

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	XC800
Core Size	8-Bit
Speed	24MHz
Connectivity	SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	34
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.75K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 140°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	PG-TQFP-48
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/saa-xc886-8ffa-5v-ac

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 General Device Information

Chapter 2 contains the block diagram, pin configurations, definitions and functions of the SAA-XC886.

2.1 Block Diagram

The block diagram of the SAA-XC886 is shown in Figure 2.

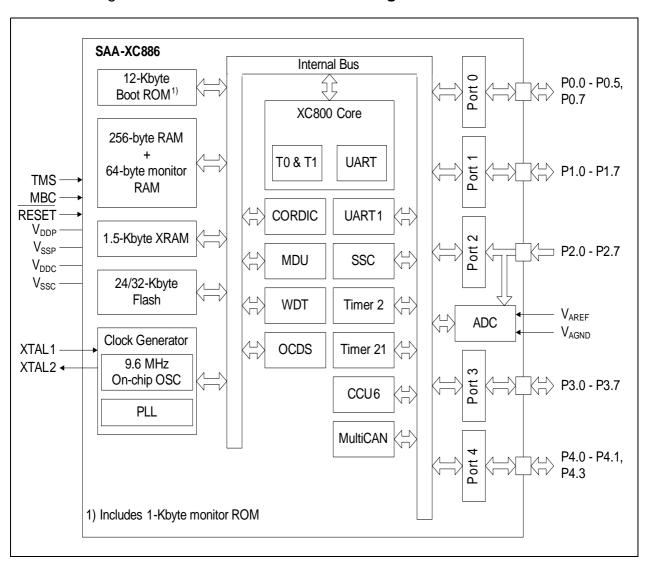


Figure 2 SAA-XC886 Block Diagram

Table 2Pin Definitions and Functions (cont'd)

Symbol	Pin Number	Туре	Reset State	Function	
P1		I/O		I/O port. It ca for the JTAG	B-bit bidirectional general purpose an be used as alternate functions i, CCU6, UART, Timer 0, Timer 1, per 21, MultiCAN and SSC.
P1.0	26		PU	RXD_0 T2EX RXDC0_0	UART Receive Data Input Timer 2 External Trigger Input MultiCAN Node 0 Receiver Input
P1.1	27		PU	EXINT3 T0_1 TDO_1 TXD_0 TXDC0_0	External Interrupt Input 3 Timer 0 Input JTAG Serial Data Output UART Transmit Data Output/Clock Output MultiCAN Node 0 Transmitter Output
P1.2	28		PU	SCK_0	SSC Clock Input/Output
P1.3	29		PU	MTSR_0 TXDC1_3	SSC Master Transmit Output/Slave Receive Input MultiCAN Node 1 Transmitter Output
P1.4	30		PU	MRST_0 EXINT0_1 RXDC1_3	SSC Master Receive Input/ Slave Transmit Output External Interrupt Input 0 MultiCAN Node 1 Receiver Input
P1.5	31		PU	CCPOS0_1 EXINT5 T1_1 EXF2_0 RXDO_0	CCU6 Hall Input 0 External Interrupt Input 5 Timer 1 Input Timer 2 External Flag Output UART Transmit Data Output

 Table 2
 Pin Definitions and Functions (cont'd)

Symbol	Pin Number	Туре	Reset State	Function	
P1.6	8		PU	CCPOS1_1 T12HR_0	CCU6 Hall Input 1 CCU6 Timer 12 Hardware Run Input
				EXINT6_0 RXDC0_2 T21_1	External Interrupt Input 6 MultiCAN Node 0 Receiver Input Timer 21 Input
P1.7	9		PU	CCPOS2_1 T13HR_0 T2_1 TXDC0_2	CCU6 Hall Input 2 CCU6 Timer 13 Hardware Run Input Timer 2 Input MultiCAN Node 0 Transmitter
					Output .6 can be used as a software chip : for the SSC.

 Table 2
 Pin Definitions and Functions (cont'd)

Symbol	Pin Number	Туре	Reset State	Function	
P3.7	34			EXINT4 COUT63_0	External Interrupt Input 4 Output of Capture/Compare channel 3

Data Sheet 13 V1.1, 2010-08

3 Functional Description

Chapter 3 provides an overview of the SAA-XC886 functional description.

3.1 Processor Architecture

The SAA-XC886 is based on a high-performance 8-bit Central Processing Unit (CPU) that is compatible with the standard 8051 processor. While the standard 8051 processor is designed around a 12-clock machine cycle, the SAA-XC886 CPU uses a 2-clock machine cycle. This allows fast access to ROM or RAM memories without wait state. Access to the Flash memory, however, requires an additional wait state (one machine cycle). The instruction set consists of 45% one-byte, 41% two-byte and 14% three-byte instructions.

The SAA-XC886 CPU provides a range of debugging features, including basic stop/start, single-step execution, breakpoint support and read/write access to the data memory, program memory and Special Function Registers (SFRs).

Figure 5 shows the CPU functional blocks.

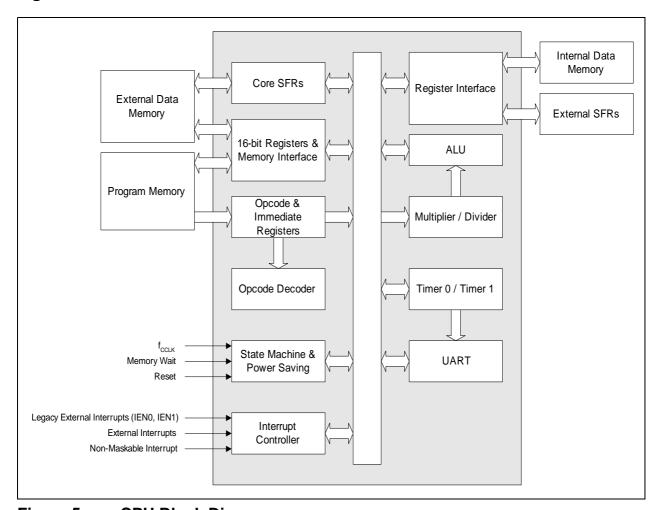


Figure 5 CPU Block Diagram

 Table 7
 SCU Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
BE _H	COCON Reset: 00 _H Clock Output Control Register	Bit Field	0 TLEN COUT S					COI	REL	
		Туре		r	rw	rw		r	W	
E9 _H	MISC_CON Reset: 00 _H Miscellaneous Control Register	Bit Field				0				DFLAS HEN
		Type				r				rwh
RMAP =	= 0, PAGE 3									
вз _Н	XADDRH Reset: F0H	Bit Field				ADI	DRH			
	On-chip XRAM Address Higher Order	Туре				r	W			
B4 _H	IRCON3 Reset: 00 _H Interrupt Request Register 3	Bit Field		0	CANS RC5	CCU6 SR1	(0	CANS RC4	CCU6 SR0
		Туре		r	rwh	rwh		r	rwh	rwh
в5 _Н	IRCON4 Reset: 00 _H Interrupt Request Register 4	Bit Field		0	CANS RC7	CCU6 SR3	(0	CANS RC6	CCU6 SR2
		Туре		r	rwh	rwh		r	rwh	rwh
В7 _Н	MODPISEL1 Reset: 00 _H Peripheral Input Select Register	Bit Field	EXINT 6IS		0	UR ²	RIS	T21EX IS	JTAGT DIS1	JTAGT CKS1
	1	Туре	rw		r	r	W	rw	rw	rw
ва _Н	MODPISEL2 Reset: 00 _H	Bit Field		(0		T21IS	T2IS	T1IS	TOIS
	Peripheral Input Select Register 2	Туре			r		rw	rw	rw	rw
ввн	PMCON2 Reset: 00 _H Power Mode Control Register 2	Bit Field			(0			UART 1_DIS	T21_D IS
		Туре				r			rw	rw
BD _H	MODSUSP Reset: 01 _H Module Suspend Control	Bit Field		0		T21SU SP	T2SUS P	T13SU SP	T12SU SP	WDTS USP
	Register	Туре		r		rw	rw	rw	rw	rw

3.2.4.5 WDT Registers

The WDT SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 8 WDT Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	: 1									
ввН	WDTCON Reset: 00 _H Watchdog Timer Control	Bit Field	()	WINB EN	WDTP R	0	WDTE N	WDTR S	WDTI N
	Register	Туре		r	rw	rh	r	rw	rwh	rw
всн	WDTREL Reset: 00 _H	Bit Field				WDT	REL			
	Watchdog Timer Reload Register	Туре				r	w			
вD _Н	WDTWINB Reset: 00 _H	Bit Field				WDT	WINB			
	Watchdog Window-Boundary Count Register	Туре				r	w	•	•	

 Table 10
 ADC Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0			
CDH	ADC_LCBR Reset: B7H	Bit Field		BOL	JND1		BOUND0						
	Limit Check Boundary Register	Туре		r	w			rw					
CEH	ADC_INPCR0 Reset: 00H	Bit Field				S ⁻	тс						
	Input Class 0 Register	Туре				r	W						
CF _H	ADC_ETRCR Reset: 00 _H External Trigger Control	Bit Field	SYNE N1	SYNE N0		ETRSEL1	l		ETRSELO)			
	Register	Туре	rw	rw		rw			rw				
RMAP =	= 0, PAGE 1												
CAH	ADC_CHCTR0 Reset: 00H	Bit Field	0		LCC		()	RESI	RSEL			
	Channel Control Register 0	Type	r		rw		I	r	r	w			
СВН	ADC_CHCTR1 Reset: 00H	Bit Field	0		LCC		()	RESI	RSEL			
	Channel Control Register 1	Туре	r		rw			r	r	W			
CCH	ADC_CHCTR2 Reset: 00 _H	Bit Field	0		LCC		()	RESI	RSEL			
	Channel Control Register 2	Туре	r		rw			r	r	W			
CDH	ADC_CHCTR3 Reset: 00H	Bit Field	0		LCC		()	RESI	RSEL			
	Channel Control Register 3	Туре	r		rw		1	r	r	W			
CEH	ADC_CHCTR4 Reset: 00H	Bit Field	0		LCC		()	RESI	RSEL			
	Channel Control Register 4	Туре	r		rw		1	r	r	W			
CF _H	ADC_CHCTR5 Reset: 00H	Bit Field	0		LCC		()	RESI	RSEL			
	Channel Control Register 5	Туре	r		rw		1	r	r	W			
D2 _H	ADC_CHCTR6 Reset: 00H	Bit Field	0		LCC		()	RESI	RSEL			
	Channel Control Register 6	Туре	r		rw		1	r	r	W			
D3 _H	ADC_CHCTR7 Reset: 00H	Bit Field	0		LCC		()	RESI	RSEL			
	Channel Control Register 7	Туре	r		rw			r	r	W			
RMAP =	= 0, PAGE 2												
CAH	ADC_RESROL Reset: 00H	Bit Field	RES	SULT	0	VF	DRC		CHNR				
	Result Register 0 Low	Туре	r	h	r	rh	rh		rh				
СВН	ADC_RESR0H Reset: 00H	Bit Field			•	RES	SULT						
	Result Register 0 High	Туре				r	h						
CCH	ADC_RESR1L Reset: 00H	Bit Field	RES	SULT	0	VF	DRC		CHNR				
	Result Register 1 Low	Туре	r	h	r	rh	rh		rh				
CDH	ADC_RESR1H Reset: 00H	Bit Field				RES	SULT						
-	Result Register 1 High	Туре				rh							
CEH	ADC_RESR2L Reset: 00H	Bit Field	RES	SULT	0	VF DRC			CHNR				
	Result Register 2 Low	Туре	r	h					rh				
CF _H	ADC_RESR2H Reset: 00H	Bit Field			RESULT								
	Result Register 2 High	Туре				r	h						
D2 _H	ADC_RESR3L Reset: 00H	Bit Field	RES	SULT	0	VF	DRC		CHNR				
	Result Register 3 Low	Туре	r	h	r	rh	rh		rh				

 Table 10
 ADC Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
D3 _H	ADC_RESR3H Reset: 00H	Bit Field		·	·	RES	ULT	l	l .	l
	Result Register 3 High	Туре				r	h			
RMAP =	= 0, PAGE 3		I							
CAH	ADC_RESRA0L Reset: 00H	Bit Field		RESULT		VF	DRC		CHNR	
	Result Register 0, View A Low	Туре		rh		rh	rh		rh	
СВН	ADC_RESRA0H Reset: 00H	Bit Field				RES	ULT	l.		
	Result Register 0, View A High	Туре				r	h			
ccH	ADC_RESRA1L Reset: 00H	Bit Field		RESULT		VF	DRC		CHNR	
	Result Register 1, View A Low	Туре		rh		rh	rh		rh	
CDH	ADC_RESRA1H Reset: 00H	Bit Field				RES	ULT			
	Result Register 1, View A High	Туре				r	h			
CEH	ADC_RESRA2L Reset: 00H	Bit Field		RESULT		VF	DRC		CHNR	
	Result Register 2, View A Low	Туре		rh		rh	rh		rh	
CF _H	ADC_RESRA2H Reset: 00H	Bit Field				RES	ULT			
	Result Register 2, View A High	Туре				r	h			
D2 _H	ADC_RESRA3L Reset: 00H	Bit Field		RESULT		VF	DRC		CHNR	
	Result Register 3, View A Low	Туре		rh		rh	rh		rh	
D3 _H	ADC_RESRA3H Reset: 00H	Bit Field				RES	ULT			
	Result Register 3, View A High	Туре				r	h			
RMAP =	= 0, PAGE 4									
CAH	ADC_RCR0 Reset: 00 _H Result Control Register 0	Bit Field	VFCT R	WFR	0	IEN		0		DRCT R
		Туре	rw	rw	r	rw		r		rw
СВН	ADC_RCR1 Reset: 00 _H Result Control Register 1	Bit Field	VFCT R	WFR	0	IEN		0		DRCT R
		Туре	rw	rw	r	rw		r		rw
CCH	ADC_RCR2 Reset: 00 _H Result Control Register 2	Bit Field	VFCT R	WFR	0	IEN		0		DRCT R
		Туре	rw	rw	r	rw		r		rw
CDH	ADC_RCR3 Reset: 00 _H Result Control Register 3	Bit Field	VFCT R	WFR	0	IEN		0		DRCT R
		Type	rw	rw	r	rw		r		rw
CEH	ADC_VFCR Reset: 00H	Bit Field		(0		VFC3	VFC2	VFC1	VFC0
	Valid Flag Clear Register	Туре			r		W	W	W	W
RMAP =	= 0, PAGE 5									
CA _H	ADC_CHINFR Reset: 00 _H Channel Interrupt Flag Register	Bit Field	CHINF 7	CHINF 6	CHINF 5	CHINF 4	CHINF 3	CHINF 2	CHINF 1	CHINF 0
		Туре	rh							
СВН	ADC_CHINCR Reset: 00 _H Channel Interrupt Clear Register	Bit Field	CHINC 7	CHINC 6	CHINC 5	CHINC 4	CHINC 3	CHINC 2	CHINC 1	CHINC 0
	-									

Table 12 T21 Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
C5 _H	T21_T2H Reset: 00 _H	Bit Field				T⊦	IL2			
	Timer 2 Register High	Туре				rv	vh			

3.2.4.10 CCU6 Registers

The CCU6 SFRs can be accessed in the standard memory area (RMAP = 0).

Table 13 CCU6 Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
RMAP =	= 0	I	I		I	I	I	I	I	I	
A3 _H	CCU6_PAGE Reset: 00H	Bit Field	C)P	ST	NR	0		PAGE		
	Page Register	Туре	\	N	١	V	r		rw		
RMAP =	= 0, PAGE 0										
9A _H	CCU6_CC63SRL Reset: 00H	Bit Field				CC6	3SL				
	Capture/Compare Shadow Register for Channel CC63 Low	Туре				r	W				
9B _H	CCU6_CC63SRH Reset: 00 _H	Bit Field				CC6	3SH				
	Capture/Compare Shadow Register for Channel CC63 High	Туре				r	W				
9C _H	CCU6_TCTR4L Reset: 00 _H Timer Control Register 4 Low	Bit Field	T12 STD	T12 STR	()	DT RES	T12 RES	T12R S	T12R R	
		Туре	W	W		r	W	W	W	W	
9D _H	CCU6_TCTR4H Reset: 00 _H Timer Control Register 4 High	Bit Field	T13 STD	T13 STR		0		T13 RES	T13R S	T13R R	
		Туре	w	w		r		W	w	W	
9E _H	CCU6_MCMOUTSL Reset: 00 _H Multi-Channel Mode Output Shadow	Bit Field	STRM CM	0			MCI	MPS			
	Register Low	Туре	W	r			r	w			
9F _H	CCU6_MCMOUTSH Reset: 00 _H Multi-Channel Mode Output Shadow	Bit Field	STRH P	0		CURHS			EXPHS		
	Register High	Туре	W	r		rw			rw		
^{A4} H	CCU6_ISRL Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	RT12 PM	RT12 OM	RCC6 2F	RCC6 2R	RCC6 1F	RCC6 1R	RCC6 0F	RCC6 0R	
	Reset Register Low	Туре	W	W	W	W	W	W	W	w	
A5 _H	CCU6_ISRH Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	RSTR	RIDLE	RWH E	RCHE	0	RTRP F	RT13 PM	RT13 CM	
	Reset Register High	Type	w	w	W	W	r	W	W	W	
A6 _H	CCU6_CMPMODIFL Reset: 00 _H Compare State Modification Register	Bit Field	0	MCC6 3S		0		MCC6 2S	MCC6 1S	MCC6 0S	
	Low	Туре	r	W		r		W	w	w	
A7 _H	CCU6_CMPMODIFH Reset: 00 _H Compare State Modification Register	Bit Field	0	MCC6 3R		0		MCC6 2R	MCC6 1R	MCC6 0R	
	High	Туре	r	w		r		w	w	w	

Table 13 CCU6 Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
FA _H	CCU6_CC60SRL Reset: 00 _H	Bit Field	CC60SL							
	Capture/Compare Shadow Register for Channel CC60 Low	Туре				rv	/h			
FB _H	CCU6_CC60SRH Reset: 00H	Bit Field				CC6	0SH			
	Capture/Compare Shadow Register for Channel CC60 High	Туре				rv	/h			
FC _H	CCU6_CC61SRL Reset: 00H	Bit Field				CC6	1SL			
	Capture/Compare Shadow Register for Channel CC61 Low	Туре				rv	/h			
FD _H	CCU6_CC61SRH Reset: 00H	Bit Field				CC6	1SH			
	Capture/Compare Shadow Register for Channel CC61 High	Туре				rv	/h			
FE _H	CCU6_CC62SRL Reset: 00H	Bit Field				CC6	2SL			
	Capture/Compare Shadow Register for Channel CC62 Low	Туре				rv	/h			
FF _H	CCU6_CC62SRH Reset: 00H	Bit Field				CC6	2SH			
	Capture/Compare Shadow Register for Channel CC62 High	Туре				rv	/h			
RMAP =	= 0, PAGE 1									
^{9A} H	CCU6_CC63RL Reset: 00 _H Capture/Compare Register for	Bit Field				CC6	3VL			
	Channel CC63 Low	Туре				r	h			
9B _H	CCU6_CC63RH Reset: 00H	Bit Field				CC6	3VH			
	Capture/Compare Register for Channel CC63 High	Туре				r	h			
9CH	CCU6_T12PRL Reset: 00H	Bit Field				T12	PVL			
	Timer T12 Period Register Low	Туре				rv	/h			
9D _H	CCU6_T12PRH Reset: 00 _H	Bit Field				T12	PVH			
	Timer T12 Period Register High	Туре				rv	/h			
9E _H	CCU6_T13PRL Reset: 00 _H Timer T13 Period Register Low	Bit Field				T13	PVL			
	Timer 113 Feriod Register Low	Туре				rv	/h			
9F _H	CCU6_T13PRH Reset: 00 _H Timer T13 Period Register High	Bit Field				T13	PVH			
		Туре				rv	/h			
^{A4} H	CCU6_T12DTCL Reset: 00 _H Dead-Time Control Register for	Bit Field				רם	ГМ			
	Timer T12 Low	Туре				n	N			
A5 _H	CCU6_T12DTCH Reset: 00 _H Dead-Time Control Register for	Bit Field	0	DTR2	DTR1	DTR0	0	DTE2	DTE1	DTE0
	Timer T12 High	Туре	r	rh	rh	rh	r	rw	rw	rw
A6 _H	CCU6_TCTR0L Reset: 00 _H Timer Control Register 0 Low	Bit Field	СТМ	CDIR	STE1	T12R	T12 PRE		T12CLK	
		Туре	rw	rh	rh	rh	rw		rw	
^{A7} H	CCU6_TCTR0H Reset: 00 _H Timer Control Register 0 High	Bit Field	ield 0 STE1 T13R T13 T13CLK PRE							
		Type r rh rh rw rw								
FA _H	CCU6_CC60RL Reset: 00H	Bit Field								
	Capture/Compare Register for Channel CC60 Low	Туре				r	h			

3.3.3 Flash Programming Width

For the P-Flash banks, a programmed wordline (WL) must be erased before it can be reprogrammed as the Flash cells can only withstand one gate disturb. This means that the entire sector containing the WL must be erased since it is impossible to erase a single WL.

For the D-Flash bank, the same WL can be programmed twice before erasing is required as the Flash cells are able to withstand two gate disturbs. This means if the number of data bytes that needs to be written is smaller than the 32-byte minimum programming width, the user can opt to program this number of data bytes (x; where x can be any integer from 1 to 31) first and program the remaining bytes (32 - x) later. Hence, it is possible to program the same WL, for example, with 16 bytes of data two times (see **Figure 11**)

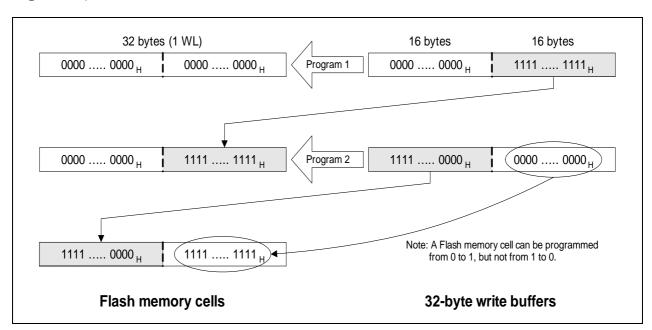


Figure 11 D-Flash Programming

Note: When programming a D-Flash WL the second time, the previously programmed Flash memory cells (whether 0s or 1s) should be reprogrammed with 0s to retain its original contents and to prevent "over-programming".

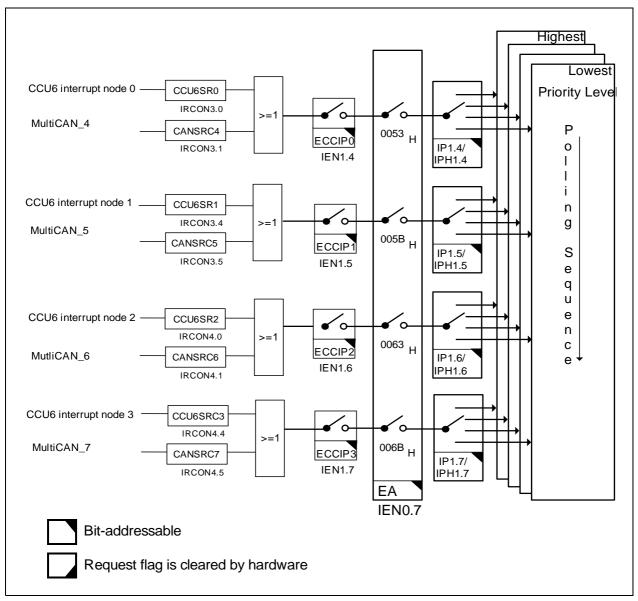


Figure 17 Interrupt Request Sources (Part 5)

Table 19 Interrupt Vector Addresses (cont'd)

Interrupt Source	Vector Address	Assignment for SAA- XC886	Enable Bit	SFR
XINTR6	0033 _H	MultiCAN Nodes 1 and 2	EADC	IEN1
		ADC[1:0]		
XINTR7	003B _H	SSC	ESSC	
XINTR8	0043 _H	External Interrupt 2	EX2	
		T21		
		CORDIC		
		UART1		
		UART1 Fractional Divider (Normal Divider Overflow)		
		MDU[1:0]	1	
XINTR9	004B _H	External Interrupt 3	EXM	
		External Interrupt 4		
		External Interrupt 5		
		External Interrupt 6		
		MultiCAN Node 3		
XINTR10	0053 _H	CCU6 INP0	ECCIP0	
		MultiCAN Node 4		
XINTR11	005B _H	CCU6 INP1	ECCIP1	
		MultiCAN Node 5		
XINTR12	0063 _H	CCU6 INP2	ECCIP2	
		MultiCAN Node 6		
XINTR13	006B _H	CCU6 INP3	ECCIP3	
		MultiCAN Node 7		

3.4.3 Interrupt Priority

An interrupt that is currently being serviced can only be interrupted by a higher-priority interrupt, but not by another interrupt of the same or lower priority. Hence, an interrupt of the highest priority cannot be interrupted by any other interrupt request.

If two or more requests of different priority levels are received simultaneously, the request of the highest priority is serviced first. If requests of the same priority are received simultaneously, then an internal polling sequence determines which request is serviced first. Thus, within each priority level, there is a second priority structure determined by the polling sequence shown in **Table 20**.

Table 20 Priority Structure within Interrupt Level

, , , , , , , , , , , , , , , , , , ,						
Source	Level					
Non-Maskable Interrupt (NMI)	(highest)					
External Interrupt 0	1					
Timer 0 Interrupt	2					
External Interrupt 1	3					
Timer 1 Interrupt	4					
UART Interrupt	5					
Timer 2,UART Normal Divider Overflow, MultiCAN, LIN Interrupt	6					
ADC, MultiCAN Interrupt	7					
SSC Interrupt	8					
External Interrupt 2, Timer 21, UART1, UART1 Normal Divider Overflow, MDU, CORDIC Interrupt	9					
External Interrupt [6:3], MultiCAN Interrupt	10					
CCU6 Interrupt Node Pointer 0, MultiCAN interrupt	11					
CCU6 Interrupt Node Pointer 1, MultiCAN Interrupt	12					
CCU6 Interrupt Node Pointer 2, MultiCAN Interrupt	13					
CCU6 Interrupt Node Pointer 3, MultiCAN Interrupt	14					
·						

Figure 19 shows the structure of an input-only port pin.

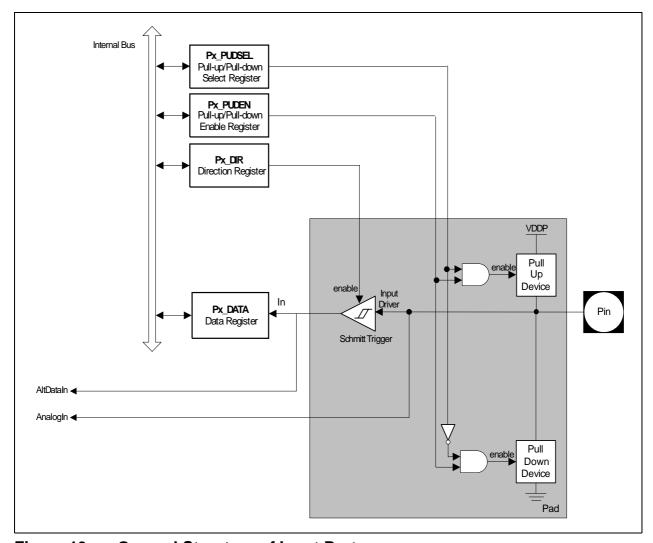


Figure 19 General Structure of Input Port

3.9 Power Saving Modes

The power saving modes of the SAA-XC886 provide flexible power consumption through a combination of techniques, including:

- Stopping the CPU clock
- Stopping the clocks of individual system components
- Reducing clock speed of some peripheral components
- Power-down of the entire system with fast restart capability

After a reset, the active mode (normal operating mode) is selected by default (see **Figure 26**) and the system runs in the main system clock frequency. From active mode, different power saving modes can be selected by software. They are:

- Idle mode
- Slow-down mode
- Power-down mode

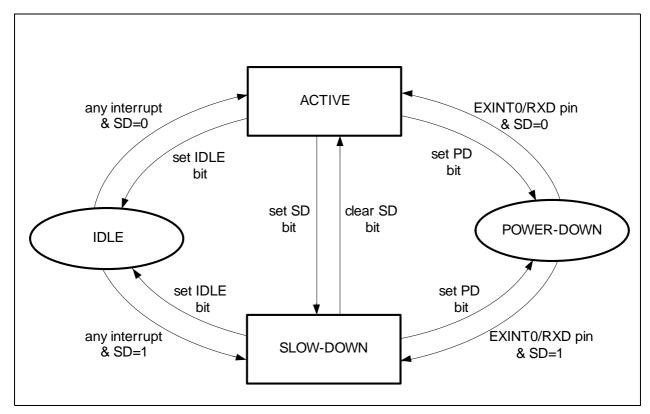


Figure 26 Transition between Power Saving Modes

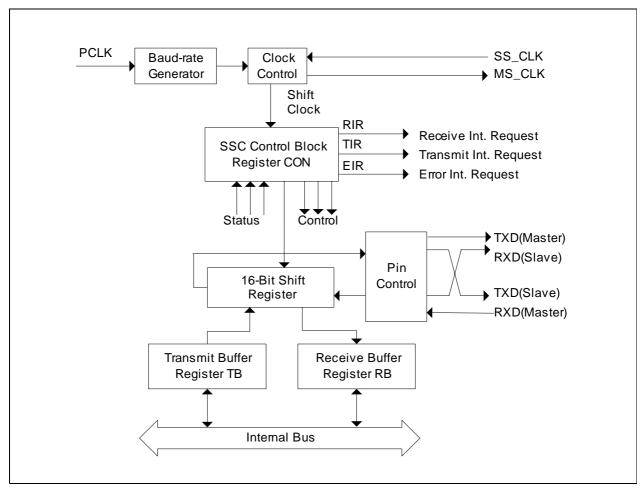


Figure 31 SSC Block Diagram

3.18 Timer 2 and Timer 21

Timer 2 and Timer 21 are 16-bit general purpose timers (THL2) that are fully compatible and have two modes of operation, a 16-bit auto-reload mode and a 16-bit one channel capture mode, see **Table 32**. As a timer, the timers count with an input clock of PCLK/12 (if prescaler is disabled). As a counter, they count 1-to-0 transitions on pin T2. In the counter mode, the maximum resolution for the count is PCLK/24 (if prescaler is disabled).

Table 32	Timer 2 Modes				
Mode	Description				
Auto-reload	 Up/Down Count Disabled Count up only Start counting from 16-bit reload value, overflow at FFFF_H Reload event configurable for trigger by overflow condition only, or by negative/positive edge at input pin T2EX as well Programmble reload value in register RC2 Interrupt is generated with reload event 				
	 Up/Down Count Enabled Count up or down, direction determined by level at input pin T2EX No interrupt is generated Count up Start counting from 16-bit reload value, overflow at FFFF_H Reload event triggered by overflow condition Programmble reload value in register RC2 Count down Start counting from FFFF_H, underflow at value defined in register RC2 Reload event triggered by underflow condition Reload value fixed at FFFF_H 				
Channel capture	 Count up only Start counting from 0000_H, overflow at FFFF_H Reload event triggered by overflow condition Reload value fixed at 0000_H Capture event triggered by falling/rising edge at pin T2EX Captured timer value stored in register RC2 Interrupt is generated with reload or capture event 				

However, it is important to note that the conversion error could increase due to loss of charges on the capacitors, if $f_{\rm ADC}$ becomes too low during slow-down mode.

3.21.2 ADC Conversion Sequence

The analog-to-digital conversion procedure consists of the following phases:

- Synchronization phase (t_{SYN})
- Sample phase (t_S)
- Conversion phase
- Write result phase (t_{WR})

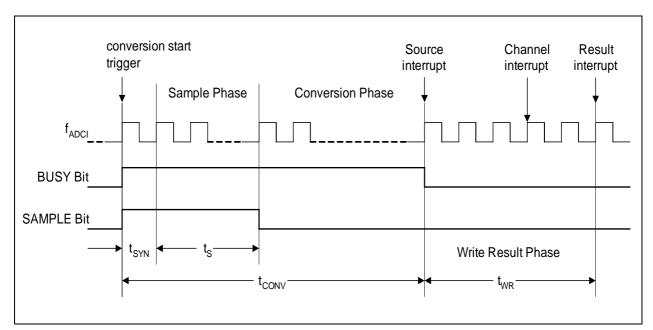


Figure 35 ADC Conversion Timing

Data Sheet 98 V1.1, 2010-08

Electrical Parameters

4.1.2 Absolute Maximum Rating

Maximum ratings are the extreme limits to which the SAA-XC886 can be subjected to without permanent damage.

Table 36 Absolute Maximum Rating Parameters

Parameter	Symbol	Limit Values		Unit	Notes
		min.	max.		
Ambient temperature	T_{A}	-40	140	°C	under bias
Storage temperature	T_{ST}	-65	150	°C	1)
Junction temperature	T_{J}	-40	150	°C	under bias ¹⁾
$\begin{tabular}{lll} \hline & Voltage on power supply pin with \\ & respect to $V_{\rm SS}$ \\ \hline \end{tabular}$	V_{DDP}	-0.5	6	V	1)
Voltage on any pin with respect to $V_{\rm SS}$	V_{IN}	-0.5	V _{DDP} + 0.5 or max. 6	V	whichever is lower ¹⁾
Input current on any pin during overload condition	I_{IN}	-10	10	mA	1)
Absolute sum of all input currents during overload condition	$\Sigma I_{IN} $	_	50	mA	1)

¹⁾ Not subjected to production test, verified by design/characterization.

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During absolute maximum rating overload conditions $(V_{\rm IN} > V_{\rm DDP})$ or $V_{\rm IN} < V_{\rm SS}$ the voltage on $V_{\rm DDP}$ pin with respect to ground $(V_{\rm SS})$ must not exceed the values defined by the absolute maximum ratings.