E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	DMA, I ² S, LCD, LVD, POR, PWM, WDT
Number of I/O	54
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 20x16b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mkl33z256vlh4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1	Rati	ngs		4						
	1.1	Thermal handling ratings								
	1.2	Moisture handling ratings								
	1.3	ESD handling ratings								
	1.4	Voltag	e and current operating ratings	4						
2	Ger	eral		. 5						
	2.1	AC electrical characteristics								
	2.2	Nonsw	vitching electrical specifications	5						
		2.2.1	Voltage and current operating requirements	6						
		2.2.2	LVD and POR operating requirements	. 6						
		2.2.3	Voltage and current operating behaviors	7						
		2.2.4	Power mode transition operating behaviors	8						
		2.2.5	Power consumption operating behaviors	9						
		2.2.6	EMC radiated emissions operating behaviors	. 19						
		2.2.7	Designing with radiated emissions in mind	. 20						
		2.2.8	Capacitance attributes	. 20						
	2.3	Switch	ing specifications	20						
		2.3.1	Device clock specifications	. 20						
		2.3.2	General switching specifications	21						
	2.4	Therm	al specifications	. 21						
		2.4.1	Thermal operating requirements	21						
		2.4.2	Thermal attributes	22						
3	Peri	pheral	operating requirements and behaviors	. 22						
	3.1	Core n	nodules	. 22						
		3.1.1	SWD electricals	23						
	3.2	Systen	n modules	. 24						
	3.3	Clock	modules	. 24						
		3.3.1	MCG-Lite specifications	24						
		3.3.2	Oscillator electrical specifications	. 26						
	3.4	Memo	ries and memory interfaces	. 28						
		3.4.1	Flash electrical specifications	. 28						
	3.5	Securi	ty and integrity modules	30						
	3.6	Analog]	30						

		261	ADC electrical energifications	20
		3.0.1	ADC electrical specifications	
		3.6.2	voltage reference electrical specifications	35
		3.6.3	CMP and 6-bit DAC electrical specifications.	36
		3.6.4	12-bit DAC electrical characteristics	38
	3.7	Timers		41
	3.8	Comm	unication interfaces	41
		3.8.1	SPI switching specifications	41
		3.8.2	I2C	46
		3.8.3	UART	48
		3.8.4	I2S/SAI switching specifications	48
	3.9	Humar	n-machine interfaces (HMI)	52
		3.9.1	LCD electrical characteristics	52
4	Dim	ensions	5	54
	4.1	Obtain	ing package dimensions	54
5	Pinc	outs and	Packaging	54
	5.1	KL33 5	Signal Multiplexing and Pin Assignments	54
	5.2	KL33 F	Family Pinouts	57
6	Ord	ering pa	arts	59
	6.1	Determ	nining valid orderable parts	59
7	Part	t identifi	cation	59
	7.1	Descrip	otion	59
	7.2	Format	t	60
	7.3	Fields.		60
	7.4	Examp	le	60
8	Terr	ninolog	y and guidelines	61
	8.1	Definiti	ons	61
	8.2	Examp	les	61
	8.3	Typical	I-value conditions	62
	8.4	Relatio	onship between ratings and operating	
		require	ments	62
	8.5	Guideli	ines for ratings and operating requirements	63
9	Rev	ision Hi	story	63
			· · · · · · · · · · · · · · · · · · ·	

Symbol	Description	Min.	Max.	Unit	Notes
	• $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, \text{ I}_{\text{OL}} = 18 \text{ mA}$	—	0.5	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OL} = 6 mA				
I _{OLT}	Output low current total for all ports	—	100	mA	
I _{IN}	Input leakage current (per pin) for full temperature range	_	1	μA	2
I _{IN}	Input leakage current (per pin) at 25 °C	_	0.025	μA	2
I _{IN}	Input leakage current (total all pins) for full temperature range	_	64	μA	2
I _{OZ}	Hi-Z (off-state) leakage current (per pin)	_	1	μA	
R _{PU}	Internal pullup resistors	20	50	kΩ	3

Table 7. Voltage and current operating behaviors (continued)

1. PTB0, PTB1, PTC3, PTC4, PTD6, and PTD7 I/O have both high drive and normal drive capability selected by the associated PTx_PCRn[DSE] control bit. All other GPIOs are normal drive only.

2. Measured at $V_{DD} = 3.6 V$

3. Measured at V_{DD} supply voltage = V_{DD} min and Vinput = V_{SS}

2.2.4 Power mode transition operating behaviors

All specifications except t_{POR} and VLLSx \rightarrow RUN recovery times in the following table assume this clock configuration:

- CPU and system clocks = 48 MHz
- Bus and flash clock = 24 MHz
- HIRC clock mode

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{POR}	After a POR event, amount of time from the point V_{DD} reaches 1.8 V to execution of the first instruction across the operating temperature range of the chip.	_	_	300	μs	1
	• VLLS0 → RUN	_	152	166	μs	
	• VLLS1 → RUN	_	152	166	μs	
	• VLLS3 → RUN	_	93	104	μs	
	• LLS \rightarrow RUN		7.5	8	μs	

Table continues on the next page ...

8

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	 VLPS → RUN 					
		—	7.5	8	μs	
	• STOP → RUN					
			7.5	8	μs	

 Table 8. Power mode transition operating behaviors (continued)

1. Normal boot (FTFA_FOPT[LPBOOT]=11)

2.2.5 Power consumption operating behaviors

The maximum values stated in the following table represent characterized results equivalent to the mean plus three times the standard deviation (mean + 3 sigma).

NOTE

The while (1) test is executed with flash cache enabled.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DDA}	Analog supply current	_	—	See note	mA	1
I _{DD_RUNCO}	Running CoreMark in flash in compute operation mode—48M HIRC mode, 48 MHz core / 24 MHz flash, V_{DD} = 3.0 V					2
	• at 25 °C	—	5.76	6.40	mA	
	• at 105 °C		6.04	6.68		
I _{DD_RUNCO}	Running While(1) loop in flash in compute operation mode—48M HIRC mode, 48 MHz core / 24 MHz flash, V _{DD} = 3.0 V					
	• at 25 °C	—	3.21	3.85	mA	
	• at 105 °C		3.49	4.13		
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in Flash all peripheral clock disable 48 MHz core/24 MHz flash, $V_{DD} = 3.0$ V					2
	• at 25 °C	—	6.45	7.09	mA	
	• at 105 °C	_	6.75	7.39		
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in flash all peripheral clock disable, 24 MHz core/12 MHz flash, V_{DD} = 3.0 V					2
	• at 25 °C	—	3.95	4.59		
	• at 105 °C		4.23	4.87	mA	

Table 9. Power consumption operating behaviors

Table continues on the next page...

9

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	• at 85 °C	_	102.92	162.20		
	• at 105 °C					
I _{DD_LLS}	Low-leakage stop mode current, all peripheral					
	disable, at 3.0 V	—	2.06	3.33	μΑ	
	at 50 °C	—	4.72	6.85		
		_	8.13	13.30		
	• at 70 C	_	13.34	24.70		
	• at 85 °C	_	41.08	52.43		
	• at 105 °C					
I _{DD_LLS}	Low-leakage stop mode current with RTC					
	• at 25 °C and below	—	2.46	3.73	μΑ	
	• at 50 °C	—	5.12	7.25		
	• at 70 °C	—	8.53	11.78		
	• at 85 °C	—	13.74	18.91		
	• at 105 °C	—	41.48	52.83		
I _{DD_LLS}	Low-leakage stop mode current with RTC					3
	• at 25 °C and below	—	2.35	2.70	μ.,	
	• at 50 °C	—	4.91	6.75		
	• at 70 °C	—	8.32	11.78		
	• at 85 °C	—	13.44	18.21		
	• at 105 °C	—	40.47	51.85		
DD_VLLS3	peripheral disable, at 3.0 V		4.45	1.05	μA	
	 at 25 °C and below 	—	1.45	1.85		
	• at 50 °C	—	3.37	4.39		
	• at 70 °C	—	5.76	8.48		
	• at 85 °C	—	9.72	14.30		
	• at 105 °C	—	30.41	37.50		
IDD VLLS3	Very-low-leakage stop mode 3 current with RTC					3
	current, at 3.0 V	_	2.05	2.45	μΑ	
		_	3.97	4.99		
	• at 50 °C	_	6.36	9.08		
	• at 70 °C	_	10.32	14 73		
	• at 85 °C	_	31.01	38 10		
	• at 105 °C					

 Table 9. Power consumption operating behaviors (continued)

Table continues on the next page...

Symbol	Description	Temperature (°C)			Unit			
		-40	25	50	70	85	105	
								nA
I _{CMP}	CMP peripheral adder measured by placing the device in VLLS1 mode with CMP enabled using the 6-bit DAC and a single external input for compare. Includes 6-bit DAC power consumption.	22	22	22	22	22	22	μΑ
Iuart	UART peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source waiting for RX data at 115200 baud rate. Includes selected clock source power consumption. • IRC8M (8 MHz internal reference clock) • IRC2M (2 MHz internal reference clock)	114 34	114 34	114 34	114 34	114 34	114 34	μΑ
I _{TPM}	 TPM peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source configured for output compare generating 100 Hz clock signal. No load is placed on the I/O generating the clock signal. Includes selected clock source and I/O switching currents. IRC8M (8 MHz internal reference clock) IRC2M (2 MHz internal reference clock) 	147 42	147 42	147 42	147 42	147 42	147 42	μΑ
I _{BG}	Bandgap adder when BGEN bit is set and device is placed in VLPx or VLLSx mode.	45	45	45	45	45	45	μA
I _{ADC}	ADC peripheral adder combining the measured values at V_{DD} and V_{DDA} by placing the device in STOP or VLPS mode. ADC is configured for low power mode using the internal clock and continuous conversions.	330	330	330	330	330	330	μA
I _{LCD}	LCD peripheral adder measured by placing the device in VLLS1 mode with external 32 kHz crystal enabled by means of the OSC0_CR[EREFSTEN, EREFSTEN] bits. VIREG disabled, resistor bias network enabled, 1/8 duty cycle, 8 x 36 configuration for driving 288 Segments, 32 Hz frame rate, no LCD glass connected. Includes ERCLK32K (32 kHz external crystal) power consumption.	4.5	4.5	4.5	4.5	4.5	4.5	μΑ

Table 10. Low power mode peripheral adders — typical value (continued)

2.2.5.1 Diagram: Typical IDD_RUN operating behavior

The following data was measured under these conditions:

- MCG-Lite in HIRC for run mode, and LIRC for VLPR mode
- No GPIOs toggled
- Code execution from flash
- For the ALLOFF curve, all peripheral clocks are disabled except FTFA

Figure 2. Run mode supply current vs. core frequency

1. Maximum T_A can be exceeded only if the user ensures that T_J does not exceed the maximum. The simplest method to determine T_J is: $T_J = T_A + R_{\theta JA} \times chip$ power dissipation.

2.4.2 Thermal attributes

Board type	Symbol	Description	64 LQFP	64 MAPBGA	Unit	Notes
Single-layer (1S)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	70	50.3	°C/W	1
Four-layer (2s2p)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	51	42.9	°C/W	
Single-layer (1S)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	58	41.4	°C/W	
Four-layer (2s2p)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	45	38.0	°C/W	
_	R _{θJB}	Thermal resistance, junction to board	33	39.6	°C/W	2
_	R _{θJC}	Thermal resistance, junction to case	20	27.3	°C/W	3
_	Ψ_{JT}	Thermal characterization parameter, junction to package top outside center (natural convection)	4	0.4	°C/W	4
_	Ψ _{JB}	Thermal characterization parameter, junction to package bottom (natural convection)	-	12.6	°C/W	5

Table 16. Thermal attributes

- 1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions—Forced Convection (Moving Air).
- Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions – Junction-to-Board.
- 3. Determined according to Method 1012.1 of MIL-STD 883, *Test Method Standard, Microcircuits*, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate.
- 4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air).
- 5. Thermal characterization parameter indicating the temperature difference between package bottom center and the junction temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB.

3 Peripheral operating requirements and behaviors

3.1 Core modules

3.1.1 SWD electricals

Table 17. SWD full voltage range electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
J1	SWD_CLK frequency of operation			
	Serial wire debug	0	25	MHz
J2	SWD_CLK cycle period	1/J1	—	ns
J3	SWD_CLK clock pulse width			
	Serial wire debug	20	_	ns
J4	SWD_CLK rise and fall times	_	3	ns
J9	SWD_DIO input data setup time to SWD_CLK rise	10	—	ns
J10	SWD_DIO input data hold time after SWD_CLK rise	0	—	ns
J11	SWD_CLK high to SWD_DIO data valid	—	32	ns
J12	SWD_CLK high to SWD_DIO high-Z	5		ns

Figure 4. Serial wire clock input timing

Figure 5. Serial wire data timing

3.2 System modules

There are no specifications necessary for the device's system modules.

3.3 Clock modules

3.3.1 MCG-Lite specifications

Table 18. IRC48M specification

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD}	Supply current	—	400	500	μA	—
f _{IRC}	Output frequency	—	48	_	MHz	—
Δf _{irc48m_ol_lv}	Open loop total deviation of IRC48M frequency at low voltage (VDD=1.71V-1.89V) over temperature		± 0.5	± 1.5	%f _{irc48m}	1
$\Delta f_{irc48m_ol_hv}$	Open loop total deviation of IRC48M frequency at high voltage (VDD=1.89V-3.6V) over temperature	_	± 0.5	± 1.0	%f _{irc48m}	1

Table continues on the next page...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
Tj	Period jitter (RMS)	—	35	150	ps	—
T _{su}	Startup time		2	3	μs	—

Table 18.	IRC48M s	pecification	(continued)
			· /

1. The maximum value represents characterized results equivalent to mean plus or minus three times the standard deviation (mean +/-3sigma).

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD_2M}	Supply current in 2 MHz mode	—	14	17	μA	—
I _{DD_8M}	Supply current in 8 MHz mode	—	30	35	μA	_
f _{IRC_2M}	Output frequency	—	2	_	MHz	_
f _{IRC_8M}	Output frequency	—	8	—	MHz	—
f _{IRC_T_2M}	Output frequency range (trimmed)	—	—	±3	%f _{IRC}	—
f _{IRC_T_8M}	Output frequency range (trimmed)	—	—	±3	%f _{IRC}	_
T _{su_2M}	Startup time	—	—	12.5	μs	—
T _{su_8M}	Startup time	—	—	12.5	μs	—

Table 19. IRC8M/2M specification

- 3. C_x,C_y can be provided by using the integrated capacitors when the low frequency oscillator (RANGE = 00) is used. For all other cases external capacitors must be used.
- 4. When low power mode is selected, R_F is integrated and must not be attached externally.
- 5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.

3.3.2.2 Oscillator frequency specifications Table 21. Oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal or resonator frequency — low- frequency mode (MCG_C2[RANGE]=00)	32	_	40	kHz	
f _{osc_hi_1}	Oscillator crystal or resonator frequency — high- frequency mode (low range) (MCG_C2[RANGE]=01)	3	_	8	MHz	
f _{osc_hi_2}	Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)	8	_	32	MHz	
f _{ec_extal}	Input clock frequency (external clock mode)	_	—	48	MHz	1, 2
t _{dc_extal}	Input clock duty cycle (external clock mode)	40	50	60	%	
t _{cst}	Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0)	_	750	_	ms	3, 4
	Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1)	—	250	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0)	_	0.6	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1)	_	1	_	ms	

- 1. Other frequency limits may apply when external clock is being used as a reference for the FLL
- 2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency.
- 3. Proper PC board layout procedures must be followed to achieve specifications.
- Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S
 register being set.

3.4 Memories and memory interfaces

3.4.1 Flash electrical specifications

This section describes the electrical characteristics of the flash memory module.

3.6.1.1 16-bit ADC operating conditions Table 26. 16-bit ADC operating conditions

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
V _{DDA}	Supply voltage	Absolute	1.71	—	3.6	V	—
ΔV_{DDA}	Supply voltage	Delta to V _{DD} (V _{DD} – V _{DDA})	-100	0	+100	mV	2
ΔV_{SSA}	Ground voltage	Delta to V_{SS} ($V_{SS} - V_{SSA}$)	-100	0	+100	mV	2
V _{REFH}	ADC reference voltage high		1.13	V _{DDA}	V _{DDA}	V	3
V _{REFL}	ADC reference voltage low		V _{SSA}	V _{SSA}	V _{SSA}	V	3
V _{ADIN}	Input voltage	16-bit differential mode	VREFL	—	31/32 × VREFH	V	—
		All other modes	VREFL	—	VREFH		
C _{ADIN}	Input	16-bit mode	_	8	10	pF	—
	capacitance	 8-bit / 10-bit / 12-bit modes 	—	4	5		
R _{ADIN}	Input series resistance		—	2	5	kΩ	_
R _{AS}	Analog source resistance (external)	13-bit / 12-bit modes f _{ADCK} < 4 MHz	_	_	5	kΩ	4
f _{ADCK}	ADC conversion clock frequency	≤ 13-bit mode	1.0		24	MHz	5
f _{ADCK}	ADC conversion clock frequency	16-bit mode	2.0	—	12.0	MHz	5
C _{rate}	ADC conversion rate	 ≤ 13-bit modes No ADC hardware averaging Continuous conversions enabled, subsequent conversion time 	20.000	_	1200	ksps	6
C _{rate}	ADC conversion rate	16-bit mode No ADC hardware averaging Continuous conversions enabled, subsequent conversion time	37.037	_	461.467	ksps	6

- 1. Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz, unless otherwise stated. Typical values are for reference only, and are not tested in production.
- 2. DC potential difference.
- 3. VREFH can act as VREF_OUT when VREFV1 module is enabled.
- 4. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The R_{AS}/C_{AS} time constant should be kept to < 1 ns.</p>
- 5. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.
- 6. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.

Symbol	Description	Min.	Max.	Unit	Notes
T _A	Temperature	0	50	°C	—

Table 30. VREF limited-range operating requirements

Table 31. VREF limited-range operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
V _{out}	Voltage reference output with factory trim	1.173	1.225	V	—

3.6.3 CMP and 6-bit DAC electrical specifications

Table 32. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{DD}	Supply voltage	1.71	—	3.6	V
I _{DDHS}	Supply current, High-speed mode (EN=1, PMODE=1)	—	_	200	μA
I _{DDLS}	Supply current, low-speed mode (EN=1, PMODE=0)	_		20	μA
V _{AIN}	Analog input voltage	V _{SS} – 0.3	_	V _{DD}	V
V _{AIO}	Analog input offset voltage	_	_	20	mV
V _H	Analog comparator hysteresis ¹				
	 CR0[HYSTCTR] = 00 	_	5	_	mV
	• CR0[HYSTCTR] = 01	—	10	—	mV
	 CR0[HYSTCTR] = 10 	_	20	_	mV
	 CR0[HYSTCTR] = 11 	—	30	_	mV
V _{CMPOh}	Output high	V _{DD} – 0.5			V
V _{CMPOI}	Output low	_		0.5	V
t _{DHS}	Propagation delay, high-speed mode (EN=1, PMODE=1)	20	50	200	ns
t _{DLS}	Propagation delay, low-speed mode (EN=1, PMODE=0)	80	250	600	ns
	Analog comparator initialization delay ²	_	_	40	μs
I _{DAC6b}	6-bit DAC current adder (enabled)	_	7	_	μA
INL	6-bit DAC integral non-linearity	-0.5	_	0.5	LSB ³
DNL	6-bit DAC differential non-linearity	-0.3		0.3	LSB

1. Typical hysteresis is measured with input voltage range limited to 0.6 to V_{DD} -0.6 V.

 Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.

3. 1 LSB = V_{reference}/64

Figure 12. Typical INL error vs. digital code

Figure 17. SPI slave mode timing (CPHA = 1)

3.8.2 I²C

3.8.2.1 Inter-Integrated Circuit Interface (I2C) timing Table 39. I2C timing

Characteristic	Symbol	Standa	rd Mode	Fast	Unit	
		Minimum	Maximum	Minimum	Maximum	
SCL Clock Frequency	f _{SCL}	0	100	0	400 ¹	kHz
Hold time (repeated) START condition. After this period, the first clock pulse is generated.	t _{HD} ; STA	4	_	0.6	_	μs
LOW period of the SCL clock	t _{LOW}	4.7		1.25	_	μs
HIGH period of the SCL clock	t _{HIGH}	4	—	0.6	_	μs
Set-up time for a repeated START condition	t _{SU} ; STA	4.7	_	0.6	_	μs
Data hold time for I ² C bus devices	t _{HD} ; DAT	0 ²	3.45 ³	04	0.9 ²	μs
Data set-up time	t _{SU} ; DAT	250 ⁵	—	100 ³ , ⁶		ns
Rise time of SDA and SCL signals	t _r	—	1000	20 +0.1C _b ⁷	300	ns
Fall time of SDA and SCL signals	t _f	—	300	20 +0.1C _b ⁶	300	ns
Set-up time for STOP condition	t _{SU} ; STO	4	—	0.6	_	μs
Bus free time between STOP and START condition	t _{BUF}	4.7	—	1.3	_	μs
Pulse width of spikes that must be suppressed by the input filter	t _{SP}	N/A	N/A	0	50	ns

Peripheral operating requirements and behaviors

Figure 18. Timing definition for devices on the I²C bus

3.8.3 UART

See General switching specifications.

3.8.4 I2S/SAI switching specifications

This section provides the AC timing for the I2S/SAI module in master mode (clocks are driven) and slave mode (clocks are input). All timing is given for noninverted serial clock polarity (TCR2[BCP] is 0, RCR2[BCP] is 0) and a noninverted frame sync (TCR4[FSP] is 0, RCR4[FSP] is 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the bit clock signal (BCLK) and/or the frame sync (FS) signal shown in the following figures.

3.8.4.1 Normal Run, Wait and Stop mode performance over the full operating voltage range

This section provides the operating performance over the full operating voltage for the device in Normal Run, Wait and Stop modes.

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S1	I2S_MCLK cycle time	40	—	ns
S2	I2S_MCLK (as an input) pulse width high/low	45%	55%	MCLK period
S3	I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)	80	—	ns
S4	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low	45%	55%	BCLK period
S5	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid	_	15.5	ns

Table 41. I2S/SAI master mode timing

Table continues on the next page...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	• RVTRIM=1110	—	1.01	—		
	• RVTRIM=0001	—	1.02	-		
	• RVTRIM=1001	_	1.03	_		
	• RVTRIM=0101	_	1.05	_		
	• RVTRIM=1101	_	1.06	_		
	• RVTRIM=0011	_	1.07	_		
	• RVTRIM=1011	_	1.08	_		
	• RVTRIM=0111	_	1.09	_		
	• RVTRIM=1111					
Δ _{RTRIM}	VIREG TRIM resolution	—	—	3.0	% V _{IREG}	
I _{VIREG}	V _{IREG} current adder — RVEN = 1	_	1	—	μA	
I _{RBIAS}	RBIAS current adder					
	 LADJ = 10 or 11 — High load (LCD glass capacitance ≤ 8000 pF) 		10	_	μA	
	 LADJ = 00 or 01 — Low load (LCD glass capacitance ≤ 2000 pF) 	_	1	_	μA	
R _{RBIAS}	RBIAS resistor values					
	 LADJ = 10 or 11 — High load (LCD glass capacitance ≤ 8000 pF) 	_	0.28	_	MΩ	
	 LADJ = 00 or 01 — Low load (LCD glass capacitance ≤ 2000 pF) 	_	2.98	_	MΩ	
VLL1	VLL1 voltage	—	—	V _{IREG}	V	4
VLL2	VLL2 voltage	—	—	2 x V _{IREG}	V	4
VLL3	VLL3 voltage	—	—	3 x V _{IREG}	V	4
VLL1	VLL1 voltage			V _{DDA} / 3	V	5
VLL2	VLL2 voltage			V _{DDA} / 1.5	V	5
VLL3	VLL3 voltage			V _{DDA}	V	5

Table 45.	LCD electricals	(continued)
-----------	-----------------	-------------

1. The actual value used could vary with tolerance.

- For highest glass capacitance values, LCD_GCR[LADJ] should be configured as specified in the LCD Controller chapter within the device's reference manual.
- 3. V_{IREG} maximum should never be externally driven to any level other than V_{DD} 0.15 V
- VLL1, VLL2 and VLL3 are a function of V_{IREG} only when the regulator is enabled (GCR[RVEN]=1) and the charge pump is enabled (GCR[CPSEL]=1).
- 5. VLL1, VLL2 and VLL3 are a function of V_{DDA} only under either of the following conditions:
 - The charge pump is enabled (GCR[CPSEL]=1), the regulator is disabled (GCR[RVEN]=0), and VLL3 = V_{DDA} through the internal power switch (GCR[VSUPPLY]=0).
 - The resistor bias string is enabled (GCR[CPSEL]=0), the regulator is disabled (GCR[RVEN]=0), and VLL3 is connected to V_{DDA} externally (GCR[VSUPPLY]=1).

8.4 Relationship between ratings and operating requirements

8.5 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

- Never exceed any of the chip's ratings.
- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

9 Revision History

The following table provides a revision history for this document.

Rev. No.	Date	Substantial Changes
3	09 August 2014	Initial Public release Updated Table 9 - Power consumption operating behaviors.
4	03 March 2015	Updated the features and completed the ordering information.Removed thickness dimension from package diagrams.

Table 47. Revision History

Table continues on the next page ...

Rev. No.	Date	Substantial Changes
		 Updated Related Resources table to include Chip Errata resource name and Package Drawing part numbers in the respective rows. Updated Table 7. Voltage and current operating behaviors. Specified correct max. value for I_{IN}. Updated Table - 9 Power consumption operating behaviors. Rows added for IDD for reset pin hold low (I_{DD_RESET_LOW}) at 1.7V and 3V. Measurement unit updated for I_{DD_VLLS1} from nA to µA. Footnote 1 was moved in the beginning of the table as text. Added Table - 11 EMC radiated emissions operating behaviors for 64-pin LQFP package under section 2.2.6. Updated Table - 18 (IRC48M specification) and Table - 19 (IRC8M/2M specification) under section 3.3.1 - 'MCG-Lite specifications'. Removed supply voltage (V_{DD}), temperature range (T), untrimmed (f_{IRC_UT}), trim function (Δf_{IRC_C}, Δf_{IRC_F}) data from Table - 18 (IRC48M specification). Removed supply voltage (V_{DD}), temperature range (T) data from Table - 19 (IRC8M/2M specification). Added Figure 6. IRC8M Frequency Drift vs Temperature curve after Table - 19 (IRC8M/2M specification). Updated Table 29. VREF full-range operating behaviors. Removed A_c(Aging coefficient) row. Added T_{chop_osc_stup} parameter. Updated tables: "I2C timing" and "I2C 1Mbit/s timing" under section - I²C. Added VREF specifications (V_{REFH} and V_{REFL}) to Table 26. 16-bit ADC operating conditions. Removed note: "This device does not have the USB_CLKIN signal available."
5	12 August 2015	 In Table 9. Power consumption operating behaviors: Updated Max. values of I_{DD_WAIT}, I_{DD_VLPW}, I_{DD_STOP}, I_{DD_VLPS}, I_{DD_LLS}, I_{DD_VLLS3}, I_{DD_VLLS1}, I_{DD_VLLS0}. Modified unit of I_{DD_VLLS0} from nA to µA. Removed I_{DD_RESET_LOW} information. In Table 13. Device clock specifications, added a footnote for normal run mode. In Table 15. Thermal operating requirements, modified the footnote for Ambient temperature. In Table 18. IRC48M specification, removed f_{IRC_T} data and added Δf_{irc48m_of_lv} and Δf_{irc48m_of_hv} specifications. In Table 26. 16-bit ADC operating conditions, updated Max. value of f_{ADCK} and C_{rate}.

Table 47. Revision History (continued)

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, Energy Efficient Solutions logo, and Kinetis are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.

©2014-2015 Freescale Semiconductor, Inc.

Document Number KL33P64M48SF6 Revision 5, 08/2015

