E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Det	ails
-----	------

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, LINbus, MMC/SD, SAI, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	83
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	640K × 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l4r5vgt6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

During power-up and power-down phases, the following power sequence requirements must be respected:

- When V_{DD} is below 1 V, other power supplies (V_{DDA}, V_{DDIO2}, V_{DDUSB} and V_{LCD}) must remain below VDD +300 mV.
- When V_{DD} is above 1 V, all power supplies are independent.
- During the power-down phase, V_{DD} can temporarily become lower than other supplies only if the energy provided to the MCU remains below 1 mJ; this allows external decoupling capacitors to be discharged with different time constants during the power-down transient phase.

retained in Standby mode, supplied by the low-power regulator (standby with RAM2 retention mode).

The device exits Standby mode when an external reset (NRST pin), an IWDG reset, WKUP pin event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic wakeup, timestamp, tamper) or a failure is detected on LSE (CSS on LSE).

The system clock after wakeup is MSI up to 8 MHz.

• Shutdown mode

The Shutdown mode allows to achieve the lowest power consumption. The internal regulator is switched off so that the VCORE domain is powered off. The PLL, the HSI16, the MSI, the LSI and the HSE oscillators are also switched off.

The RTC can remain active (Shutdown mode with RTC, Shutdown mode without RTC).

The BOR is not available in Shutdown mode. No power voltage monitoring is possible in this mode, therefore the switch to Backup domain is not supported.

SRAM1, SRAM2, SRAM3 and register contents are lost except for registers in the Backup domain.

The device exits Shutdown mode when an external reset (NRST pin), a WKUP pin event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic wakeup, timestamp, tamper).

The system clock after wakeup is MSI at 4 MHz.

Timer type Timer Counter resolution Counter type Prescaler factor DMA request generation Capture/ compare outputs Advanced Lip. down Any integer Any integer											
Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/ compare channels	Complementary outputs				
Advanced control	TIM1, TIM8	16-bit	Up, down, Up/down	Any integer between 1 and 65536	Yes	4	3				
General- purpose	TIM2, TIM5	32-bit	Up, down, Up/down	Any integer between 1 and 65536	Yes	4	No				
General- purpose	TIM3, TIM4	16-bit	Up, down, Up/down	Any integer between 1 and 65536	Yes	4	No				
General- purpose	TIM15	16-bit	Up	Any integer between 1 and 65536	Yes	2	1				
General- purpose	TIM16, TIM17	16-bit	Up	Any integer between 1 and 65536	Yes	1	1				
Basic	TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No				

Table 10. Timer feature comparison

3.30.1 Advanced-control timer (TIM1, TIM8)

The advanced-control timers can each be seen as a three-phase PWM multiplexed on six channels. They have complementary PWM outputs with programmable inserted dead-times. They can also be seen as complete general-purpose timers.

The four independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge or center-aligned modes) with full modulation capability (0-100%)
- One-pulse mode output

In debug mode, the advanced-control timer counter can be frozen and the PWM outputs disabled in order to turn off any power switches driven by these outputs.

Many features are shared with the general-purpose TIMx timers (described in *Section 3.30.2*) using the same architecture, so the advanced-control timers can work together with the TIMx timers via the Timer Link feature for synchronization or event chaining.

4 Pinouts and pin description

	1	2	3	4	5	6	7	8	9	10	11	12	13
A	PI10	PH2	VDD	PE0	PB4	PB3	VSS	VDD	PA15	PA14	PA13	P10	PH14
в	P19	PI7	vss	PE1	PB5	VDDIO2	PG9	PD0	P16	PI2	PI1	PH15	PH12
с	VDD	vss	PI11	PB8	PB6	PG15	PD4	PD1	PH13	PI3	P18	vss	VDD
D	PE4	PE3	PE2	PB9	PB7	PG10	PD5	PD2	PC10	P14	PH9	PH7	PA12
E	PC13	VBAT	PE6	PE5	PH3-BOOT0	PG11	PD6	PD3	PC11	P15	PH6	VDDUSB	PA11
F	PC14- OSC32_IN	vss	PF2	PF1	PF0	PG12	PD7	PC12	PA10	PA9	PC6	VDDIO2	VSS
G	PC15- OSC32_OUT	VDD	PF3	PF4	PF5	PG14	PG13	PA8	PC9	PC8	PG6	PC7	VDD
н	PH0-OSC_IN	VSS	NRST	PF10	PC4	PG1	PE10	PB11	PG8	PG7	PD15	vss	VDD
L	PH1- OSC_OUT	PC0	PC1	PC2	PC5	PG0	PE9	PE15	PG5	PG4	PG3	PG2	PD10
к	PC3	VSSA/VREF-	PA0	PA5	PB0	PF15	PE8	PE14	PH4	PD14	PD12	PD11	PD13
L	VREF+	VDDA	PA4	PA7	PB1	PF14	PE7	PE13	PH5	PD9	PD8	VDD	VSS
м	OPAMP1_VI NM	PA3	vss	PA6	PF11	PF13	vss	PE12	PH10	PH11	vss	PB15	PB14
N	PA2	PA1	VDD	OPAMP2_VI NM	PB2	PF12	VDD	PE11	PB10	PH8	VDD	PB12	PB13
							-					-	MSv38036

Figure 9. STM32L4R5xx and STM32L4R7xx UFBGA169 ballout⁽¹⁾

1. The above figure shows the package top view.

1. The above figure shows the package top view.

80/310

DS12023 Rev 4

-	Table 15. STM32L4Rxxx pin definitions (continued)																		
						Pin n	umber	•											
	STM	32L4F	R5xxx,	, STM:	32L4R	7xxx	-		S	TM32L	_4R9x	xx		set)				suc	suo
LQFP100	BGA132_SMPS	BGA132	LQFP144_SMPS	LQFP144	WLCSP144	UFBGA169_SMPS	UFBGA169	LQFP100	LQFP144	UFBGA144	WLCSP144_SMPS	WLCSP144	UFBGA169	Pin name (function after re	Pin type	I/O structure	Notes	Alternate functio	Additional functi
-	F3	F3	14	14	F10	G4	G4	-	14	F3	F10	F10	G4	PF4	I/O	FT	-	OCTOSPIM_P2_CLK, FMC_A4, EVENTOUT	-
-	F4	F4	15	15	F9	G5	G5	-	15	F4	F9	F9	G5	PF5	I/O	FT	-	FMC_A5, EVENTOUT	-
10	F2	F2	16	16	G11	F2	F2	10	16	L6	G11	G11	F2	VSS	S	-	-	-	-
11	G2	G2	17	17	G12	G2	G2	11	17	G1	G12	G12	G2	VDD	S	-	-	-	-
-	-	-	18	18	G10	-	-	-	18	F2	G10	G10	-	PF6	I/O	FT	-	TIM5_ETR, TIM5_CH1, OCTOSPIM_P1_IO3, SAI1_SD_B, EVENTOUT	-
-	-	-	19	19	G9	-	-	-	19	F5	G9	G9	-	PF7	I/O	FT	-	TIM5_CH2, OCTOSPIM_P1_IO2, SAI1_MCLK_B, EVENTOUT	-
-	-	-	20	20	NC	-	-	-	-	F1	NC	NC	-	PF8	I/O	FT	- (3)	TIM5_CH3, OCTOSPIM_P1_IO0, SAI1_SCK_B, EVENTOUT	-
-	-	-	21	21	NC	-	-	-	-	G4	NC	NC	-	PF9	I/O	FT	(3)	TIM5_CH4, OCTOSPIM_P1_IO1, SAI1_FS_B, TIM15_CH1, EVENTOUT	-

Pinouts and pin description

90/310

DS12023 Rev 4

Table 15. STM32L4Rxxx pin defi										initions	(con	tinued)							
						Pin nu	umber												
	STM	32L4F	R5xxx,	STM	32L4R	7xxx			S	TM32I	4R9x	xx		set)				S	suc
LQFP100	BGA132_SMPS	BGA132	LQFP144_SMPS	LQFP144	WLCSP144	UFBGA169_SMPS	UFBGA169	LQFP100	LQFP144	UFBGA144	WLCSP144_SMPS	WLCSP144	UFBGA169	Pin name (function after res	Pin type	I/O structure	Notes	Alternate functio	Additional function
42	M9	M9	64	64	L5	N8	N8	39	60	H7	L5	L5	N8	PE11	I/O	FT	-	TIM1_CH2, DFSDM1_CKIN4, TSC_G5_IO2, OCTOSPIM_P1_NCS, LCD_G4, FMC_D8, EVENTOUT	-
43	L9	L9	65	65	M5	M8	M8	40	61	M9	M5	M5	M8	PE12	I/O	FT	-	TIM1_CH3N, SPI1_NSS, DFSDM1_DATIN5, TSC_G5_IO3, OCTOSPIM_1_IO0, LCD_G5, FMC_D9, EVENTOUT	-
44	M10	M10	66	66	J5	L8	L8	41	62	J8	J5	J5	L8	PE13	I/O	FT	-	TIM1_CH3, SPI1_SCK, DFSDM1_CKIN5, TSC_G5_IO4, OCTOSPIM_P1_IO1, LCD_G6, FMC_D10, EVENTOUT	-

Pinouts and pin description

5

116/310

DS12023 Rev 4

Table 15. STM32L4Rxxx pin defi	nitions (con	tinued)	

Pin number																			
	STM	32L4F	R5xxx,	STM	82L4R	7xxx			S	TM32L	_4R9x	xx		set)				su	suc
LQFP100	BGA132_SMPS	BGA132	LQFP144_SMPS	LQFP144	WLCSP144	UFBGA169_SMPS	UFBGA169	LQFP100	LQFP144	UFBGA144	WLCSP144_SMPS	WLCSP144	UFBGA169	Pin name (function after re	Pin type	I/O structure	Notes	Alternate functio	Additional function
-	-	-	-	-	-	A2	A2	-	-	-	-	-	A2	PH2	I/O	FT	-	OCTOSPIM_P1_IO4, EVENTOUT	-
-	-	-	-	-	-	B2	B2	-	-	-	-	-	B2	PI7	I/O	FT	-	TIM8_CH3, DCMI_D7, EVENTOUT	-
-	-	-	-	-	-	B1	B1	-	-	-	-	-	B1	PI9	I/O	FT	-	OCTOSPIM_P2_IO2, CAN1_RX, EVENTOUT	-
-	-	-	-	-	-	A1	A1	-	-	-	-	-	A1	PI10	I/O	FT	-	OCTOSPIM_P2_IO1, EVENTOUT	-

PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited:
 The speed should not exceed 2 MHz with a maximum load of 30 pF

- These GPIOs must not be used as current sources (for example to drive a LED).

2. After a Backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of the RTC registers which are not reset by the system reset. For details on how to manage these GPIOs, refer to the Backup domain and RTC register descriptions in the RM0432 reference manual.

3. NC (not-connected) balls must be left unconnected. However, non connected (NC) GPIOS are not bonded. They must be configured by software to output push-pull and forced to 0 in the output data register to avoid extra current consumption in low-power modes.

4. After reset, these pins are configured as JTAG/SW debug alternate functions, and the internal pull-up on PA15, PA13, PB4 pins and the internal pull-down on PA14 pin are activated.

5 Memory mapping

DS12023 Rev 4

Symbol	Parameter	Conditions ⁽¹⁾	Min	Тур	Мах	Unit	
M	DVD threshold 2	Rising edge	2.41	2.46	2.51	V	
VPVD2		Falling edge	2.31	2.36	2.41	v	
M	DVD threshold 2	Rising edge	2.56	2.61	2.66	V	
VPVD3		Falling edge	2.47	2.52	2.57	v	
	P/D threshold 4	Rising edge	2.69	2.74	2.79	V	
♥PVD4		Falling edge	2.59	2.64	2.69	v	
V	P/D threshold 5	Rising edge	2.85	2.91	2.96	V	
♥PVD5		Falling edge	2.75	2.81	2.86	V	
V	D\/D throshold 6	Rising edge	2.92	2.98	3.04	V	
♥PVD6		Falling edge	2.84	2.90	2.96	v	
V _{hvst BORH0}	Hysteresis voltage of BORH0	Hysteresis in continuous mode	-	20	-	mV	
		Hysteresis in other mode	-	30	-		
V _{hyst_BOR_PVD}	Hysteresis voltage of BORH (except BORH0) and PVD	-	-	100	-	mV	
I _{DD} (BOR_PVD) ⁽²⁾	${\sf BOR}^{(3)}$ (except BOR0) and PVD consumption from V _{DD}	-	-	1.1	1.6	μA	
V _{PVM1}	V _{DDUSB} peripheral voltage monitoring	-	1.18	1.22	1.26	V	
Value	V _{DDA} peripheral voltage	Rising edge	1.61	1.65	1.69	V	
►PVM3	monitoring	Falling edge	1.6	1.64	1.68	v	
V	V _{DDA} peripheral voltage	Rising edge	1.78	1.82	1.86	V	
¥ PVM4	monitoring	Falling edge	1.77	1.81	1.85	v	
V _{hyst_PVM3}	PVM3 hysteresis	-	-	10	-	mV	
V _{hyst_PVM4}	PVM4 hysteresis	-	-	10	-	mV	
I _{DD} (PVM1/PVM2) (2)	PVM1 and PVM2 consumption from V _{DD}	-	-	0.2	-	μA	
I _{DD} (PVM3/PVM4) (2)	PVM3 and PVM4 consumption from V _{DD}	-	-	2	-	μA	

Table 24. Embedded reset and power control block characteristics (continued)

1. Continuous mode means Run/Sleep modes, or temperature sensor enable in Low-power run/Low-power sleep modes.

2. Guaranteed by design.

3. BOR0 is enabled in all modes (except shutdown) and its consumption is therefore included in the supply current characteristics tables.

6.3.5 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code

The current consumption is measured as described in *Figure 27: Current consumption measurement*.

Typical and maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in analog input mode
- All peripherals are disabled except when explicitly mentioned
- The Flash memory access time is adjusted with the minimum wait states number, depending on the f_{HCLK} frequency (refer to the table "Number of wait states according to CPU clock (HCLK) frequency" available in the RM0432 reference manual).
- When the peripherals are enabled f_{PCLK} = f_{HCLK}
- The voltage scaling Range 1 is adjusted to f_{HCLK} frequency as follows:
 - Voltage Range 1 Boost mode for 80 MHz < f_{HCLK} <= 120 MHz
 - Voltage Range 1 Normal mode for 26 MHz < f_{HCLK} <= 80 MHz

The parameters given in *Table 26* to *Table 40* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 22: General operating conditions*.

Symbol	Parameter		Conditions ⁽¹⁾			TYP Single Bank Mode	TYP Dual Bank Mode	Unit	TYP Single Bank Mode	TYP Dual Bank Mode	Un
		-	VDD12	f HCLK	Code	25°C	25°C		25°C	25°C	1
					Reduced code	1.34	1.41		51	54	
				fhci k=	Coremark	1.53	1.55		59	60	µA/MHz
			VDD12=1.05V	26 MHz	Dhrystone2.1	1.67	1.69	mA	64	65	
					Fibonacci	1.43	1.53		55	59	
		fHCLK=fHSE up to 48 MHZ included.			While(1)	1.24	1.24		48	48	
					Reduced code	1.47	1.55		56	60	-
מס	Supply	bypass mode		fнсі к=	Coremark	1.68	1.70		65	66	
(Run)	current in Run mode	PLL ON above 48 MHz all		26 MHz	Dhrystone2.1	1.83	1.85	mA	71	71	µA/N
		peripherals			Fibonacci	1.57	1.68		61	65	
		aisable			While(1)	1.36	1.36		52	52	
			VD12-1.10V		Reduced code	4.13	4.49		52	56	
				fHCLK=	Coremark	4.85	4.85		61	61	
				80 MHz	Dhrystone2.1	5.21	5.21	mA	65	65	µA/N
					Fibonacci	4.49	5.03		56	63]
					While(1)	3.77	3.77		47	47]

Table 37. Typical current consumption in Run and Low-power run modes, with

163/310

Electrical characteristics

Ш
Ē
ň
Ŧ
5
ы.
-
<u>0</u>
З,
Ĩ
a
8
Φ
Ξ.
st
ö
ö

STM32L4R5xx, STM32L4R7xx and STM32L4R9xx

		Т	able 47	'. Currei	nt consi	umptior	in Stop	o 1 mod	e					
0	Demonster	Conditions				TYP					MAX ⁽¹⁾)		11
Symbol	Parameter	-	VDD	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	Unit
	Over a human and		1.8 V	120	430	1400	2750	5050	280	1100	3300	6500	13000	
IDD	in Stop 1		2.4 V	120	430	1400	2750	5100	280	1100	3300	6500	13000	1
(Stop 1)	mode,	-	3 V	125	430	1400	2750	5100	280	1100	3300	6500	13000	1
	RIC disabled		3.6 V	120	430	1400	2750	5150	280	1100	3300	6600	13000 ⁽²⁾	
			1.8 V	120	430	1400	2700	5050	280	1100	3300	6500	13000	1
		DTC algorized by LSI	2.4 V	125	430	1400	2750	5100	280	1100	3300	6500	13000	1
		RTC Clocked by LSI	3 V	125	430	1400	2750	5100	280	1100	3300	6600	13000	1
			3.6 V	125	435	1400	2750	5150	280	1100	3300	6600	13000	
	Supply current in STOP 1	t RTC clocked by LSE	1.8 V	120	430	1400	2750	5050	300	1100	3500	6900	13000	000 000 000 000
(Stop 1			2.4 V 120	120	435	1400	2750	5100	300	1100	3500	6900	13000	
with	mode,	bypassed at 32768 Hz	3 V	125	435	1400	2750	5100	320	1100	3500	6900	13000	
RIC)	RIC enabled		3.6 V	125	435	1400	2750	5150	320	1100	3500	6900	13000	
			1.8 V	120	420	1350	2700	-	300	1100	3400	6800	-	1
		RTC clocked by LSE	2.4 V	120	420	1350	2700	-	300	1100	3400	6800	-	1
		quartz ⁽³⁾ in low drive mode	3 V	120	420	1350	2700	-	300	1100	3400	6800	-	1
			3.6 V	120	425	1350	2700	-	300	1100	3400	6800	-	1
IDD	Supply current	Wakeup clock is MSI = 48 MHz, voltage Range 1 ⁽⁴⁾	3 V	2.10	-	-	-	-	-	-	-	-	-	
(wakeup from	during wakeup from	Wakeup clock is MSI = 4 MHz, voltage Range $2^{(4)}$	3 V	0.70	-	-	-	-	-	-	-	-	-	mA
Stop 1)	Stop 1 mode	Wakeup clock is HSI = 16 MHz, voltage Range 1 ⁽⁴⁾	3 V	1.50	-	-	-	-	-	-	-	-	-]

1. Guaranteed by characterization results, unless otherwise specified.

2. Guaranteed by test in production.

3. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.

4. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 53: Low-power mode wakeup timings

DS12023 Rev 4

174/310

6.3.6 Wakeup time from low-power modes and voltage scaling transition times

The wakeup times given in *Table 53* are the latency between the event and the execution of the first user instruction.

The device goes in low-power mode after the WFE (Wait For Event) instruction.

Symbol	Parameter		Conditions	Тур	Max	Unit
twusleep	Wakeup time from Sleep mode to Run mode		-	6	6	Nh of
t _{WULPSLEEP}	Wakeup time from Low- power sleep mode to Low- power run mode	Wakeup ir during low- _l in FLASH_/	Wakeup in Flash with Flash in power-down during low-power sleep mode (SLEEP_PD=1 n FLASH_ACR) and with clock MSI = 2 MHz Wakeup clock MSI = 48 MHz			CPU cycles
	Make up time	Range 1	Wakeup clock MSI = 48 MHz	9.1	9.8	
	from Stop 0 mode to Run mode in		Wakeup clock HSI16 = 16 MHz	8.5	9.0	
		Range 2	Wakeup clock MSI = 24 MHz	18.8	19.7	
			Wakeup clock HSI16 = 16 MHz	17.6	18.3	
t			Wakeup clock MSI = 4 MHz	23.9	25.7	116
WUSTOP0		Pango 1	Wakeup clock MSI = 48 MHz	1.9	2.5	μο
	from Stop 0	Range	Wakeup clock HSI16 = 16 MHz	2.6 2.9		
	mode to Run		Wakeup clock MSI = 24 MHz	2.6	3.1	
	mode in SRAM1	Range 2	Wakeup clock HSI16 = 16 MHz	2.6	3.0	
	SRAM1		Wakeup clock MSI = 4 MHz	10.0	10.0 11.5	

Table 53. Low-power mode wakeup timings⁽¹⁾

Symbol	Parameter	-	Conditions	Тур	Max	Unit
	Wakeup time		Wakeup clock MSI = 8 MHz	30.7	47.8	
t _{WUSTBY}	from Standby mode to Run mode	Range 1	Wakeup clock MSI = 4 MHz	40.4	55.6	
	Wakeup time		Wakeup clock MSI = 8 MHz	32.1	49.1	
^I WUSTBY SRAM2	from Standby with SRAM2 to Run mode	Wakeup clock MSI = 4 MHz	41.5	55.5	μs	
twushdn	Wakeup time from Shutdown mode to Run mode	Range 1	Wakeup clock MSI = 4 MHz	265.0	339.4	

 Table 53. Low-power mode wakeup timings⁽¹⁾ (continued)

1. Guaranteed by characterization results.

Table 54. Regulator modes transition times	Table 54.	Regulator	modes	transition	times ⁽¹
--	-----------	-----------	-------	------------	---------------------

Symbol	Parameter	Conditions	Тур	Max	Unit
t _{WULPRUN}	Wakeup time from Low- power run mode to Run mode ⁽²⁾	Code run with MSI 2 MHz	5	7	
t _{VOST}	Regulator transition time from Range 2 to Range 1 or Range 1 to Range 2 ⁽³⁾	Code run with MSI 24 MHz	20	40	μs

1. Guaranteed by characterization results.

2. Time until REGLPF flag is cleared in PWR_SR2.

3. Time until VOSF flag is cleared in PWR_SR2.

Table 55. Wakeup time using USART/LPUART⁽¹⁾

Symbol	Parameter	Conditions	Тур	Max	Unit
	Wakeup time needed to calculate	Stop mode 0	-	1.7	
^t wuusart ^t wulpuart	the maximum USART/LPUART baudrate allowing to wakeup up from stop mode when USART/LPUART clock source is HSI	Stop mode 1/2	-	8.5	μs

1. Guaranteed by characterization results.

Sym- bol	Parameter	(Conditions ⁽⁴)	Min	Тур	Max	Unit
			Single	Fast channel (max speed)	-	4	5	
ст	Total		ended	Slow channel (max speed)	-	4	5	
	error		Conditions ⁽⁴⁾ Single F ended F Differential F Single F ended F Single F	Fast channel (max speed)	-	3.5	4.5	
			Differential	Slow channel (max speed)	-	3.5	4.5	
			Single	Fast channel (max speed)	-	1	2.5	
FO	Offset		ended	Slow channel (max speed)	-	1	2.5	
LU	error		Differential	Fast channel (max speed)	-	1.5	2.5	
			Differential	Slow channel (max speed)	-	1.5	2.5	
			Single	Fast channel (max speed)	-	2.5	4.5	
FG	EG Gain error	ended	Slow channel (max speed)	-	2.5	4.5	ISB	
EG Gainenoi		Differential	Fast channel (max speed)	-	2.5	3.5	LSB	
		Differential	Slow channel (max speed)	-	2.5	3.5		
			Single	Fast channel (max speed)	-	1	1.5	
ED lineari error	Differential	Differential inearity error ADC clock frequency ≤ 80 MHz, Sampling rate ≤ 5.33 Msps.	ended	Slow channel (max speed)	-	1	1.5	
	error		Differential	Fast channel (max speed)	-	1	1.2	
				Slow channel (max speed)	-	1	1.2	
		$V_{DDA} = VREF + = 3 V,$	Single	Fast channel (max speed)	-	1.5	2.5	
	Integral	TA = 25 °C	ended	Slow channel (max speed)	-	1.5	2.5	-
	error		Differential	Fast channel (max speed)	-	1	2	
			Differential	Slow channel (max speed)	-	1	2	
			Single	Fast channel (max speed)	10.4	10.5	-	
ENOR	Effective		ended	Slow channel (max speed)	10.4	10.5	-	hita
ENOD	bits		Differential	Fast channel (max speed)	10.8	10.9	-	DILS
			Differential	Slow channel (max speed)	10.8	10.9	-	
	Signal to		Single	Fast channel (max speed)	64.4	65	-	
	noise and		ended	Slow channel (max speed)	64.4	65	-	
SINAD	distortion		Differential	Fast channel (max speed)	66.8	67.4	-	
	1410		Differential	Slow channel (max speed)	66.8	67.4	-	dР
			Single	Fast channel (max speed)	65	66	-	uD
SNID	Signal-to-		ended	Slow channel (max speed)	65	66	-	
SINK	noise ratio		Differentiel	Fast channel (max speed)	67	68	-	
			Differential	Slow channel (max speed)	67	68	-	

Table 84. ADC accuracy - limited test conditions $1^{(1)(2)(3)}$

Sym- bol	Parameter	C	Conditions ⁽⁴)	Min	Тур	Max	Unit
			Single	Fast channel (max speed)	-	5.5	7.5	
ст	Total		ended	Slow channel (max speed)	-	4.5	6.5	
L1	error		Differential	Fast channel (max speed)	-	4.5	7.5	
			Differential	Slow channel (max speed)	-	4.5	5.5	
			Single	Fast channel (max speed)	-	2	5	
FO	Offset		ended	Slow channel (max speed)	-	2.5	5	
20	error		Differential	Fast channel (max speed)	-	2	3.5	
			Differential	Slow channel (max speed)	-	2.5	3	
			Single	Fast channel (max speed)	-	4.5	7	
FG	EG Gain error	ended	Slow channel (max speed)	-	3.5	6	ISB	
EG Gain enor		Differential	Fast channel (max speed)	-	3.5	4	LOD	
			Billerential	Slow channel (max speed)	-	3.5	5	-
			Single	Fast channel (max speed)	-	1.2	1.5	
Dif ED line err	Differential	ifferential nearity ror ADC clock frequency ≤ 80 MHz, Sampling rate ≤ 5.33 Msps,	ended	Slow channel (max speed)	-	1.2	1.5	
	error		Differential	Fast channel (max speed)	-	1	1.2	
				Slow channel (max speed)	-	1	1.2	
		$1.65 \text{ V} \le \text{V}_{\text{DDA}} = \text{V}_{\text{REF}^+} \le$	Single	Fast channel (max speed)	-	3	3.5	
FI	Integral	Voltage scaling Range 1	ended	Slow channel (max speed)	-	2.5	3.5	
	error		Differential	Fast channel (max speed)	-	2	2.5	
			Differential	Slow channel (max speed)	-	2	2.5	
			Single	Fast channel (max speed)	10	10.4	-	
ENOB	Effective		ended	Slow channel (max speed)	10	10.4	-	hite
LINOD	bits		Differential	Fast channel (max speed)	10.6	10.7	-	DILS
			Differential	Slow channel (max speed)	10.6	10.7	-	
	Signal to		Single	Fast channel (max speed)	62	64	-	
	noise and		ended	Slow channel (max speed)	62	64	-	
	distortion ratio		Differential	Fast channel (max speed)	65	66	-	
	1010		Differential	Slow channel (max speed)	65	66	-	dB
			Single	Fast channel (max speed)	63	65	-	uр
SNID	Signal-to-		ended	Slow channel (max speed)	63	65	-	
UNIT	noise ratio		Differential	Fast channel (max speed)	66	67	-	
			Differential	Slow channel (max speed)	66	67	-	

Table 86. ADC accuracy - limited test conditions $3^{(1)(2)(3)}$

Symbol	Parameter	Con	ditions	Min	Тур	Max	Unit
		Normal mode		-	-	500	
ILOAD	Drive current	Low-power mode	$V_{DDA} \ge 2 V$	-	-	100	
	Drive current in	Normal mode		-	-	450	μΑ
ILOAD_PGA	PGA mode	Low-power mode	$V_{DDA} \ge 2 V$	-	-	50	
P	Resistive load (connected to	Normal mode	V < 2 V	4	-	-	
►LOAD	VSSA or to VDDA)	Low-power mode		20	-	-	kO
Р	Resistive load in PGA mode	Normal mode	V < 2 V	4.5	-	-	K12
™LOAD_PGA	VSSA or to V _{DDA})	Low-power mode	VDDA < 2 V	40	-	-	
C _{LOAD}	Capacitive load		-	-	-	50	pF
CMPP	Common mode	Normal mode		-	-85	-	dB
CIVIER	rejection ratio	Low-power mode		-	-90	-	UD
PSRR	Power supply rejection ratio	Normal mode	C _{LOAD} ≤ 50 pf, R _{LOAD} ≥ 4 kΩ DC	70	85	-	dB
		Low-power mode	C _{LOAD} ≤ 50 pf, R _{LOAD} ≥ 20 kΩ DC	72	90	-	άb
	Gain Bandwidth Product	Normal mode	V _{DDA} ≥ 2.4 V	550	1600	2200	- kHz
CBW/		Low-power mode	(OPA_RANGE = 1)	100	420	600	
GBW		Normal mode	V _{DDA} < 2.4 V	250	700	950	
		Low-power mode	(OPA_RANGE = 0)	40	180	280	
	Slow rate	Normal mode		-	700	-	
SP(2)	(from 10 and	Low-power mode	V _{DDA} ≥ 2.4 V	-	180	-	V/me
SIX /	90% of output	Normal mode	V < 24V	-	300	-	v/1115
	voltage)	Low-power mode	VDDA < 2.4 V	-	80	-	
40		Normal mode		55	110	-	dP
AU	Open loop gain	Low-power mode		45	110	-	UD
V	High saturation	Normal mode	I _{load} = max or R _{load} =	V _{DDA} - 100	-	-	
VOHSAT` /	voltage	Low-power mode	min Input at V _{DDA} .	V _{DDA} - 50	-	-	mV
Va(2)	Low saturation	Normal mode	I_{load} = max or R_{load} =	-	-	100	
♥ OLSAT` ´	voltage	Low-power mode	min Input at 0.	-	-	50	
(6	Phase margin	Normal mode		-	74	-	0
Ψm	Filase margin	Low-power mode		-	66	-	

Table 92. OPAMP characteristics⁽¹⁾ (continued)

Figure 56. Synchronous non-multiplexed NOR/PSRAM read timings

Table	116. Sy	ynchronous	non-multi	plexed N	NOR/PSRAM	read	timings ⁽¹⁾⁽²⁾⁽³⁾
-------	---------	------------	-----------	----------	-----------	------	------------------------------

Symbol	Parameter	Min	Мах	Unit
t _{w(CLK)}	FMC_CLK period	RxT _{HCLK} -0.5	-	
t _{d(CLKL-NExL)}	FMC_CLK low to FMC_NEx low (x=02)	-	2.5	
t _{d(CLKH-NExH)}	FMC_CLK high to FMC_NEx high (x= 02)	RxT _{HCLK} /2 +1	-	
t _{d(CLKL-NADVL)}	FMC_CLK low to FMC_NADV low	-	2.5	
t _{d(CLKL-NADVH)}	FMC_CLK low to FMC_NADV high	2	-	
t _{d(CLKL-AV)}	FMC_CLK low to FMC_Ax valid (x=1625)	-	5.5	ns
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x=1625)	RxT _{HCLK} /2 +0.5	-	
t _{d(CLKL-NOEL)}	FMC_CLK low to FMC_NOE low	-	2	
t _{d(CLKH-NOEH)}	FMC_CLK high to FMC_NOE high	RxT _{HCLK} /2 +1	-	
t _{su(DV-CLKH)}	FMC_D[15:0] valid data before FMC_CLK high	2	-	
t _{h(CLKH-DV)}	FMC_D[15:0] valid data after FMC_CLK high	4	-	

and V_{DD} supply voltage conditions summarized in *Table 22: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Measurement points are done at CMOS levels: 0.5 x V_{DD}

Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate function characteristics.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
		1.71 V < V _{DD} < 3.6 V Voltage Range 1 C _{LOAD} = 20 pF	-	-	58		
F(QCK)	OctoSPI clock frequency	2.7 V < V_{DD} < 3.6 V Voltage Range 1 C _{LOAD} = 20 pF	-	-	86	MHz	
		1.71 V < V_{DD} < 3.6 V Voltage Range 1 C _{LOAD} = 15 pF	-	-	66		
		1.71 V < V_{DD} < 3.6 V Voltage Range 2 C_{LOAD} = 20 pF	-	-	26		
t _{w(CKH)}	OctoSPI clock	December 0	t _(CK) /2-1	-	t _(CK) /2		
t _{w(CKL)}	time	Prescaler = 0	t _(CK) /2-1	-	t _(CK) /2		
t	Data input	Voltage Range 1	0.5	-	-		
^L s(IN)	setup time	Voltage Range 2	0	-	-		
+	Data input	Voltage Range 1	7.75	-	-	ns	
^ւ h(IN)	hold time	Voltage Range 2	10.5	-	-		
+	Data output	Voltage Range 1	-	2	3.5		
۷(OUT)	valid time	Voltage Range 2	-	4	5.5		
+	Data output	Voltage Range 1	0	-	-		
ካ(OUT)	hold time	old time Voltage Range 2		-	-		

Table 120. OctoSPI⁽¹⁾ characteristics in SDR mode⁽²⁾

1. Values in the table applies to Octal and Quad SPI mode.

2. Guaranteed by characterization results.

Figure 67. OctoSPI Hyperbus write

