E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART, USB, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, LVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 13x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-VFQFN Exposed Pad
Supplier Device Package	48-QFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mkl24z64vft4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.2.1 Example

This is an example of an operating behavior, which is guaranteed if you meet the accompanying operating requirements:

Symbol	Description	Min.	Max.	Unit
I _{WP}	Digital I/O weak pullup/ 10 pulldown current		130	μA

3.3 Definition: Attribute

An *attribute* is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements.

3.3.1 Example

This is an example of an attribute:

Symbol	Description	Min.	Max.	Unit
CIN_D	Input capacitance: digital pins	—	7	pF

3.4 Definition: Rating

A *rating* is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:

- Operating ratings apply during operation of the chip.
- Handling ratings apply when the chip is not powered.

3.4.1 Example

This is an example of an operating rating:

- Never exceed any of the chip's ratings.
- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

3.8 Definition: Typical value

A *typical value* is a specified value for a technical characteristic that:

- Lies within the range of values specified by the operating behavior
- Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions

Typical values are provided as design guidelines and are neither tested nor guaranteed.

3.8.1 Example 1

This is an example of an operating behavior that includes a typical value:

Symbol	Description	Min.	Тур.	Max.	Unit
I _{WP}	Digital I/O weak pullup/pulldown current	10	70	130	μΑ

3.8.2 Example 2

This is an example of a chart that shows typical values for various voltage and temperature conditions:

3.9 Typical Value Conditions

Typical values assume you meet the following conditions (or other conditions as specified):

Symbol	Description	Value	Unit
T _A	Ambient temperature	25	٥C
V _{DD}	3.3 V supply voltage	3.3	V

4 Ratings

4.1 Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	-55	150	°C	1
T _{SDR}	Solder temperature, lead-free	—	260	°C	2

1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.

2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

4.2 Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level	—	3	_	1

1. Determined according to IPC/JEDEC Standard J-STD-020, *Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices*.

4.3 ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	-2000	+2000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of 105°C	-100	+100	mA	

- 1. Determined according to JEDEC Standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)*.
- 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.

4.4 Voltage and current operating ratings

Symbol	Description	Min.	Max.	Unit
V _{DD}	Digital supply voltage	-0.3	3.8	V
I _{DD}	Digital supply current		120	mA
V _{DIO}	Digital pin input voltage (except RESET)	-0.3	3.6	V
V _{AIO}	Analog pins ¹ and RESET pin input voltage	-0.3	V _{DD} + 0.3	V
۱ _D	Instantaneous maximum current single pin limit (applies to all port pins)	-25	25	mA
V _{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V
V _{USB_DP}	USB_DP input voltage	-0.3	3.63	V
V _{USB_DM}	USB_DM input voltage	-0.3	3.63	V
VREGIN	USB regulator input	-0.3	6.0	V

1. Analog pins are defined as pins that do not have an associated general purpose I/O port function.

5 General

Symbol	Description	Min.	Max.	Unit	Notes
V _{HYS}	Input hysteresis	$0.06 \times V_{DD}$	—	V	
I _{ICDIO}	Digital pin negative DC injection current — single pin • V _{IN} < V _{SS} -0.3V	-5	_	mA	1
I _{ICAIO}	 Analog² pin DC injection current — single pin V_{IN} < V_{SS}-0.3V (Negative current injection) V_{IN} > V_{DD}+0.3V (Positive current injection) 	-5	 +5	mA	3
I _{ICcont}	 Contiguous pin DC injection current —regional limit, includes sum of negative injection currents or sum of positive injection currents of 16 contiguous pins Negative current injection Positive current injection 	-25 —	 +25	mA	
V _{RAM}	V _{DD} voltage required to retain RAM	1.2	—	V	

Table 1. Voltage and current operating requirements (continued)

- All digital I/O pins are internally clamped to V_{SS} through a ESD protection diode. There is no diode connection to V_{DD}. If V_{IN} greater than V_{DIO_MIN} (=V_{SS}-0.3V) is observed, then there is no need to provide current limiting resistors at the pads. If this limit cannot be observed then a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R=(V_{DIO_MIN}-V_{IN})/|I_{LC}|.
- 2. Analog pins are defined as pins that do not have an associated general purpose I/O port function.
- 3. All analog pins are internally clamped to V_{SS} and V_{DD} through ESD protection diodes. If V_{IN} is greater than V_{AIO_MIN} (=V_{SS}-0.3V) and V_{IN} is less than V_{AIO_MAX}(=V_{DD}+0.3V) is observed, then there is no need to provide current limiting resistors at the pads. If these limits cannot be observed then a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R=(V_{AIO_MIN}-V_{IN})/II_{IC}I. The positive injection current limiting resistor is calculated as R=(V_{IN}-V_{AIO_MAX})/II_{IC}I. Select the larger of these two calculated resistances.

5.2.2 LVD and POR operating requirements

Table 2. V_{DD} supply LVD and POR operating requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR}	Falling VDD POR detect voltage	0.8	1.1	1.5	V	
V _{LVDH}	Falling low-voltage detect threshold — high range (LVDV=01)	2.48	2.56	2.64	V	
	Low-voltage warning thresholds — high range					1
V _{LVW1H}	Level 1 falling (LVWV=00)	2.62	2.70	2.78	V	
V _{LVW2H}	Level 2 falling (LVWV=01)	2.72	2.80	2.88	V	
V _{LVW3H}	Level 3 falling (LVWV=10)	2.82	2.90	2.98	V	
V _{LVW4H}	Level 4 falling (LVWV=11)	2.92	3.00	3.08	V	
V _{HYSH}	Low-voltage inhibit reset/recover hysteresis — high range		±60		mV	
V _{LVDL}	Falling low-voltage detect threshold — low range (LVDV=00)	1.54	1.60	1.66	V	

Table continues on the next page ...

General

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	Low-voltage warning thresholds — low range					1
V _{LVW1L}	Level 1 falling (LVWV=00)	1.74	1.80	1.86	V	
V _{LVW2L}	Level 2 falling (LVWV=01)	1.84	1.90	1.96	V	
V _{LVW3L}	Level 3 falling (LVWV=10)	1.94	2.00	2.06	V	
V _{LVW4L}	Level 4 falling (LVWV=11)	2.04	2.10	2.16	V	
V _{HYSL}	Low-voltage inhibit reset/recover hysteresis — low range		±40		mV	
V _{BG}	Bandgap voltage reference	0.97	1.00	1.03	V	
t _{LPO}	Internal low power oscillator period — factory trimmed	900	1000	1100	μs	

Table 2. V_{DD} supply LVD and POR operating requirements (continued)

1. Rising thresholds are falling threshold + hysteresis voltage

5.2.3 Voltage and current operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
V _{OH}	Output high voltage — Normal drive pad				1
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = -5 mA	V _{DD} – 0.5	_	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OH}} = -1.5 \text{ mA}$	V _{DD} – 0.5	_	V	
V _{OH}	Output high voltage — High drive pad				1
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = -18 mA	V _{DD} – 0.5	_	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OH} = -6 mA	V _{DD} – 0.5	_	V	
I _{OHT}	Output high current total for all ports	_	100	mA	
V _{OL}	Output low voltage — Normal drive pad				1
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 5 mA	—	0.5	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OL} = 1.5 mA	—	0.5	V	
V _{OL}	Output low voltage — High drive pad				1
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 18 mA	—	0.5	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OL} = 6 mA	—	0.5	V	
I _{OLT}	Output low current total for all ports	_	100	mA	
I _{IN}	Input leakage current (per pin) for full temperature range	_	1	μA	2
l _{IN}	Input leakage current (per pin) at 25 °C	_	0.025	μA	2
I _{IN}	Input leakage current (total all pins) for full temperature range	—	65	μA	2
I _{OZ}	Hi-Z (off-state) leakage current (per pin)	—	1	μA	

 Table 3. Voltage and current operating behaviors

Table continues on the next page...

Figure 2. Run mode supply current vs. core frequency

- 2. $V_{DD} = 3.3 \text{ V}, T_A = 25 \text{ °C}, f_{OSC} = 8 \text{ MHz}$ (crystal), $f_{SYS} = 48 \text{ MHz}, f_{BUS} = 48 \text{ MHz}$
- 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions TEM Cell and Wideband TEM Cell Method

5.2.7 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

- 1. Go to www.freescale.com.
- 2. Perform a keyword search for "EMC design."

5.2.8 Capacitance attributes

Table 8. Capacitance attributes

Symbol	Description	Min.	Max.	Unit
C _{IN_A}	Input capacitance: analog pins	_	7	pF
C _{IN_D}	Input capacitance: digital pins	—	7	pF

5.3 Switching specifications

5.3.1 Device clock specifications

Symbol	Description	Min.	Max.	Unit	Notes
	Normal run mod	de	•		
f _{SYS}	System and core clock	_	48	MHz	
f _{BUS}	Bus clock	_	24	MHz	
f _{FLASH}	Flash clock	_			
f _{SYS_USB}	System and core clock when Full Speed USB in operation	nd core clock when Full Speed USB in 20 — MHz			
f _{LPTMR}	LPTMR clock	_	24	MHz	
	VLPR mode ¹			•	•
f _{SYS}	System and core clock	_	4	MHz	
f _{BUS}	Bus clock	_	1	MHz	
f _{FLASH}	Flash clock		1	MHz	
f _{LPTMR}	LPTMR clock	_	24	MHz	
f _{ERCLK}	External reference clock	_	16	MHz	
f _{LPTMR_pin}	LPTMR clock		24	MHz	

Table continues on the next page ...

General

Symbol	Description	Min.	Max.	Unit	Notes
f _{LPTMR_ERCL}	LPTMR external reference clock	—	16	MHz	
f _{osc_hi_2}	Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)	—	16	MHz	
f _{TPM}	TPM asynchronous clock	—	8	MHz	
f _{UART0}	UART0 asynchronous clock	—	8	MHz	

1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any other module.

5.3.2 General Switching Specifications

These general purpose specifications apply to all signals configured for GPIO, UART, and I²C signals.

Symbol	Description	Min.	Max.	Unit	Notes
	GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path	1.5	_	Bus clock cycles	1
	External RESET and NMI pin interrupt pulse width — Asynchronous path	100	_	ns	2
	GPIO pin interrupt pulse width — Asynchronous path	16	_	ns	2
	Port rise and fall time				3
		—	36	ns	

1. The greater synchronous and asynchronous timing must be met.

2. This is the shortest pulse that is guaranteed to be recognized.

3. 75 pF load

5.4 Thermal specifications

5.4.1 Thermal operating requirements

Table 9. Thermal operating requirements

Symbol	Description	Min.	Max.	Unit
TJ	Die junction temperature	-40	125	°C
T _A	Ambient temperature	-40	105	°C

5.4.2 Thermal attributes

Board type	Symbol	Description	80 LQFP	64 LQFP	48 QFN	32 QFN	Unit	Notes
Single-layer (1S)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	70	71	84	92	°C/W	1
Four-layer (2s2p)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	53	52	28	33	°C/W	
Single-layer (1S)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	_	59	69	75	°C/W	
Four-layer (2s2p)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	_	46	22	27	°C/W	
_	R _{θJB}	Thermal resistance, junction to board	34	34	10	12	°C/W	2
_	R _{θJC}	Thermal resistance, junction to case	15	20	2.0	1.8	°C/W	3
	Ψ_{JT}	Thermal characterization parameter, junction to package top outside center (natural convection)	0.6	5	5.0	8	°C/W	4

Table 10. Thermal attributes

- 1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions —Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions—Forced Convection (Moving Air).
- 2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions —Junction-to-Board.
- 3. Determined according to Method 1012.1 of MIL-STD 883, *Test Method Standard, Microcircuits*, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate.
- 4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions —Natural Convection (Still Air).

6 Peripheral operating requirements and behaviors

6.1 Core modules

6.1.1 SWD Electricals

Table 11. SWD full voltage range electricals

Symbol	Description		Max.	Unit	
	Operating voltage	1.71	3.6	V	

Table continues on the next page...

Peripheral operating requirements and behaviors

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
f _{dco_t_DMX32}	DCO output	Low range (DRS = 00)	_	23.99	—	MHz	5, 6
	frequency	$732 \times f_{fll_ref}$					
		Mid range (DRS = 01)	_	47.97	—	MHz	
		$1464 \times f_{fll_ref}$					
J _{cyc_fll}	FLL period jitter		—	180	—	ps	7
	• f _{VCO} = 48 M	Hz					
t _{fll_acquire}	FLL target frequer	ncy acquisition time	_	—	1	ms	8
		PI	L				
f _{vco}	VCO operating fre	quency	48.0	—	100	MHz	
I _{pll}	PLL operating cur PLL at 96 M MHz, VDIV	_	1060	_	μA	9	
I _{pll}	PLL operating cur PLL at 48 M MHz, VDIV	_	600	_	μΑ	9	
f _{pll_ref}	PLL reference free	quency range	2.0	—	4.0	MHz	
J _{cyc_pll}	PLL period jitter (F	RMS)					10
	• f _{vco} = 48 MH	lz	—	120	-	ps	
	• f _{vco} = 100 M	Hz	—	50	_	ps	
J _{acc_pll}	PLL accumulated	jitter over 1µs (RMS)					10
	• f _{vco} = 48 MH	lz	—	1350	_	ps	
	• f _{vco} = 100 M	Hz	—	600	_	ps	
D _{lock}	Lock entry frequer	ncy tolerance	± 1.49	—	± 2.98	%	
D _{unl}	Lock exit frequence	y tolerance	± 4.47	—	± 5.97	%	
t _{pll_lock}	Lock detector dete	ection time			150 × 10 ⁻⁶ + 1075(1/ f _{pll_ref})	S	11

Table 12. MCG specifications (continued)

- 1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode).
- 2. The deviation is relative to the factory trimmed frequency at nominal V_{DD} and 25 °C, $f_{ints_{t}}$.
- 3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 0.
- The resulting system clock frequencies must not exceed their maximum specified values. The DCO frequency deviation (Δf_{dco t}) over voltage and temperature must be considered.
- 5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 1.
- 6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
- 7. This specification is based on standard deviation (RMS) of period or frequency.
- 8. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

9. Excludes any oscillator currents that are also consuming power while PLL is in operation.

- 10. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary.
- 11. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

6.3.2 Oscillator electrical specifications

This section provides the electrical characteristics of the module.

6.3.2.1 Oscillator DC electrical specifications Table 13. Oscillator DC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	—	3.6	V	
I _{DDOSC}	Supply current — low-power mode (HGO=0)					1
	• 32 kHz	_	500	_	nA	
	• 4 MHz	_	200	_	μA	
	• 8 MHz (RANGE=01)	_	300	_	μA	
	• 16 MHz	_	950	_	μA	
	• 24 MHz	_	1.2	_	mA	
	• 32 MHz	_	1.5	_	mA	
I _{DDOSC}	Supply current — high gain mode (HGO=1)					1
	• 32 kHz	-	25	_	μA	
	• 4 MHz	_	400	_	μA	
	• 8 MHz (RANGE=01)	_	500	_	μA	
	• 16 MHz	_	2.5	_	mA	
	• 24 MHz	_	3	_	mA	
	• 32 MHz	-	4	_	mA	
C _x	EXTAL load capacitance	_	_			2, 3
Cy	XTAL load capacitance	—	—	—		2, 3
R _F	Feedback resistor — low-frequency, low-power mode (HGO=0)	_		_	MΩ	2, 4
	Feedback resistor — low-frequency, high-gain mode (HGO=1)	—	10	-	MΩ	
	Feedback resistor — high-frequency, low-power mode (HGO=0)	_		_	ΜΩ	
	Feedback resistor — high-frequency, high-gain mode (HGO=1)	_	1	-	MΩ	

Table continues on the next page ...

KL24 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.

6.5 Security and integrity modules

There are no specifications necessary for the device's security and integrity modules.

6.6 Analog

6.6.1 ADC electrical specifications

All ADC channels meet the 12-bit single-ended accuracy specifications.

			-	-	i	i	
Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
V _{DDA}	Supply voltage	Absolute	1.71	—	3.6	V	
ΔV_{DDA}	Supply voltage	Delta to V _{DD} (V _{DD} -V _{DDA})	-100	0	+100	mV	2
ΔV_{SSA}	Ground voltage	Delta to V _{SS} (V _{SS} - V _{SSA})	-100	0	+100	mV	2
V _{REFH}	ADC reference voltage high		1.13	V _{DDA}	V _{DDA}	V	3
V _{REFL}	ADC reference voltage low		V _{SSA}	V _{SSA}	V _{SSA}	V	3
V _{ADIN}	Input voltage		V _{REFL}	—	V _{REFH}	V	
C _{ADIN}	Input capacitance	• 8-/10-/12-bit modes	—	4	5	pF	
R _{ADIN}	Input resistance		—	2	5	kΩ	
R _{AS}	Analog source	12-bit modes				_	4
		f _{ADCK} < 4 MHz	_		5	kΩ	
f _{ADCK}	ADC conversion clock frequency	≤ 12-bit mode	1.0		18.0	MHz	5
C _{rate}	ADC conversion	≤ 12 bit modes					6
	rate	No ADC hardware averaging	20.000	—	818.330	Ksps	
		Continuous conversions enabled, subsequent conversion time					

6.6.1.1 12-bit ADC operating conditions

- Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- 2. DC potential difference.
- For packages without dedicated VREFH and VREFL pins, V_{REFH} is internally tied to V_{DDA}, and V_{REFL} is internally tied to V_{SSA}.
- 4. This resistance is external to MCU. The analog source resistance must be kept as low as possible to achieve the best results. The results in this data sheet were derived from a system which has < 8 Ω analog source resistance. The R_{AS}/C_{AS} time constant should be kept to < 1ns.
- 5. To use the maximum ADC conversion clock frequency, the ADHSC bit must be set and the ADLPC bit must be clear.
- 6. For guidelines and examples of conversion rate calculation, download the ADC calculator tool

Table 19. 12-bit ADC operating conditions

Figure 6. ADC input impedance equivalency diagram

6.6.1.2 12-bit ADC electrical characteristics Table 20. 12-bit ADC characteristics (V_{REFH} = V_{DDA}, V_{REFL} = V_{SSA})

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
I _{DDA_ADC}	Supply current		0.215	—	1.7	mA	3
	ADC	• ADLPC = 1, ADHSC = 0	1.2	2.4	3.9	MHz	$t_{ADACK} = 1/$
	asynchronous clock source	• ADLPC = 1, ADHSC = 1	2.4	4.0	6.1	MHz	† _{ADACK}
† _{ADACK}		• ADLPC = 0, ADHSC = 0	3.0	5.2	7.3	MHz	
		• ADLPC = 0, ADHSC = 1	4.4	6.2	9.5	MHz	
	Sample Time	See Reference Manual chapter	for sample t	times			
TUE	Total unadjusted	12-bit modes	_	±4	±6.8	LSB ⁴	5
	error	 <12-bit modes 	—	±1.4	±2.1		
DNL	Differential non-	12-bit modes	_	±0.7	-1.1 to +1.9	LSB ⁴	5
	linearity				-0.3 to 0.5		
		 <12-bit modes 	—	±0.2			
INL	Integral non-	12-bit modes	_	±1.0	-2.7 to +1.9	LSB ⁴	5
	linearity				-0.7 to +0.5		
		 <12-bit modes 	—	±0.5			
E _{FS}	Full-scale error	12-bit modes	_	-4	-5.4	LSB ⁴	V _{ADIN} =
		 <12-bit modes 	—	-1.4	-1.8		V _{DDA}
							5

Table continues on the next page...

Peripheral operating requirements and behaviors

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
EQ	Quantization error	12-bit modes	—	—	±0.5	LSB ⁴	
EıL	Input leakage error			I _{In} × R _{AS}		mV	I _{In} = leakage current (refer to the MCU's voltage and current operating ratings)
	Temp sensor slope	Across the full temperature range of the device	—	1.715	_	mV/°C	
V _{TEMP25}	Temp sensor voltage	25 °C	_	719	_	mV	

Table 20. 12-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

- 1. All accuracy numbers assume the ADC is calibrated with V_{REFH} = V_{DDA}
- Typical values assume V_{DDA} = 3.0 V, Temp = 25°C, f_{ADCK} = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- The ADC supply current depends on the ADC conversion clock speed, conversion rate and the ADLPC bit (low power). For lowest power operation the ADLPC bit must be set, the HSC bit must be clear with 1 MHz ADC conversion clock speed.
- 4. 1 LSB = $(V_{REFH} V_{REFL})/2^N$
- 5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)

6.6.2 CMP and 6-bit DAC electrical specifications

Table 21. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{DD}	Supply voltage	1.71	—	3.6	V
I _{DDHS}	Supply current, high-speed mode (EN = 1, PMODE = 1)	—	—	200	μA
I _{DDLS}	Supply current, low-speed mode (EN = 1, PMODE = 0)		_	20	μA
V _{AIN}	Analog input voltage	V _{SS}	_	V _{DD}	V
V _{AIO}	Analog input offset voltage	—	—	20	mV
V _H	Analog comparator hysteresis ¹				
	• CR0[HYSTCTR] = 00	—	5	—	mV
	• CR0[HYSTCTR] = 01	—	10	—	mV
	• CR0[HYSTCTR] = 10	_	20	_	mV
	 CR0[HYSTCTR] = 11 	—	30	_	mV
V _{CMPOh}	Output high	V _{DD} – 0.5	—	—	V
V _{CMPOI}	Output low	—	—	0.5	V

Table continues on the next page...

KL24 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.

Num.	Symbol	Description	Min.	Max.	Unit	Note
7	t _{HI}	Data hold time (inputs)	0	—	ns	—
8	t _v	Data valid (after SPSCK edge)	—	52	ns	—
9	t _{HO}	Data hold time (outputs)	0	—	ns	—
10	t _{RI}	Rise time input	_	t _{periph} - 25	ns	_
	t _{FI}	Fall time input				
11	t _{RO}	Rise time output	—	36	ns	—
	t _{FO}	Fall time output				

Table 24. SPI master mode timing on slew rate enabled pads (continued)

1. For SPI0 f_{periph} is the bus clock (f_{BUS}). For SPI1 f_{periph} is the system clock (f_{SYS}).

2. $t_{periph} = 1/f_{periph}$

1. If configured as an output.

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 9. SPI master mode timing (CPHA = 0)

Num.	Symbol	Description	Min.	Max.	Unit	Note
2	t _{SPSCK}	SPSCK period	4 x t _{periph}	—	ns	2
3	t _{Lead}	Enable lead time	1	—	t _{periph}	—
4	t _{Lag}	Enable lag time	1	—	t _{periph}	—
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} - 30	—	ns	—
6	t _{SU}	Data setup time (inputs)	2	—	ns	—
7	t _{HI}	Data hold time (inputs)	7	—	ns	—
8	ta	Slave access time	—	t _{periph}	ns	3
9	t _{dis}	Slave MISO disable time	—	t _{periph}	ns	4
10	t _v	Data valid (after SPSCK edge)	—	122	ns	—
11	t _{HO}	Data hold time (outputs)	0	—	ns	—
12	t _{RI}	Rise time input	—	t _{periph} - 25	ns	—
	t _{FI}	Fall time input				
13	t _{RO}	Rise time output	—	36	ns	—
	t _{FO}	Fall time output]			

Table 26. SPI slave mode timing on slew rate enabled pads (continued)

1. For SPI0 f_{periph} is the bus clock (f_{BUS}). For SPI1 f_{periph} is the system clock (f_{SYS}).

2. $t_{periph} = 1/f_{periph}$

- 3. Time to data active from high-impedance state
- 4. Hold time to high-impedance state

NOTE: Not defined!

NOTE: Not defined!

6.8.4 I²C

See General switching specifications.

6.8.5 UART

See General switching specifications.

7 Dimensions

7.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to www.freescale.com and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number
32-pin QFN	98ASA00473D
48-pin QFN	98ASA00466D
64-pin LQFP	98ASS23234W
80-pin LQFP	98ASS23174W

8 Pinout

8.1 KL24 Signal Multiplexing and Pin Assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

80 LQFP	64 LQFP	48 QFN	32 QFN	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
1	1	-	1	PTE0	DISABLED		PTE0		UART1_TX	RTC_CLKOUT	CMP0_OUT	I2C1_SDA	
2	2	_	_	PTE1	DISABLED		PTE1	SPI1_MOSI	UART1_RX		SPI1_MISO	I2C1_SCL	
3	-	-	_	PTE2	DISABLED		PTE2	SPI1_SCK					
4	-	-	_	PTE3	DISABLED		PTE3	SPI1_MISO			SPI1_MOSI		
5	-	-	-	PTE4	DISABLED		PTE4	SPI1_PCS0					
6	-	-	-	PTE5	DISABLED		PTE5						
7	3	1	_	VDD	VDD	VDD							
8	4	2	2	VSS	VSS	VSS							
9	5	3	3	USB0_DP	USB0_DP	USB0_DP							
10	6	4	4	USB0_DM	USB0_DM	USB0_DM							
11	7	5	5	VOUT33	VOUT33	VOUT33							
12	8	6	6	VREGIN	VREGIN	VREGIN							
13	9	7	_	PTE20	ADC0_SE0	ADC0_SE0	PTE20		TPM1_CH0	UART0_TX			
14	10	8	_	PTE21	ADC0_SE4a	ADC0_SE4a	PTE21		TPM1_CH1	UART0_RX			
15	11	-	_	PTE22	ADC0_SE3	ADC0_SE3	PTE22		TPM2_CH0	UART2_TX			
16	12	_	_	PTE23	ADC0_SE7a	ADC0_SE7a	PTE23		TPM2_CH1	UART2_RX			
17	13	9	7	VDDA	VDDA	VDDA							
18	14	10	_	VREFH	VREFH	VREFH							
19	15	11	_	VREFL	VREFL	VREFL							
20	16	12	8	VSSA	VSSA	VSSA							
21	17	13	_	PTE29	CMP0_IN5/ ADC0_SE4b	CMP0_IN5/ ADC0_SE4b	PTE29		TPM0_CH2	TPM_CLKIN0			
22	18	14	9	PTE30	ADC0_SE23/ CMP0_IN4	ADC0_SE23/ CMP0_IN4	PTE30		TPM0_CH3	TPM_CLKIN1			
23	19	_	_	PTE31	DISABLED		PTE31		TPM0_CH4				
24	20	15	-	PTE24	DISABLED		PTE24		TPM0_CH0		I2C0_SCL		
25	21	16	-	PTE25	DISABLED		PTE25		TPM0_CH1		I2C0_SDA		
26	22	17	10	PTA0	SWD_CLK		PTA0		TPM0_CH5				SWD_CLK
27	23	18	11	PTA1	DISABLED		PTA1	UART0_RX	TPM2_CH0				
28	24	19	12	PTA2	DISABLED		PTA2	UART0_TX	TPM2_CH1				

KL24 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.

Figure 16. KL24 32-pin QFN pinout diagram

9 Revision History

The following table provides a revision history for this document.

Rev. No.	Date	Substantial Changes
1	7/2012	Initial NDA release.
2	9/2012	Completed all the TBDs, initial public release.
3	9/2012	Updated Signal Multiplexing and Pin Assignments table to add UART2 signals.

Table 27. Revision History