

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Obsolete
Core Processor	XC800
Core Size	8-Bit
Speed	24MHz
Connectivity	SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	34
Program Memory Size	24KB (24K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.75K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 140°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	PG-TQFP-48
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/saa-xc886-6ffa-ac

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

8-Bit Single Chip Microcontroller

SAA-XC886CLM

1 Summary of Features

The SAA-XC886 has the following features:

- High-performance XC800 Core
 - compatible with standard 8051 processor
 - two clocks per machine cycle architecture (for memory access without wait state)
 - two data pointers
- On-chip memory
 - 12 Kbytes of Boot ROM
 - 256 bytes of RAM
 - 1.5 Kbytes of XRAM
 - 24/32 Kbytes of Flash
 - (includes memory protection strategy)
- I/O port supply at 5.0 V and core logic supply at 2.5 V (generated by embedded voltage regulator)

(more features on next page)

Fla 24K/3	ash 2K x 8	On-Chip De	bug Support	UART	SSC	Port 0	7-bit Digital V
Boot ROM 12K x 8				Capture/Co 16	ompare Unit -bit	Port 1	8-bit Digital V
XRAM 1.5K x 8		XC800 Core		— — — — — Сотра 16	are Unit -bit	Port 2	8-bit Digital/ Analog Input
RAM 256 x 8	Timer 0 16-bit	Timer 1 16-bit	Timer 2 16-bit	ADC 10-bit 8-channel		Port 3	8-bit Digital V
MDU	CORDIC	MultiCAN	Timer 21 16-bit	UART1 Watchdog Timer		Port 4	3-bit Digital V

3 Functional Description

Chapter 3 provides an overview of the SAA-XC886 functional description.

3.1 **Processor Architecture**

The SAA-XC886 is based on a high-performance 8-bit Central Processing Unit (CPU) that is compatible with the standard 8051 processor. While the standard 8051 processor is designed around a 12-clock machine cycle, the SAA-XC886 CPU uses a 2-clock machine cycle. This allows fast access to ROM or RAM memories without wait state. Access to the Flash memory, however, requires an additional wait state (one machine cycle). The instruction set consists of 45% one-byte, 41% two-byte and 14% three-byte instructions.

The SAA-XC886 CPU provides a range of debugging features, including basic stop/start, single-step execution, breakpoint support and read/write access to the data memory, program memory and Special Function Registers (SFRs).

Figure 5 shows the CPU functional blocks.

Figure 5 CPU Block Diagram

3.2.2 Special Function Register

The Special Function Registers (SFRs) occupy direct internal data memory space in the range 80_{H} to FF_H. All registers, except the program counter, reside in the SFR area. The SFRs include pointers and registers that provide an interface between the CPU and the on-chip peripherals. As the 128-SFR range is less than the total number of registers required, address extension mechanisms are required to increase the number of addressable SFRs. The address extension mechanisms include:

- Mapping
- Paging

3.2.2.1 Address Extension by Mapping

Address extension is performed at the system level by mapping. The SFR area is extended into two portions: the standard (non-mapped) SFR area and the mapped SFR area. Each portion supports the same address range 80_H to FF_H, bringing the number of addressable SFRs to 256. The extended address range is not directly controlled by the CPU instruction itself, but is derived from bit RMAP in the system control register SYSCON0 at address $8F_H$. To access SFRs in the mapped area, bit RMAP in SFR SYSCON0 must be set. Alternatively, the SFRs in the standard area can be accessed by clearing bit RMAP. The SFR area can be selected as shown in **Figure 7**.

As long as bit RMAP is set, the mapped SFR area can be accessed. This bit is not cleared automatically by hardware. Thus, before standard/mapped registers are accessed, bit RMAP must be cleared/set, respectively, by software.

SAA-XC886CLM

Functional Description

Address Extension by Mapping

infineon

Functional Description

Figure 8 Address Extension by Paging

In order to access a register located in a page different from the actual one, the current page must be exited. This is done by reprogramming the bit field PAGE in the page register. Only then can the desired access be performed.

If an interrupt routine is initiated between the page register access and the module register access, and the interrupt needs to access a register located in another page, the current page setting can be saved, the new one programmed and the old page setting restored. This is possible with the storage fields STx (x = 0 - 3) for the save and restore action of the current page setting. By indicating which storage bit field should be used in parallel with the new page value, a single write operation can:

• Save the contents of PAGE in STx before overwriting with the new value (this is done in the beginning of the interrupt routine to save the current page setting and program the new page number); or

Table 4	CPU Register Over	erview (cont'd)
---------	--------------------------	-----------------

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
A2 _H	2 _H EO Reset: 00 _H Extended Operation Register			0		TRAP_ EN		0		DPSE L0
		Туре		r		rw		r		rw
A8 _H	IEN0 Reset: 00 _H	Bit Field	EA	0	ET2	ES	ET1	EX1	ET0	EX0
	Interrupt Enable Register 0	Туре	rw	r	rw	rw	rw	rw	rw	rw
B8 _H	IP Reset: 00 _H	Bit Field	(C	PT2	PS	PT1	PX1	PT0	PX0
	Interrupt Priority Register	Туре		r	rw	rw	rw	rw	rw	rw
в9 _Н	IPH Reset: 00 _H	Bit Field	(0	PT2H	PSH	PT1H	PX1H	PT0H	PX0H
	Interrupt Priority High Register	Туре		r	rw	rw	rw	rw	rw	rw
D0 _H	PSW Reset: 00 _H	Bit Field	CY	AC	F0	RS1	RS0	OV	F1	Р
	Program Status Word Register	Туре	rwh	rwh	rw	rw	rw	rwh	rw	rh
E0 _H	ACC Reset: 00 _H	Bit Field	ACC7	ACC6	ACC5	ACC4	ACC3	ACC2	ACC1	ACC0
	Accumulator Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
E8 _H	IEN1 Reset: 00 _H Interrupt Enable Register 1	Bit Field	ECCIP 3	ECCIP 2	ECCIP 1	ECCIP 0	EXM	EX2	ESSC	EADC
		Туре	rw	rw	rw	rw	rw	rw	rw	rw
F0 _H	B Reset: 00 _H	Bit Field	B7	B6	B5	B4	B3	B2	B1	B0
	B Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
F8 _H	IP1 Reset: 00 _H Interrupt Priority 1 Register	Bit Field	PCCIP 3	PCCIP 2	PCCIP 1	PCCIP 0	PXM	PX2	PSSC	PADC
		Туре	rw	rw	rw	rw	rw	rw	rw	rw
F9 _H	IPH1 Reset: 00 _H Interrupt Priority 1 High Register	Bit Field	PCCIP 3H	PCCIP 2H	PCCIP 1H	PCCIP 0H	PXMH	PX2H	PSSC H	PADC H
		Туре	rw	rw	rw	rw	rw	rw	rw	rw

3.2.4.2 MDU Registers

The MDU SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 5MDU Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 1			•						
B0 _H MDUSTAT Reset: 00 _H MDU Status Register		Bit Field		0					IERR	IRDY
		Туре			r			rh	rwh	rwh
в1 _Н	MDUCON Reset: 00 _H MDU Control Register	Bit Field	IE	IR	RSEL	RSEL STAR OPCODE				
			rw	rw	rw	rwh		r	w	
в2 _Н	MD0 Reset: 00 _H	Bit Field				DA	TA			
MDU Operand Register 0		Туре	rw							
B2 _H	MR0 Reset: 00 _H	Bit Field	DATA							
	MDU Result Register 0					r	h			

Table 13 CCU6 Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
Fe _H	CCU6_CMPSTATL Reset: 00 _H Compare State Register Low	Bit Field	0	CC63 ST	CC POS2	CC POS1	CC POS0	CC62 ST	CC61 ST	CC60 ST
		Туре	r	rh	rh	rh	rh	rh	rh	rh
FF _H	CCU6_CMPSTATH Reset: 00 _H Compare State Register High	Bit Field	T13IM	COUT 63PS	COUT 62PS	CC62 PS	COUT 61PS	CC61 PS	COUT 60PS	CC60 PS
		Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh

3.2.4.11 UART1 Registers

The UART1 SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 14 UART1 Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	: 1									
C8 _H	SCON Reset: 00 _H	Bit Field	SM0	SM1	SM2	REN	TB8	RB8	TI	RI
	Serial Channel Control Register	Туре	rw	rw	rw	rw	rw	rwh	rwh	rwh
C9 _H	SBUF Reset: 00 _H	Bit Field	VAL							
	Serial Data Buffer Register	Туре	rwh							
CA _H	BCON Reset: 00 _H	Bit Field	0			BRPRE			R	
	Baud Rate Control Register	Туре			r		rw			rw
св _Н	BG Reset: 00 _H	Bit Field	BR_VALUE							
	Baud Rate Timer/Reload Register		rwh							
сс _Н	FDCON Reset: 00 _H	Bit Field	0				NDOV	FDM	FDEN	
	Fractional Divider Control Register	Туре	r				rwh	rw	rw	
CD _H	FDSTEP Reset: 00 _H	Bit Field				STEP				
	Fractional Divider Reload Register	Туре	rw			w	1			
CeH	FDRES Reset: 00 _H	Bit Field				RES	SULT			
	Fractional Divider Result Register	Туре	rh							

3.3 Flash Memory

The Flash memory provides an embedded user-programmable non-volatile memory, allowing fast and reliable storage of user code and data. It is operated from a single 2.5 V supply from the Embedded Voltage Regulator (EVR) and does not require additional programming or erasing voltage. The sectorization of the Flash memory allows each sector to be erased independently.

Features

- In-System Programming (ISP) via UART
- In-Application Programming (IAP)
- Error Correction Code (ECC) for dynamic correction of single-bit errors
- Background program and erase operations for CPU load minimization
- Support for aborting erase operation
- Minimum program width¹⁾ of 32-byte for D-Flash and 64-byte for P-Flash
- 1-sector minimum erase width
- 1-byte read access
- Flash is delivered in erased state (read all zeros)
- Operating supply voltage: 2.5 V ± 7.5 %
- Read access time: $3 \times t_{CCLK} = 125 \text{ ns}^{2}$
- Program time: 248256 / f_{SYS} = 2.6 ms³⁾
- Erase time: 9807360 / f_{SYS} = 102 ms³⁾

P-Flash: 64-byte wordline can only be programmed once, i.e., one gate disturb allowed.
 D-Flash: 32-byte wordline can be programmed twice, i.e., two gate disturbs allowed.

²⁾ Values shown here are typical values. $f_{sys} = 96 \text{ MHz} \pm 7.5\%$ ($f_{CCLK} = 24 \text{ MHz} \pm 7.5\%$) is the maximum frequency range for Flash read access.

³⁾ Values shown here are typical values. $f_{sys} = 96 \text{ MHz} \pm 7.5\%$ is the only frequency range for Flash programming and erasing. f_{sysmin} is used for obtaining the worst case timing.

3.3.3 Flash Programming Width

For the P-Flash banks, a programmed wordline (WL) must be erased before it can be reprogrammed as the Flash cells can only withstand one gate disturb. This means that the entire sector containing the WL must be erased since it is impossible to erase a single WL.

For the D-Flash bank, the same WL can be programmed twice before erasing is required as the Flash cells are able to withstand two gate disturbs. This means if the number of data bytes that needs to be written is smaller than the 32-byte minimum programming width, the user can opt to program this number of data bytes (x; where x can be any integer from 1 to 31) first and program the remaining bytes (32 - x) later. Hence, it is possible to program the same WL, for example, with 16 bytes of data two times (see **Figure 11**)

Figure 11 D-Flash Programming

Note: When programming a D-Flash WL the second time, the previously programmed Flash memory cells (whether 0s or 1s) should be reprogrammed with 0s to retain its original contents and to prevent "over-programming".

Figure 14 Interrupt Request Sources (Part 2)

Figure 16 Interrupt Request Sources (Part 4)

infineon

Figure 18 General Structure of Bidirectional Port

Table 24 shows the VCO range for the SAA-XC886.

	Table	24	VCO	Range
--	-------	----	-----	-------

$f_{\sf VCOmin}$	$f_{\sf VCOmax}$	$f_{\sf VCOFREEmin}$	$f_{\sf VCOFREEmax}$	Unit
150	200	20	80	MHz
100	150	10	80	MHz

3.8.1 Recommended External Oscillator Circuits

The oscillator circuit, a Pierce oscillator, is designed to work with both, an external crystal oscillator or an external stable clock source. It basically consists of an inverting amplifier and a feedback element with XTAL1 as input, and XTAL2 as output.

When using a crystal, a proper external oscillator circuitry must be connected to both pins, XTAL1 and XTAL2. The crystal frequency can be within the range of 4 MHz to 12 MHz. Additionally, it is necessary to have two load capacitances C_{X1} and C_{X2} , and depending on the crystal type, a series resistor R_{X2} , to limit the current. A test resistor R_Q may be temporarily inserted to measure the oscillation allowance (negative resistance) of the oscillator circuitry. R_Q values are typically specified by the crystal vendor. The C_{X1} and C_{X2} values shown in **Figure 24** can be used as starting points for the negative resistance evaluation and for non-productive systems. The exact values and related operating range are dependent on the crystal frequency and have to be determined and optimized together with the final target system is strongly recommended to verify the input amplitude at XTAL1 and to determine the actual oscillation allowance (margin negative resistance) for the oscillator-crystal system.

When using an external clock signal, the signal must be connected to XTAL1. XTAL2 is left open (unconnected).

The oscillator can also be used in combination with a ceramic resonator. The final circuitry must also be verified by the resonator vendor. **Figure 24** shows the recommended external oscillator circuitries for both operating modes, external crystal mode and external input clock mode.

3.10 Watchdog Timer

The Watchdog Timer (WDT) provides a highly reliable and secure way to detect and recover from software or hardware failures. The WDT is reset at a regular interval that is predefined by the user. The CPU must service the WDT within this interval to prevent the WDT from causing an SAA-XC886 system reset. Hence, routine service of the WDT confirms that the system is functioning properly. This ensures that an accidental malfunction of the SAA-XC886 will be aborted in a user-specified time period.

In debug mode, the WDT is default suspended and stops counting. Therefore, there is no need to refresh the WDT during debugging.

Features

- 16-bit Watchdog Timer
- Programmable reload value for upper 8 bits of timer
- Programmable window boundary
- Selectable input frequency of $f_{PCLK}/2$ or $f_{PCLK}/128$
- Time-out detection with NMI generation and reset prewarning activation (after which a system reset will be performed)

The WDT is a 16-bit timer incremented by a count rate of $f_{\rm PCLK}/2$ or $f_{\rm PCLK}/128$. This 16-bit timer is realized as two concatenated 8-bit timers. The upper 8 bits of the WDT can be preset to a user-programmable value via a watchdog service access in order to modify the watchdog expire time period. The lower 8 bits are reset on each service access. **Figure 27** shows the block diagram of the WDT unit.

Figure 27 WDT Block Diagram

SAA-XC886CLM

Functional Description

Figure 32 CCU6 Block Diagram

3.23 Chip Identification Number

The SAA-XC886 identity (ID) register is located at Page 1 of address $B3_{H}$. The value of ID register is 09_{H} . However, for easy identification of product variants, the Chip Identification Number, which is an unique number assigned to each product variant, is available. The differentiation is based on the product, variant type and device step information.

Two methods are provided to read a device's chip identification number:

- In-application subroutine, GET_CHIP_INFO
- Bootstrap loader (BSL) mode A

Table 35 lists the chip identification numbers of available SAA-XC886 device variants.

Product Variant		Chip Identification Number							
	AB-Step	AB-Step	AC-Step						
XC886CLM-8FFA 5V	-	09900102 _H	0B900102 _H						
XC886LM-8FFA 5V	-	09900122 _H	0B900122 _H						
XC886CLM-6FFA 5V	-	09951502 _H	0B951502 _H						
XC886LM-6FFA 5V	-	09951522 _H	0B951522 _H						
XC886CM-8FFA 5V	-	09980102 _H	0B980102 _H						
XC886C-8FFA 5V	-	09980142 _H	0B980142 _H						
XC886-8FFA 5V	-	09980162 _H	0B980162 _H						
XC886CM-6FFA 5V	-	099D1502 _H	0B9D1502 _H						
XC886C-6FFA 5V	-	099D1542 _H	0B9D1542 _H						
XC886-6FFA 5V	-	099D1562 _H	0B9D1562 _H						

Table 35 Chip Identification Number

Electrical Parameters

4.2 DC Parameters

The electrical characteristics of the DC Parameters are detailed in this section.

4.2.1 Input/Output Characteristics

Table 38 provides the characteristics of the input/output pins of the SAA-XC886.

Table 38 Input/Output Characteristics (Operating Conditions app	aracteristics (Operating Conditions apply)
---	--

Parameter	Symbol		Limit Values		Unit	Test Conditions	
			min.	max.			
V _{DDP} = 5 V Range							
Output low voltage	V_{OL}	CC	_	1.0	V	I _{OL} = 15 mA	
			-	1.0	V	I_{OL} = 5 mA, current into all pins > 60 mA	
			-	0.4	V	$I_{\rm OL}$ = 5 mA, current into all pins \leq 60 mA	
Output high voltage	V _{OH}	CC	V _{DDP} - 1.0	-	V	I _{OH} = -15 mA	
			V _{DDP} - 1.0	-	V	I_{OH} = -5 mA, current from all pins > 60 mA	
			V _{DDP} - 0.4	-	V	$I_{\rm OH}$ = -5 mA, current from all pins \leq 60 mA	
Input low voltage on port pins (all except P0.0 & P0.1)	V_{ILP}	SR	-	$0.3 imes V_{ m DDP}$	V	CMOS Mode	
Input low voltage on P0.0 & P0.1	V_{ILP0}	SR	-0.2	$0.3 imes V_{ m DDP}$	V	CMOS Mode	
Input low voltage on RESET pin	V_{ILR}	SR	-	$0.3 imes V_{ m DDP}$	V	CMOS Mode	
Input low voltage on TMS pin	V_{ILT}	SR	—	$0.3 imes V_{ m DDP}$	V	CMOS Mode	
Input high voltage on port pins (all except P0.0 & P0.1)	V_{IHP}	SR	$0.7 imes V_{ m DDP}$	-	V	CMOS Mode	
Input high voltage on P0.0 & P0.1	V _{IHP0}	SR	$0.7 imes V_{ m DDP}$	V_{DDP}	V	CMOS Mode	

4.2.2 Supply Threshold Characteristics

İnfineon

Table 39 provides the characteristics of the supply threshold in the SAA-XC886.

Figure 37 Supply Threshold Parameters

Table 39	Supply Threshold Parameters (Operating Conditions apply)
----------	-------------------------------	-------------------------------------

Parameters	Symbol		Limit Values			Unit
			min.	typ.	max.	
$V_{\rm DDC}$ prewarning voltage ¹⁾	V _{DDCPW}	CC	2.2	2.3	2.4	V
V_{DDC} brownout voltage in active mode ¹⁾	V _{DDCBO}	CC	2.0	2.1	2.2	V
RAM data retention voltage	V _{DDCRDR}	CC	0.9	1.0	1.1	V
V_{DDC} brownout voltage in power-down mode ²⁾	V _{DDCBOPD}	CC	1.3	1.5	1.7	V
$V_{\rm DDP}$ prewarning voltage ³⁾	$V_{\rm DDPPW}$	CC	3.4	4.0	4.6	V
Power-on reset voltage ²⁾⁴⁾	V _{DDCPOR}	CC	1.3	1.5	1.7	V

1) Detection is disabled in power-down mode.

2) Detection is enabled in both active and power-down mode.

3) Detection is enabled for external power supply of 5.0V.

4) The reset of EVR is extended by 300 μ s typically after the VDDC reaches the power-on reset voltage.

Electrical Parameters

4.2.3 ADC Characteristics

The values in the table below are given for an analog power supply between 4.5 V to 5.5 V. All ground pins (V_{SS}) must be externally connected to one single star point in the system. The voltage difference between the ground pins must not exceed 200mV.

Parameter	Symbol		Limit Values			Unit	Test Conditions/	
			min.	typ.	max.		Remarks	
Analog reference voltage	V_{AREF}	SR	V _{AGND} + 1	V_{DDP}	V _{DDP} + 0.05	V	1)	
Analog reference ground	V_{AGND}	SR	V _{SS} - 0.05	V _{SS}	V _{AREF} - 1	V	1)	
Analog input voltage range	V_{AIN}	SR	V_{AGND}	_	V_{AREF}	V		
ADC clocks	$f_{\rm ADC}$		-	24	25.8	MHz	module clock ¹⁾	
	$f_{\sf ADCI}$		_	_	10	MHz	internal analog clock ¹⁾ See Figure 34	
Sample time	t _S	CC	$(2 + INPCR0.STC) \times t_{ADCI}$		μS	1)		
Conversion time	t _C	CC	See Section 4.2.3.1 µs			μS	1)	
Total unadjusted	TUE	CC	_	_	1	LSB	8-bit conversion ²⁾	
error			_	_	2	LSB	10-bit conversion ²⁾	
Differential Nonlinearity	/EA _{DNL}	CC	-	1	-	LSB	10-bit conversion ¹⁾	
Integral Nonlinearity	/EA _{INL}	CC	_	1	-	LSB	10-bit conversion ¹⁾	
Offset	/EA _{OFF}	CC	_	1	_	LSB	10-bit conversion ¹⁾	
Gain	/EA _{GAIN}	CC	_	1	_	LSB	10-bit conversion ¹⁾	
Overload current coupling factor for	K _{OVA}	CC	_	_	1.0 x 10 ⁻⁴	_	$I_{\rm OV} > 0^{1/3}$	
analog inputs			_	_	1.5 x 10 ⁻³	_	$I_{\rm OV} < 0^{1)3)}$	
Overload current coupling factor for	K _{OVD}	CC	-	_	5.0 x 10 ⁻³	_	$I_{\rm OV} > 0^{1(3)}$	
digital I/O pins			_	_	1.0 x 10 ⁻²	_	$I_{\rm OV} < 0^{1)3)}$	

Table 40ADC Characteristics (Operating Conditions apply; $V_{DDP} = 5V$ Range)

Electrical Parameters

4.3.5 External Clock Drive XTAL1

Table 46 shows the parameters that define the external clock supply for SAA-XC886. These timing parameters are based on the direct XTAL1 drive of clock input signals. They are not applicable if an external crystal or ceramic resonator is considered.

Parameter	Symbol	Symbol		Limit Values		Test Conditions	
			Min.	Max.			
Oscillator period	t _{osc}	SR	83.3	250	ns	1)2)	
High time	<i>t</i> ₁	SR	25	-	ns	2)3)	
Low time	<i>t</i> ₂	SR	25	-	ns	2)3)	
Rise time	t ₃	SR	-	20	ns	2)3)	
Fall time	<i>t</i> ₄	SR	-	20	ns	2)3)	

 Table 46
 External Clock Drive Characteristics (Operating Conditions apply)

1) The clock input signals with 45-55% duty cycle are used.

2) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

3) The clock input signal must reach the defined levels $V_{\rm ILX}$ and $V_{\rm IHX}$.

Figure 44 External Clock Drive XTAL1