |  |  |  |
|                   | • pre-incr                                                                                                           | rement                                        |             |               |  |  |  |  |
| Words:            | 1                                                                                                                    |                                               |             |               |  |  |  |  |
| Cycles:           | 2                                                                                                                    |                                               |             |               |  |  |  |  |
| Q Cycle Activity: |                                                                                                                      |                                               |             |               |  |  |  |  |
|                   | Q1                                                                                                                   | Q2                                            | Q3          | Q4            |  |  |  |  |
|                   | Decode                                                                                                               | No                                            | No          | No            |  |  |  |  |
|                   |                                                                                                                      | operation                                     | operation   | operation     |  |  |  |  |
|                   | No                                                                                                                   | No                                            | No          | No            |  |  |  |  |
|                   | operation                                                                                                            | operation                                     | operation   | operation     |  |  |  |  |
|                   |                                                                                                                      |                                               |             | Holding       |  |  |  |  |
|                   |                                                                                                                      |                                               |             | Register )    |  |  |  |  |

#### TBLWT Table Write (Continued)

| Example 1: TBLWT *+;              |        |         |
|-----------------------------------|--------|---------|
| Before Instruction                |        |         |
| TABLAT                            | =      | 55h     |
| TBLPTR                            | =      | 00A356h |
| HOLDING REGISTER                  |        |         |
| (00A356h)                         | =      | FFh     |
| After Instructions (table write   | comp   | letion) |
| TABLAT                            | =      | 55h     |
| TBLPTR                            | =      | 00A357h |
| HOLDING REGISTER                  |        |         |
| (00A356h)                         | =      | 55h     |
| Example 2: TBLWT +*;              |        |         |
| Before Instruction                |        |         |
| TABLAT                            | =      | 34h     |
| TBLPTR                            | =      | 01389Ah |
| HOLDING REGISTER                  |        |         |
| (01389Ah)                         | =      | FFh     |
| HOLDING REGISTER                  |        |         |
| (01389Bh)                         | =      | FFh     |
| After Instruction (table write of | comple | etion)  |
| TABLAT                            | =      | 34h     |
| TBIPTR                            | =      | 01389Bh |
| HOLDING REGISTER                  |        |         |
| (01389Ah)                         | =      | FFh     |
| HOLDING REGISTER                  |        |         |
| (01389Bh)                         | =      | 34h     |

#### 22.2 Extended Instruction Set

In addition to the standard 75 instructions of the PIC18 instruction set, PIC18F1230/1330 devices also provide an optional extension to the core CPU functionality. The added features include eight additional instructions that augment indirect and indexed addressing operations and the implementation of Indexed Literal Offset Addressing mode for many of the standard PIC18 instructions.

The additional features of the extended instruction set are disabled by default. To enable them, users must set the XINST Configuration bit.

The instructions in the extended set (with the exception of CALLW, MOVSF and MOVSS) can all be classified as literal operations, which either manipulate the File Select Registers, or use them for indexed addressing. Two of the instructions, ADDFSR and SUBFSR, each have an additional special instantiation for using FSR2. These versions (ADDULNK and SUBULNK) allow for automatic return after execution.

The extended instructions are specifically implemented to optimize re-entrant program code (that is, code that is recursive or that uses a software stack) written in high-level languages, particularly C. Among other things, they allow users working in high-level languages to perform certain operations on data structures more efficiently. These include:

- Dynamic allocation and deallocation of software stack space when entering and leaving subroutines
- Function Pointer invocation
- Software Stack Pointer manipulation
- Manipulation of variables located in a software stack

A summary of the instructions in the extended instruction set is provided in Table 22-3. Detailed descriptions are provided in **Section 22.2.2** "**Extended Instruction Set**". The opcode field descriptions in Table 22-1 (page 216) apply to both the standard and extended PIC18 instruction sets.

Note: The instruction set extension and the Indexed Literal Offset Addressing mode were designed for optimizing applications written in C; the user may likely never use these instructions directly in the assembler. The syntax for these commands is provided as a reference for users who may be reviewing code that has been generated by a compiler.

#### 22.2.1 EXTENDED INSTRUCTION SYNTAX

Most of the extended instructions use indexed arguments, using one of the File Select Registers and some offset to specify a source or destination register. When an argument for an instruction serves as part of indexed addressing, it is enclosed in square brackets ("[]"). This is done to indicate that the argument is used as an index or offset. The MPASM<sup>TM</sup> Assembler will flag an error if it determines that an index or offset value is not bracketed.

When the extended instruction set is enabled, brackets are also used to indicate index arguments in byteoriented and bit-oriented instructions. This is in addition to other changes in their syntax. For more details, see Section 22.2.3.1 "Extended Instruction Syntax with Standard PIC18 Commands".

Note: In the past, square brackets have been used to denote optional arguments in the PIC18 and earlier instruction sets. In this text and going forward, optional arguments are denoted by braces ("{ }").

| Mnemonic, |                                 | Description                              | Cyclos | 16-E | Bit Instru | uction V | Vord | Status   |
|-----------|---------------------------------|------------------------------------------|--------|------|------------|----------|------|----------|
| Opera     | nds                             | Description                              | Cycles | MSb  |            |          | LSb  | Affected |
| ADDFSR    | f, k                            | Add Literal to FSR                       | 1      | 1110 | 1000       | ffkk     | kkkk | None     |
| ADDULNK   | k                               | Add Literal to FSR2 and Return           | 2      | 1110 | 1000       | 11kk     | kkkk | None     |
| CALLW     |                                 | Call Subroutine using WREG               | 2      | 0000 | 0000       | 0001     | 0100 | None     |
| MOVSF     | z <sub>s</sub> , f <sub>d</sub> | Move z <sub>s</sub> (source) to 1st word | 2      | 1110 | 1011       | 0zzz     | ZZZZ | None     |
|           |                                 | f <sub>d</sub> (destination) 2nd word    |        | 1111 | ffff       | ffff     | ffff |          |
| MOVSS     | z <sub>s</sub> , z <sub>d</sub> | Move z <sub>s</sub> (source) to 1st word | 2      | 1110 | 1011       | lzzz     | ZZZZ | None     |
|           |                                 | z <sub>d</sub> (destination) 2nd word    |        | 1111 | xxxx       | XZZZ     | ZZZZ |          |
| PUSHL     | k                               | Store Literal at FSR2,                   | 1      | 1110 | 1010       | kkkk     | kkkk | None     |
|           |                                 | Decrement FSR2                           |        |      |            |          |      |          |
| SUBFSR    | f, k                            | Subtract Literal from FSR                | 1      | 1110 | 1001       | ffkk     | kkkk | None     |
| SUBULNK   | k                               | Subtract Literal from FSR2 and           | 2      | 1110 | 1001       | 11kk     | kkkk | None     |
|           |                                 | Return                                   |        |      |            |          |      |          |

#### TABLE 22-3: EXTENSIONS TO THE PIC18 INSTRUCTION SET

#### 23.2 DC Characteristics: Power-Down and Supply Current PIC18F1230/1330 (Industrial) PIC18LF1230/1330 (Industrial) (Continued)

| PIC18LF1<br>(Indus | <b>Standa</b><br>Operat                                                                                                                                                                                                                 | ird Ope | rating (<br>perature | g Conditions (unless otherwise stated)<br>ure $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial |                                |                      |                                                          |  |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------|-----------------------------------------------------------------------------------------------------|--------------------------------|----------------------|----------------------------------------------------------|--|
| PIC18F12<br>(Indus | PIC18F1230/1330<br>(Industrial, Extended)Standard Operating Conditions (unless otherwise stated)<br>Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial<br>$-40^{\circ}C \le TA \le +125^{\circ}C$ for extended |         |                      |                                                                                                     | <b>ted)</b><br>strial<br>ended |                      |                                                          |  |
| Param<br>No.       | Device                                                                                                                                                                                                                                  | Тур     | Max                  | Units                                                                                               | Conditions                     |                      |                                                          |  |
|                    | Supply Current (IDD) <sup>(2)</sup>                                                                                                                                                                                                     |         |                      |                                                                                                     |                                |                      |                                                          |  |
|                    | PIC18LF1230/1330                                                                                                                                                                                                                        | 165     | 347                  | μA                                                                                                  | -40°C                          |                      |                                                          |  |
|                    |                                                                                                                                                                                                                                         | 175     | 347                  | μA                                                                                                  | +25°C                          | VDD = 2.0V           |                                                          |  |
|                    |                                                                                                                                                                                                                                         | 190     | 347                  | μA                                                                                                  | +85°C                          |                      |                                                          |  |
|                    | PIC18LF1230/1330                                                                                                                                                                                                                        | 250     | 497                  | μA                                                                                                  | -40°C                          |                      | Fosc = 1 MHz<br>( <b>RC_IDLE</b> mode,<br>INTOSC source) |  |
|                    |                                                                                                                                                                                                                                         | 270     | 497                  | μA                                                                                                  | +25°C                          | VDD = 3.0V           |                                                          |  |
|                    |                                                                                                                                                                                                                                         | 290     | 497                  | μA                                                                                                  | +85°C                          |                      |                                                          |  |
|                    | All devices                                                                                                                                                                                                                             | 500     | 930                  | μA                                                                                                  | -40°C                          |                      | ,                                                        |  |
|                    |                                                                                                                                                                                                                                         | 520     | 930                  | μA                                                                                                  | +25°C                          |                      |                                                          |  |
|                    |                                                                                                                                                                                                                                         | 550     | 930                  | μA                                                                                                  | +85°C                          | VDD - 0.0V           |                                                          |  |
|                    | Extended devices only                                                                                                                                                                                                                   | 0.6     | 2.9                  | mA                                                                                                  | +125°C                         |                      |                                                          |  |
|                    | PIC18LF1230/1330                                                                                                                                                                                                                        | 340     | 497                  | μA                                                                                                  | -40°C                          |                      |                                                          |  |
|                    |                                                                                                                                                                                                                                         | 350     | 497                  | μA                                                                                                  | +25°C                          | VDD = 2.0V           |                                                          |  |
|                    |                                                                                                                                                                                                                                         | 360     | 497                  | μA                                                                                                  | +85°C                          |                      |                                                          |  |
|                    | PIC18LF1230/1330                                                                                                                                                                                                                        | 520     | 830                  | μA                                                                                                  | -40°C                          | VDD = 3.0V (R4<br>IN |                                                          |  |
|                    |                                                                                                                                                                                                                                         | 540     | 830                  | μA                                                                                                  | +25°C                          |                      | FOSC = 4 MHZ                                             |  |
|                    |                                                                                                                                                                                                                                         | 580     | 830                  | μA                                                                                                  | +85°C                          |                      | INTOSC source)                                           |  |
|                    | All devices                                                                                                                                                                                                                             | 1.0     | 1.33                 | mA                                                                                                  | -40°C                          |                      | ,                                                        |  |
|                    |                                                                                                                                                                                                                                         | 1.1     | 1.33                 | mA                                                                                                  | +25°C                          | VDD = 5 0V           |                                                          |  |
|                    |                                                                                                                                                                                                                                         | 1.1     | 1.33                 | mA                                                                                                  | +85°C                          | VDD - 0.0V           |                                                          |  |
|                    | Extended devices only                                                                                                                                                                                                                   | 1.1     | 5.0                  | mA                                                                                                  | +125°C                         |                      |                                                          |  |

**Note 1:** The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or Vss and all features that add delta current disabled (such as WDT, Timer1 oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or VSS;

 $\overline{MCLR} = VDD$ ; WDT enabled/disabled as specified.

3: Low-power Timer1 oscillator selected.

**4:** BOR and LVD enable internal band gap reference. With both modules enabled, current consumption will be less than the sum of both specifications.

#### 23.2 DC Characteristics: Power-Down and Supply Current PIC18F1230/1330 (Industrial) PIC18LF1230/1330 (Industrial) (Continued)

| PIC18LF1<br>(Indus | 1230/1330<br>strial)                  | <b>Standa</b><br>Operat | ird Ope | Depending Conditions (unless otherwise stated)emperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial |                                                                                                                                                                                                                                  |                 |                                      |  |
|--------------------|---------------------------------------|-------------------------|---------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------------------|--|
| PIC18F12<br>(Indus | 2 <b>30/1330</b><br>strial, Extended) | <b>Standa</b><br>Operat | ing tem | rating (<br>perature                                                                                           | $\label{eq:conditions} \begin{array}{l} \mbox{(unless otherwise stated)} \\ \mbox{-40}^\circ C \leq TA \leq +85^\circ C \mbox{ for industrial} \\ \mbox{-40}^\circ C \leq TA \leq +125^\circ C \mbox{ for extended} \end{array}$ |                 |                                      |  |
| Param<br>No.       | Device                                | Тур                     | Max     | Units                                                                                                          |                                                                                                                                                                                                                                  | Conditio        | ns                                   |  |
|                    | Supply Current (IDD) <sup>(2)</sup>   |                         |         |                                                                                                                |                                                                                                                                                                                                                                  |                 |                                      |  |
|                    | PIC18LF1230/1330                      | 250                     | 497     | μΑ                                                                                                             | -40°C                                                                                                                                                                                                                            |                 |                                      |  |
|                    |                                       | 260                     | 497     | μΑ                                                                                                             | +25°C                                                                                                                                                                                                                            | VDD = 2.0V      |                                      |  |
|                    |                                       | 250                     | 497     | μΑ                                                                                                             | +85°C                                                                                                                                                                                                                            |                 |                                      |  |
|                    | PIC18LF1230/1330                      | 550                     | 750     | μΑ                                                                                                             | -40°C                                                                                                                                                                                                                            |                 |                                      |  |
|                    |                                       | 480                     | 750     | μΑ                                                                                                             | +25°C                                                                                                                                                                                                                            | VDD = 3.0V      | FOSC = 1 MHZ                         |  |
|                    |                                       | 460                     | 750     | μA                                                                                                             | +85°C                                                                                                                                                                                                                            |                 | EC oscillator)                       |  |
|                    | All devices                           | 1.2                     | 3       | mA                                                                                                             | -40°C                                                                                                                                                                                                                            |                 | ,                                    |  |
|                    |                                       | 1.1                     | 3       | mA                                                                                                             | +25°C                                                                                                                                                                                                                            | $V_{DD} = 5.0V$ |                                      |  |
|                    |                                       | 1.0                     | 3       | mA                                                                                                             | +85°C                                                                                                                                                                                                                            | VDD - 3.0V      |                                      |  |
|                    | Extended devices only                 | 1.0                     | 3.0     | mA                                                                                                             | +125°C                                                                                                                                                                                                                           |                 |                                      |  |
|                    | PIC18LF1230/1330                      | 0.72                    | 1.93    | mA                                                                                                             | -40°C                                                                                                                                                                                                                            |                 |                                      |  |
|                    |                                       | 0.74                    | 1.93    | mA                                                                                                             | +25°C                                                                                                                                                                                                                            | VDD = 2.0V      |                                      |  |
|                    |                                       | 0.74                    | 1.93    | mA                                                                                                             | +85°C                                                                                                                                                                                                                            |                 |                                      |  |
|                    | PIC18LF1230/1330                      | 1.3                     | 2.93    | mA                                                                                                             | -40°C                                                                                                                                                                                                                            |                 |                                      |  |
|                    |                                       | 1.3                     | 2.93    | mA                                                                                                             | +25°C                                                                                                                                                                                                                            | VDD = 3.0V      | FOSC = 4 MHZ                         |  |
|                    |                                       | 1.3                     | 2.93    | mA                                                                                                             | +85°C                                                                                                                                                                                                                            |                 | EC oscillator)                       |  |
|                    | All devices                           | 2.7                     | 5.93    | mA                                                                                                             | -40°C                                                                                                                                                                                                                            |                 |                                      |  |
|                    |                                       | 2.6                     | 5.93    | mA                                                                                                             | +25°C                                                                                                                                                                                                                            | VDD = 5.0V      |                                      |  |
|                    |                                       | 2.5                     | 5.93    | mA                                                                                                             | +85°C                                                                                                                                                                                                                            |                 |                                      |  |
|                    | Extended devices only                 | 2.6                     | 7.0     | mA                                                                                                             | +125°C                                                                                                                                                                                                                           |                 |                                      |  |
|                    | Extended devices only                 | 8.4                     | 27.7    | mA                                                                                                             | +125°C                                                                                                                                                                                                                           | VDD = 4.2V      | Fosc = 25 MHz                        |  |
|                    |                                       | 11                      | 27.7    | mA                                                                                                             | +125°C                                                                                                                                                                                                                           | VDD = 5.0V      | ( <b>PRI_RUN</b> ,<br>EC oscillator) |  |
|                    | All devices                           | 15                      | 26      | mA                                                                                                             | -40°C                                                                                                                                                                                                                            |                 |                                      |  |
|                    |                                       | 16                      | 25      | mA                                                                                                             | +25°C                                                                                                                                                                                                                            | VDD = 4.2V      |                                      |  |
|                    |                                       | 16                      | 24      | mA                                                                                                             | +85°C                                                                                                                                                                                                                            |                 | ⊢OSC = 40 MHZ<br>( <b>PRI_RUN</b>    |  |
|                    | All devices                           | 21                      | 39.3    | mA                                                                                                             | -40°C                                                                                                                                                                                                                            |                 | EC oscillator)                       |  |
|                    |                                       | 21                      | 39.3    | mA                                                                                                             | +25°C                                                                                                                                                                                                                            | VDD = 5.0V      | ,                                    |  |
|                    |                                       | 21                      | 39.3    | mA                                                                                                             | +85°C                                                                                                                                                                                                                            |                 |                                      |  |

**Note 1:** The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

- OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or VSS;
- MCLR = VDD; WDT enabled/disabled as specified.
- **3:** Low-power Timer1 oscillator selected.
- 4: BOR and LVD enable internal band gap reference. With both modules enabled, current consumption will be less than the sum of both specifications.

#### FIGURE 23-10: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS



| Param<br>No. | Symbol    |                             | Characteristic     |                | Min                                     | Max    | Units      | Conditions                               |
|--------------|-----------|-----------------------------|--------------------|----------------|-----------------------------------------|--------|------------|------------------------------------------|
| 40           | Tt0H      | T0CKI High Pu               | lse Width          | No prescaler   | 0.5 Tcy + 20                            | _      | ns         |                                          |
|              |           |                             | \                  |                | 10                                      | -      | ns         |                                          |
| 41           | Tt0L      | T0CKI Low Pul               | se Width           | No prescaler   | 0.5 Tcy + 20                            | _      | ns         |                                          |
|              |           |                             |                    | With prescaler | 10                                      | —      | ns         |                                          |
| 42           | Tt0P      | T0CKI Period                |                    | No prescaler   | Tcy + 10                                | _      | ns         |                                          |
|              |           |                             |                    | With prescaler | Greater of:<br>20 ns or<br>(Tcy + 40)/N | _      | ns         | N = prescale<br>value<br>(1, 2, 4,, 256) |
| 45           | Tt1H      | T1CKI High                  | Synchronous, n     | o prescaler    | 0.5 Tcy + 20                            | _      | ns         |                                          |
|              |           | Time                        | Synchronous,       | PIC18FXXXX     | 10                                      | —      | ns         | Ī                                        |
|              |           | with prescaler              | PIC18LFXXXX        | 25             | —                                       | ns     | VDD = 2.0V |                                          |
|              |           | As                          | Asynchronous       | PIC18FXXXX     | 30                                      | —      | ns         |                                          |
|              |           |                             | 1                  | PIC18LFXXXX    | 50                                      | —      | ns         | VDD = 2.0V                               |
| 46           | Tt1L      | T1CKI Low                   | Synchronous, n     | o prescaler    | 0.5 Tcy + 5                             | —      | ns         |                                          |
|              |           | Time                        | Synchronous,       | PIC18FXXXX     | 10                                      | —      | ns         |                                          |
|              |           |                             | with prescaler     | PIC18LFXXXX    | 25                                      | -      | ns         | VDD = 2.0V                               |
|              |           |                             | Asynchronous       | PIC18FXXXX     | 30                                      | —      | ns         |                                          |
|              |           |                             |                    | PIC18LFXXXX    | 50                                      | -      | ns         | VDD = 2.0V                               |
| 47           | Tt1P      | T1CKI Input<br>Period       | Synchronous        |                | Greater of:<br>20 ns or<br>(Tcy + 40)/N | —      | ns         | N = prescale<br>value (1, 2, 4, 8)       |
|              |           |                             | Asynchronous       |                | 60                                      | _      | ns         |                                          |
|              | Ft1       | T1CKI Oscillato             | or Input Frequency | Range          | DC                                      | 50     | kHz        |                                          |
| 48           | Tcke2tmrl | Delay from Ext<br>Increment | ernal T1CKI Clock  | Edge to Timer  | 2 Tosc                                  | 7 Tosc | _          |                                          |

| TABLE 23-11. THREIND AND THRENT EXTENTIAL CLOCK NEWOINLINENT | TABLE 23-11: | TIMER0 AND TIMER1 EXTERNAL | . CLOCK REQUIREMENTS |
|--------------------------------------------------------------|--------------|----------------------------|----------------------|
|--------------------------------------------------------------|--------------|----------------------------|----------------------|

### APPENDIX A: REVISION HISTORY

#### **Revision A (November 2005)**

Original data sheet for PIC18F1230/1330 devices.

#### **Revision B (February 2006)**

Data bank information was updated and a note was added for calculating the PCPWM duty cycle.

#### TABLE A-1: SECTION REVISION HISTORY

#### Revision C (March 2007)

Updated Section 23.0 "Electrical Characteristics" and Section 24.0 "Packaging Information".

#### Revision D (November 2009)

Updated LIN 1.2 to LIN/J2602 throughout document along with minor corrections throughout document. Added the PIC18LF1230 and PIC18LF1330 devices. Refer to Table A-1 for additional revision history.

| Section Name                                                                                     | Update Description                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Section 1.0 "Device Overview"                                                                    | Updated Table 1-2                                                                                                                                                                                                                                                                                                               |
| Section 6.0 "Memory Organization"                                                                | Updated Table 6-2                                                                                                                                                                                                                                                                                                               |
| Section 7.0 "Flash Program Memory"                                                               | Updated Section 7.2.4 "Table Pointer Boundaries", Figure 7-3                                                                                                                                                                                                                                                                    |
| Section 8.0 "Data EEPROM Memory"                                                                 | Updated Section 8.2 "EECON1 and EECON2 Registers",<br>Section 8.8 "Using the Data EEPROM"                                                                                                                                                                                                                                       |
| Section 10.0 "I/O Ports"                                                                         | Updated Section 10.2 "PORTB, TRISB and LATB Registers"                                                                                                                                                                                                                                                                          |
| Section 14.0 "Power Control PWM Module"                                                          | Updated Register 14-6, Section 14.11.2 "Output Polarity Con-<br>trol"                                                                                                                                                                                                                                                           |
| Section 15.0 "Enhanced Universal Synchro-<br>nous Asynchronous Receiver Transmitter<br>(EUSART)" | Updated Register 15-3, Section 15.1 "Baud Rate Generator<br>(BRG)", Table 15-2, Section 15.1.3 "Auto-Baud Rate Detect",<br>Section 15.2 "EUSART Asynchronous Mode", Table 15-5,<br>Table 15-6, Section 15.3 "EUSART Synchronous Master<br>Mode", Figure 15-11, Table 15-7, Figure 15-13, Table 15-8,<br>Table 15-9, Table 15-10 |
| Section 16.0 "10-Bit Analog-to-Digital Con-<br>verter (A/D) Module"                              | Updated Register 16-2                                                                                                                                                                                                                                                                                                           |
| Section 17.0 "Comparator Module"                                                                 | Updated Figure 17-2                                                                                                                                                                                                                                                                                                             |
| Section 18.0 "Comparator Voltage Refer-<br>ence Module"                                          | Updated Section 18.1 "Configuring the Comparator Voltage Reference", Register 18-1, Figure 18-1                                                                                                                                                                                                                                 |
| Section 20.0 "Special Features of the CPU"                                                       | Updated Register 20-6, Register 20-13, Register 20-14                                                                                                                                                                                                                                                                           |
| Section 22.0 "Instruction Set Summary"                                                           | Updated Table 22-2                                                                                                                                                                                                                                                                                                              |
| Section 23.0 "Electrical Characteristics"                                                        | Updated Table 23-1, Figure 23-3, Table 23-2, Table 23-3, Table 23-4, Table 23-5, Table 23-6, Table 23-8, Table 23-14, Table 23-15                                                                                                                                                                                               |

| How to Clear RAM (Bank 0) Using Indirect Addres<br>65 | sing .        |
|-------------------------------------------------------|---------------|
| Implementing a Real-Time Clock Using a Timer1         | Inter-        |
|                                                       | 115           |
|                                                       | 0/            |
| Initializing PORTB                                    | 90            |
| Saving STATUS, WREG and BSR Registers in RA           | ····.75<br>\Μ |
| Writing to Flash Program Memory                       | 78–79         |
| Code Protection                                       | 1, 207        |
| Associated Registers                                  | 207           |
| Configuration Register Protection                     | 210           |
| Data EEPROM                                           | 210           |
| Program Memory                                        | 208           |
| COMF                                                  | 232           |
| Comparator                                            | 179           |
| Analog Input Connection Considerations                | 181           |
| Associated Registers                                  | 182           |
| Configuration                                         | 180           |
| Effects of a Reset                                    | 181           |
| Interrupts                                            | 180           |
| Operation                                             | 180           |
| Operation During Sleep                                | 181           |
| Outputs                                               | 180           |
| Reference                                             | 180           |
| Response Time                                         | 180           |
| Comparator Specifications                             | 282           |
| Comparator Voltage Reference                          | 183           |
| Accuracy and Error                                    | 185           |
| Associated Registers                                  | 185           |
|                                                       | 183           |
| Effects of a Reset                                    | 185           |
| Computed COTO                                         | 185           |
| Configuration Dite                                    | 101           |
| Controvt Soving During Interrupts                     | 105           |
| Conversion Considerations                             | 305           |
|                                                       | 303           |
| CPESGT                                                | 233           |
|                                                       | 233           |
| Crystal Oscillator/Ceramic Resonator                  | 200           |
| Customer Change Notification Service                  | 314           |
| Customer Notification Service                         |               |
| Customer Support                                      |               |
|                                                       |               |

### D

| Data Addressing Modes                           | 65  |
|-------------------------------------------------|-----|
| Comparing Options with the Extended Instruction | Set |
| Enabled                                         | 68  |
| Direct                                          | 65  |
| Indexed Literal Offset                          | 67  |
| Instructions Affected                           | 67  |
| Indirect                                        | 65  |
| Inherent and Literal                            | 65  |
| Data EEPROM Memory                              | 81  |
| Associated Registers                            | 84  |
| EEADR Register                                  | 81  |
| EECON1 and EECON2 Registers                     | 81  |
| Operation During Code-Protect                   | 84  |
| Protection Against Spurious Write               | 83  |
| Reading                                         | 83  |
| Using                                           | 84  |
| Write Verify                                    | 83  |
| Writing                                         | 83  |
| -                                               |     |

| Data Memory                          | 57  |
|--------------------------------------|-----|
| Access Bank                          | 59  |
| and the Extended Instruction Set     | 67  |
| Bank Select Register (BSR)           | 57  |
| General Purpose Registers            | 59  |
| Map for PIC18F1230/1330              | 58  |
| Special Function Registers           | 60  |
| DAW                                  | 234 |
| DC Characteristics                   | 279 |
| Power-Down and Supply Current        |     |
| Supply Voltage                       |     |
| DCFSNZ                               | 235 |
| DECF                                 | 234 |
| DECFSZ                               | 235 |
| Development Support                  | 211 |
| Device Differences                   | 304 |
| Device Overview                      | 9   |
| Details on Individual Family Members | 10  |
| Features (table)                     | 11  |
| New Core Features                    | 9   |
| Other Special Features               | 10  |
| Device Reset Timers                  | 43  |
| Oscillator Start-up Timer (OST)      | 43  |
| PLL Lock Time-out                    | 43  |
| Power-up Timer (PWRT)                | 43  |
| Time-out Sequence                    | 43  |
| Direct Addressing                    |     |

#### Е

| Effect on Standard PIC MCU Instructions                                                  | 32<br>s |
|------------------------------------------------------------------------------------------|---------|
| Electrical Characteristics                                                               | 35      |
| Enhanced Universal Synchronous Asynchronous Receive<br>Transmitter (EUSART). See EUSART. | er      |
| Equations                                                                                |         |
| A/D Acquisition Time                                                                     | 74      |
| A/D Minimum Charging Time17                                                              | 74      |
| Calculating the Minimum Required Acquisition Time<br>174                                 |         |
| PWM Frequency12                                                                          | 29      |
| PWM Period for Continuous Up/Down Count Mode 12                                          | 29      |
| PWM Period for Free-Running Mode                                                         | 29      |
| PWM Resolution12                                                                         | 29      |
| Errata                                                                                   | 7       |
| EUSART                                                                                   |         |
| Asynchronous Mode15                                                                      | 57      |
| 12-Bit Break Character Sequence                                                          | 33      |
| Associated Registers, Receive                                                            | 31      |
| Associated Registers, Transmit                                                           | 59      |
| Auto-Wake-up on Sync Break Character 16                                                  | 31      |
| Receiver                                                                                 | 30      |
| Receiving a Break Character                                                              | 33      |
| Setting Up 9-Bit Mode with Address Detect 16                                             | 30      |
| Transmitter                                                                              | 57      |
| Baud Rate Generator                                                                      |         |
| Operation in Power-Managed Modes                                                         | 51      |
| Baud Rate Generator (BRG)                                                                | 51      |
| Associated Registers 15                                                                  | 52      |
| Auto-Baud Rate Detect 15                                                                 | 55      |
| Baud Rate Error, Calculating                                                             | 52      |
| Baud Rates, Asynchronous Modes                                                           | 53      |
| High Baud Rate Select (BRGH Bit) 15                                                      | 51      |
| Sampling 15                                                                              | 51      |
| Synchronous Master Mode 16                                                               | 64      |
| Associated Registers, Receive                                                            | 36      |

| Postscaler            |     |
|-----------------------|-----|
| Prescaler             | 125 |
| Single-Shot Mode      | 125 |
| R                     |     |
| RAM. See Data Memory. |     |
| RBIF Bit              | 90  |
| RC Oscillator         | 23  |
| RCIO Oscillator Mode  |     |
| RC IDLE Mode          |     |

| RCIO Oscillator Mode23                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| RC_IDLE Mode                                                                                                                                            |
| RC_RUN Mode                                                                                                                                             |
| RCALL                                                                                                                                                   |
| RCON Register                                                                                                                                           |
| Bit Status During Initialization46                                                                                                                      |
| Reader Response                                                                                                                                         |
| Register File Summary61-63                                                                                                                              |
| Registers                                                                                                                                               |
| ADCON0 (A/D Control 0) 169                                                                                                                              |
| ADCON1 (A/D Control 1) 170                                                                                                                              |
| ADCON2 (A/D Control 2) 171                                                                                                                              |
| BAUDCON (Baud Rate Control)                                                                                                                             |
| CMCON (Comparator Control) 179                                                                                                                          |
| CONFIG1H (Configuration 1 High) 192                                                                                                                     |
| CONFIG2H (Configuration 2 High)194                                                                                                                      |
| CONFIG2L (Configuration 2 Low) 193                                                                                                                      |
| CONFIG3H (Configuration 3 High)196                                                                                                                      |
| CONFIG3L (Configuration 3 Low) 195                                                                                                                      |
| CONFIG4L (Configuration 4 Low) 197                                                                                                                      |
| CONFIG5H (Configuration 5 High)198                                                                                                                      |
| CONFIG5L (Configuration 5 Low) 198                                                                                                                      |
| CONFIG6H (Configuration 6 High)199                                                                                                                      |
| CONFIG6L (Configuration 6 Low) 199                                                                                                                      |
| CONFIG7H (Configuration 7 High)200                                                                                                                      |
| CONFIG7L (Configuration 7 Low) 200                                                                                                                      |
| CVRCON (Comparator Voltage Reference Control) 184                                                                                                       |
| DEVID1 (Device ID 1)                                                                                                                                    |
| DEVID2 (Device ID 2)201                                                                                                                                 |
| DTCON (Dead-Time Control)136                                                                                                                            |
| EECON1 (EEPROM Control 1)73, 82                                                                                                                         |
| FLTCONFIG (Fault Configuration)143                                                                                                                      |
| INTCON (Interrupt Control)95                                                                                                                            |
| INTCON2 (Interrupt Control 2)96                                                                                                                         |
| INTCON3 (Interrupt Control 3)97                                                                                                                         |
| IPR1 (Peripheral Interrupt Priority 1)                                                                                                                  |
| IPR2 (Peripheral Interrupt Priority 2)                                                                                                                  |
| IPR3 (Peripheral Interrupt Priority 3)103                                                                                                               |
| LVDCON (Low-Voltage Detect Control) 187                                                                                                                 |
| OSCCON (Oscillator Control)28                                                                                                                           |
| OSCTUNE (Oscillator Tuning)25                                                                                                                           |
| OVDCOND (Output Override Control)                                                                                                                       |
| OVDCONS (Output State)140                                                                                                                               |
| PIE1 (Peripheral Interrupt Enable 1)100                                                                                                                 |
| PIE2 (Peripheral Interrupt Enable 2)101                                                                                                                 |
| PIE3 (Peripheral Interrupt Enable 3)101                                                                                                                 |
| PIR1 (Peripheral Interrupt Request (Flag) 1)                                                                                                            |
| PIR2 (Peripheral Interrupt Request (Flag) 2)                                                                                                            |
| PIR3 (Peripheral Interrupt Request (Flag) 3)                                                                                                            |
| PTCON0 (PWM Timer Control 0)122                                                                                                                         |
| PTCON1 (PWM Timer Control 1)122                                                                                                                         |
| PWMCON0 (PWM Control 0)123                                                                                                                              |
| PWMCON1 (PWM Control 1)124                                                                                                                              |
|                                                                                                                                                         |
| RCON (Reset Control)40, 104                                                                                                                             |
| RCON (Reset Control)40, 104<br>RCSTA (Receive Status and Control)149                                                                                    |
| RCON (Reset Control)40, 104<br>RCSTA (Receive Status and Control)149<br>STATUS64                                                                        |
| RCON (Reset Control)       40, 104         RCSTA (Receive Status and Control)       149         STATUS       64         STKPTR (Stack Pointer)       53 |

| T1CON (Timer1 Control)              | 111       |
|-------------------------------------|-----------|
| TXSTA (Transmit Status and Control) | 148       |
| WDTCON (Watchdog Timer Control)     | 203       |
| RESET                               | 245       |
| Reset State of Registers            | 46        |
| Resets                              | . 39, 191 |
| Brown-out Reset (BOR)               | 191       |
| Oscillator Start-up Timer (OST)     | 191       |
| Power-on Reset (POR)                | 191       |
| Power-up Timer (PWRT)               | 191       |
| RETFIE                              | 246       |
| RETLW                               | 246       |
| RETURN                              | 247       |
| Return Address Stack                | 52        |
| Associated Registers                | 52        |
| Return Stack Pointer (STKPTR)       | 53        |
| Revision History                    | 303       |
| RLCF                                | 247       |
| RLNCF                               | 248       |
| RRCF                                | 248       |
| RRNCF                               | 249       |

#### S

| SEC_IDLE Mode                   | 36  |
|---------------------------------|-----|
| SEC_RUN Mode                    | 32  |
| SETF                            | 249 |
| Single-Supply ICSP Programming  | 210 |
| Single-Supply ICSP Programming. |     |
| SLEEP                           | 250 |
| Sleep                           |     |
| OSC1 and OSC2 Pin States        | 29  |
| Software Simulator (MPLAB SIM)  | 212 |
| Special Features of the CPU     | 191 |
| Special Function Registers      |     |
| Мар                             | 60  |
| Stack Full/Underflow Resets     | 54  |
| SUBFSR                          |     |
| SUBFWB                          | 250 |
| SUBLW                           | 251 |
| SUBULNK                         |     |
| SUBWF                           | 251 |
| SUBWFB                          | 252 |
| SWAPF                           | 252 |
|                                 |     |

#### Т

| Table Reads/Table Writes       9         TBLRD       29         TBLWT       29 | 54<br>53<br>54 |
|--------------------------------------------------------------------------------|----------------|
| Time-out in Various Situations (table)                                         | 43             |
| Timer0 10                                                                      | 07             |
| 16-Bit Mode Timer Reads and Writes 10                                          | 09             |
| Associated Registers 10                                                        | 09             |
| Clock Source Edge Select (T0SE Bit) 10                                         | 09             |
| Clock Source Select (T0CS Bit) 10                                              | 09             |
| Interrupt10                                                                    | 09             |
| Operation10                                                                    | 09             |
| Prescaler10                                                                    | 09             |
| Switching the Assignment10                                                     | 09             |
| Prescaler Assignment (PSA Bit)10                                               | 09             |
| Prescaler Select (T0PS2:T0PS0 Bits)                                            | 09             |
| Prescaler. See Prescaler, Timer0.                                              |                |

NOTES: