

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Obsolete
Core Processor	XC800
Core Size	8-Bit
Speed	24MHz
Connectivity	CANbus, SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	34
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.75K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 140°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	PG-TQFP-48
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/saa-xc886c-8ffa-ac

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

8-Bit Single Chip Microcontroller

SAA-XC886CLM

1 Summary of Features

The SAA-XC886 has the following features:

- High-performance XC800 Core
 - compatible with standard 8051 processor
 - two clocks per machine cycle architecture (for memory access without wait state)
 - two data pointers
- On-chip memory
 - 12 Kbytes of Boot ROM
 - 256 bytes of RAM
 - 1.5 Kbytes of XRAM
 - 24/32 Kbytes of Flash
 - (includes memory protection strategy)
- I/O port supply at 5.0 V and core logic supply at 2.5 V (generated by embedded voltage regulator)

(more features on next page)

Flash 24K/32K x 8		On-Chip Debug Support		UART	SSC	Port 0	7-bit Digital V
Boot ROM 12K x 8		XC800 Core			ompare Unit -bit	Port 1	8-bit Digital V
XRAM 1.5K x 8		XC800 C016			are Unit -bit	Port 2	8-bit Digital Analog Input
RAM 256 x 8	Timer 0 16-bit	Timer 1 16-bit	Timer 2 16-bit	10	ADC 10-bit 8-channel		8-bit Digital V
MDU	CORDIC	MultiCAN	Timer 21 16-bit	UART1 Watchdog Timer		Port 4	3-bit Digital V

General Device Information

2.2 Logic Symbol

The logic symbols of the SAA-XC886 are shown in Figure 3.

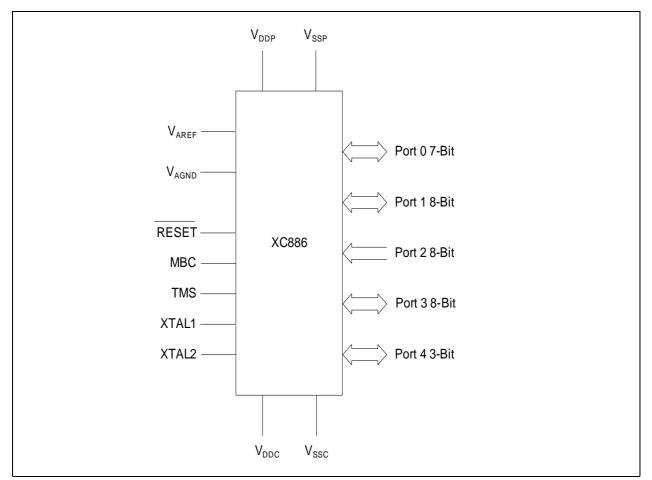


Figure 3 SAA-XC886 Logic Symbol

General Device Information

Symbol	Pin Number	Туре	Reset State	Function	
P0.4	1		Hi-Z	MTSR_1	SSC Master Transmit Output/ Slave Receive Input
				CC62_1	Input/Output of Capture/Compare channel 2
				TXD1_0	UART1 Transmit Data Output/Clock Output
P0.5	2		Hi-Z	MRST_1	SSC Master Receive Input/Slave Transmit Output
				EXINT0_0	External Interrupt Input 0
				T2EX1_1	Timer 21 External Trigger Input
				RXD1_0	UART1 Receive Data Input
				COUT62_1	Output of Capture/Compare channel 2
P0.7	47		PU	CLKOUT_1	Clock Output

Table 2Pin Definitions and Functions (cont'd)

General Device Information

Symbol	Pin Number	Туре	Reset State	Function				
P1		I/O		Port 1 Port 1 is an 8-bit bidirectional general purpose I/O port. It can be used as alternate functions for the JTAG, CCU6, UART, Timer 0, Timer 1 Timer 2, Timer 21, MultiCAN and SSC.				
P1.0	26		PU	RXD_0 T2EX RXDC0_0	UART Receive Data Input Timer 2 External Trigger Input MultiCAN Node 0 Receiver Input			
P1.1	27		PU	EXINT3 T0_1 TDO_1 TXD_0 TXDC0_0	External Interrupt Input 3 Timer 0 Input JTAG Serial Data Output UART Transmit Data Output/Clock Output MultiCAN Node 0 Transmitter Output			
P1.2	28		PU	SCK_0	SSC Clock Input/Output			
P1.3	29		PU	MTSR_0 TXDC1_3	SSC Master Transmit Output/Slave Receive Input MultiCAN Node 1 Transmitter Output			
P1.4	30		PU	MRST_0 EXINT0_1 RXDC1_3	SSC Master Receive Input/ Slave Transmit Output External Interrupt Input 0 MultiCAN Node 1 Receiver Input			
P1.5	31		PU	CCPOS0_1 EXINT5 T1_1 EXF2_0 RXDO_0	CCU6 Hall Input 0 External Interrupt Input 5 Timer 1 Input Timer 2 External Flag Output UART Transmit Data Output			

Table 2Pin Definitions and Functions (cont'd)

General Device Information

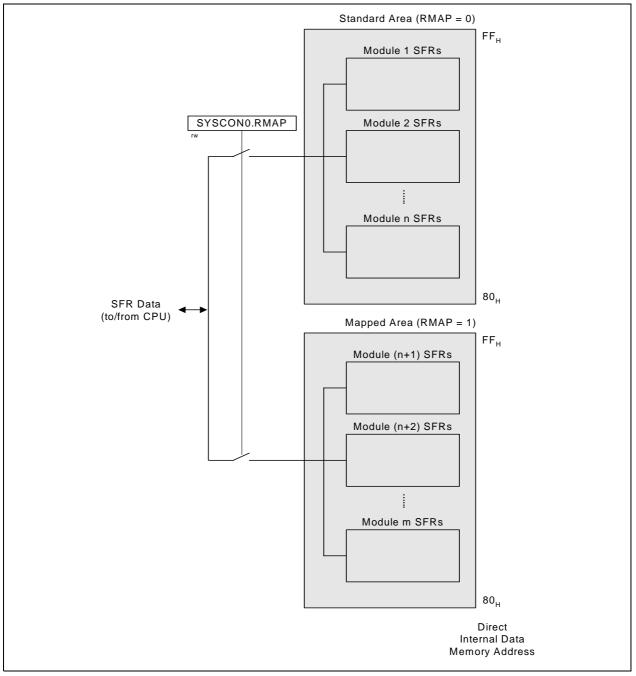

Symbol	Pin Number	Туре	Reset State	Function
V_{DDP}	7, 17, 43	_	_	I/O Port Supply (5.0 V) Also used by EVR and analog modules. All pins must be connected.
$V_{\rm SSP}$	18, 42	-	_	I/O Port Ground All pins must be connected.
V_{DDC}	6	-	_	Core Supply Monitor (2.5 V)
V _{SSC}	5	_	_	Core Supply Ground
V_{AREF}	24	_	_	ADC Reference Voltage
V_{AGND}	23	_	_	ADC Reference Ground
XTAL1	4	I	Hi-Z	External Oscillator Input (backup for on-chip OSC, normally NC)
XTAL2	3	0	Hi-Z	External Oscillator Output (backup for on-chip OSC, normally NC)
TMS	10	I	PD	Test Mode Select
RESET	41	I	PU	Reset Input
MBC ¹⁾	44	I	PU	Monitor & BootStrap Loader Control

Table 2Pin Definitions and Functions (cont'd)

1) An external pull-up device in the range of 4.7 k Ω to 100 k Ω . is required to enter user mode. Alternatively MBC can be tied to high if alternate functions (for debugging) of the pin are not utilized.

Functional Description

Address Extension by Mapping

SYSCON0

Functional Description

System Control Register 0 Reset Value: 04 7 5 4 3 2 1 0 6 1 0 IMODE 0 0 RMAP r r rw r r rw

Field	Bits	Туре	Description
RMAP	0	rw	Interrupt Node XINTR0 Enable0The access to the standard SFR area is enabled1The access to the mapped SFR area is enabled
1	2	r	Reserved Returns 1 if read; should be written with 1.
0	[7:5], 3,1	r	Reserved Returns 0 if read; should be written with 0.

Note: The RMAP bit should be cleared/set by ANL or ORL instructions.

3.2.2.2 Address Extension by Paging

Address extension is further performed at the module level by paging. With the address extension by mapping, the SAA-XC886 has a 256-SFR address range. However, this is still less than the total number of SFRs needed by the on-chip peripherals. To meet this requirement, some peripherals have a built-in local address extension mechanism for increasing the number of addressable SFRs. The extended address range is not directly controlled by the CPU instruction itself, but is derived from bit field PAGE in the module page register MOD_PAGE. Hence, the bit field PAGE must be programmed before accessing the SFR of the target module. Each module may contain a different number of pages and a different number of SFRs per page, depending on the specific requirement. Besides setting the correct RMAP bit value to select the SFR area, the user must also ensure that a valid PAGE is selected to target the desired SFR. A page inside the extended address range can be selected as shown in **Figure 8**.

3.3 Flash Memory

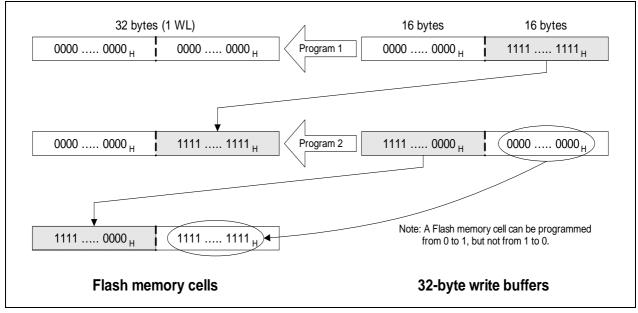
The Flash memory provides an embedded user-programmable non-volatile memory, allowing fast and reliable storage of user code and data. It is operated from a single 2.5 V supply from the Embedded Voltage Regulator (EVR) and does not require additional programming or erasing voltage. The sectorization of the Flash memory allows each sector to be erased independently.

Features

- In-System Programming (ISP) via UART
- In-Application Programming (IAP)
- Error Correction Code (ECC) for dynamic correction of single-bit errors
- Background program and erase operations for CPU load minimization
- Support for aborting erase operation
- Minimum program width¹⁾ of 32-byte for D-Flash and 64-byte for P-Flash
- 1-sector minimum erase width
- 1-byte read access
- Flash is delivered in erased state (read all zeros)
- Operating supply voltage: 2.5 V ± 7.5 %
- Read access time: $3 \times t_{CCLK} = 125 \text{ ns}^{2}$
- Program time: 248256 / f_{SYS} = 2.6 ms³⁾
- Erase time: 9807360 / f_{SYS} = 102 ms³⁾

P-Flash: 64-byte wordline can only be programmed once, i.e., one gate disturb allowed.
 D-Flash: 32-byte wordline can be programmed twice, i.e., two gate disturbs allowed.

²⁾ Values shown here are typical values. $f_{sys} = 96 \text{ MHz} \pm 7.5\%$ ($f_{CCLK} = 24 \text{ MHz} \pm 7.5\%$) is the maximum frequency range for Flash read access.


³⁾ Values shown here are typical values. $f_{sys} = 96 \text{ MHz} \pm 7.5\%$ is the only frequency range for Flash programming and erasing. f_{sysmin} is used for obtaining the worst case timing.

3.3.3 Flash Programming Width

For the P-Flash banks, a programmed wordline (WL) must be erased before it can be reprogrammed as the Flash cells can only withstand one gate disturb. This means that the entire sector containing the WL must be erased since it is impossible to erase a single WL.

For the D-Flash bank, the same WL can be programmed twice before erasing is required as the Flash cells are able to withstand two gate disturbs. This means if the number of data bytes that needs to be written is smaller than the 32-byte minimum programming width, the user can opt to program this number of data bytes (x; where x can be any integer from 1 to 31) first and program the remaining bytes (32 - x) later. Hence, it is possible to program the same WL, for example, with 16 bytes of data two times (see **Figure 11**)

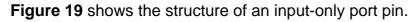


Figure 11 D-Flash Programming

Note: When programming a D-Flash WL the second time, the previously programmed Flash memory cells (whether 0s or 1s) should be reprogrammed with 0s to retain its original contents and to prevent "over-programming".

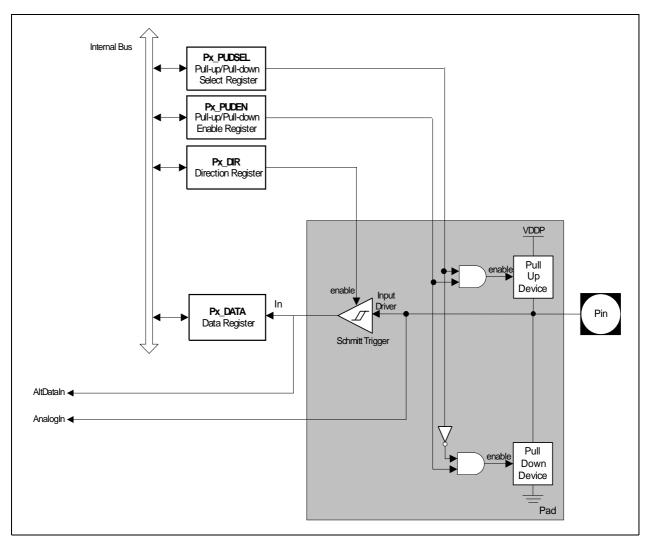


Figure 19 General Structure of Input Port

3.16 High-Speed Synchronous Serial Interface

The High-Speed Synchronous Serial Interface (SSC) supports full-duplex and half-duplex synchronous communication. The serial clock signal can be generated by the SSC internally (master mode), using its own 16-bit baud-rate generator, or can be received from an external master (slave mode). Data width, shift direction, clock polarity and phase are programmable. This allows communication with SPI-compatible devices or devices using other synchronous serial interfaces.

Features

- Master and slave mode operation
 - Full-duplex or half-duplex operation
- Transmit and receive buffered
- Flexible data format
 - Programmable number of data bits: 2 to 8 bits
 - Programmable shift direction: LSB or MSB shift first
 - Programmable clock polarity: idle low or high state for the shift clock
 - Programmable clock/data phase: data shift with leading or trailing edge of the shift clock
- Variable baud rate
- Compatible with Serial Peripheral Interface (SPI)
- Interrupt generation
 - On a transmitter empty condition
 - On a receiver full condition
 - On an error condition (receive, phase, baud rate, transmit error)

Data is transmitted or received on lines TXD and RXD, which are normally connected to the pins MTSR (Master Transmit/Slave Receive) and MRST (Master Receive/Slave Transmit). The clock signal is output via line MS_CLK (Master Serial Shift Clock) or input via line SS_CLK (Slave Serial Shift Clock). Both lines are normally connected to the pin SCLK. Transmission and reception of data are double-buffered.

Figure 31 shows the block diagram of the SSC.

- CAN functionality according to CAN specification V2.0 B active.
- Dedicated control registers are provided for each CAN node.
- A data transfer rate up to 1 MBaud is supported.
- Flexible and powerful message transfer control and error handling capabilities are implemented.
- Advanced CAN bus bit timing analysis and baud rate detection can be performed for each CAN node via the frame counter.
- Full-CAN functionality: A set of 32 message objects can be individually
 - allocated (assigned) to any CAN node
 - configured as transmit or receive object
 - setup to handle frames with 11-bit or 29-bit identifier
 - counted or assigned a timestamp via a frame counter
 - configured to remote monitoring mode
- Advanced Acceptance Filtering:
 - Each message object provides an individual acceptance mask to filter incoming frames.
 - A message object can be configured to accept only standard or only extended frames or to accept both standard and extended frames.
 - Message objects can be grouped into 4 priority classes.
 - The selection of the message to be transmitted first can be performed on the basis of frame identifier, IDE bit and RTR bit according to CAN arbitration rules.
- Advanced Message Object Functionality:
 - Message Objects can be combined to build FIFO message buffers of arbitrary size, which is only limited by the total number of message objects.
 - Message objects can be linked to form a gateway to automatically transfer frames between 2 different CAN buses. A single gateway can link any two CAN nodes. An arbitrary number of gateways may be defined.
- Advanced Data Management:
 - The Message objects are organized in double chained lists.
 - List reorganizations may be performed any time, even during full operation of the CAN nodes.
 - A powerful, command driven list controller manages the organization of the list structure and ensures consistency of the list.
 - Message FIFOs are based on the list structure and can easily be scaled in size during CAN operation.
 - Static Allocation Commands offer compatibility with TwinCAN applications, which are not list based.
- Advanced Interrupt Handling:
 - Up to 8 interrupt output lines are available. Most interrupt requests can be individually routed to one of the 8 interrupt output lines.
 - Message postprocessing notifications can be flexibly aggregated into a dedicated register field of 64 notification bits.

infineon

Functional Description

3.22 On-Chip Debug Support

The On-Chip Debug Support (OCDS) provides the basic functionality required for the software development and debugging of XC800-based systems.

The OCDS design is based on these principles:

- Use the built-in debug functionality of the XC800 Core
- Add a minimum of hardware overhead
- Provide support for most of the operations by a Monitor Program
- Use standard interfaces to communicate with the Host (a Debugger)

Features

- Set breakpoints on instruction address and on address range within the Program Memory
- Set breakpoints on internal RAM address range
- Support unlimited software breakpoints in Flash/RAM code region
- Process external breaks via JTAG and upon activating a dedicated pin
- Step through the program code

The OCDS functional blocks are shown in **Figure 36**. The Monitor Mode Control (MMC) block at the center of OCDS system brings together control signals and supports the overall functionality. The MMC communicates with the XC800 Core, primarily via the Debug Interface, and also receives reset and clock signals.

After processing memory address and control signals from the core, the MMC provides proper access to the dedicated extra-memories: a Monitor ROM (holding the code) and a Monitor RAM (for work-data and Monitor-stack).

The OCDS system is accessed through the JTAG¹⁾, which is an interface dedicated exclusively for testing and debugging activities and is not normally used in an application. The dedicated MBC pin is used for external configuration and debugging control.

Note: All the debug functionality described here can normally be used only after SAA-XC886 has been started in OCDS mode.

¹⁾ The pins of the JTAG port can be assigned to either the primary port (Port 0) or either of the secondary ports (Ports 1 and 2/Port 5).

User must set the JTAG pins (TCK and TDI) as input during connection with the OCDS system.

4.1.3 Operating Conditions

The following operating conditions must not be exceeded in order to ensure correct operation of the SAA-XC886. All parameters mentioned in the following table refer to these operating conditions, unless otherwise noted.

Table 37 Operating Condition Parameters

Parameter	Symbol	Limit Values		Unit	Notes/	
		min.	max.		Conditions	
Digital power supply voltage	V_{DDP}	4.5	5.5	V	5V Device	
Digital ground voltage	V _{SS}	0	·	V		
Digital core supply voltage	V_{DDC}	2.3	2.7	V		
System Clock Frequency ¹⁾	$f_{\rm SYS}$	88.8	103.2	MHz		
Ambient temperature	T _A	-40	140	°C	SAA-XC886	

1) f_{SYS} is the PLL output clock. During normal operating mode, CPU clock is f_{SYS} / 4. Please refer to **Figure 25** for detailed description.

Table 38 Input/Output Characteristics (Operating Conditions apply) (cont'd)

Parameter	Symbol		Limit	Values	Unit	Test Conditions
			min.	max.		
Input high voltage on RESET pin	V_{IHR}	SR	$0.7 imes V_{ m DDP}$	-	V	CMOS Mode
Input high voltage on TMS pin	V_{IHT}	SR	$0.75 imes V_{ m DDP}$	-	V	CMOS Mode
Input Hysteresis on port pins	HYSP	CC	$\begin{array}{c} 0.07 \times \ V_{ m DDP} \end{array}$	-	V	CMOS Mode ¹⁾
Input Hysteresis on XTAL1	HYSX	CC	$\begin{array}{c} 0.07 \times \ V_{ m DDC} \end{array}$	-	V	1)
Input low voltage at XTAL1	V_{ILX}	SR	V _{SS} - 0.5	$0.3 imes V_{ m DDC}$	V	
Input high voltage at XTAL1	V_{IHX}	SR	$0.7 imes V_{ m DDC}$	V _{DDC} + 0.5	V	
Pull-up current	I _{PU}	SR	_	-10	μA	V _{IHP,min}
			-150	-	μA	V _{ILP,max}
Pull-down current	I _{PD}	SR	_	10	μA	V _{ILP,max}
			150	-	μA	$V_{IHP,min}$
Input leakage current	I _{OZ1}	CC	-2	2	μA	$0 < V_{IN} < V_{DDP},$ $T_A \le 140^{\circ}C^{2)}$
Input current at XTAL1	$I_{\rm ILX}$	CC	-10	10	μA	
Overload current on any pin	I _{OV}	SR	-5	5	mA	3)
Absolute sum of overload currents	$\Sigma I_{OV} $	SR	-	25	mA	3)
Voltage on any pin during V_{DDP} power off	V _{PO}	SR	-	0.3	V	4)
Maximum current per pin (excluding $V_{\rm DDP}$ and $V_{\rm SS}$)	I _M SR	SR	_	15	mA	
Maximum current for all pins (excluding V_{DDP} and V_{SS})	$\Sigma I_{M} $	SR	-	90	mA	

4.2.3 ADC Characteristics

The values in the table below are given for an analog power supply between 4.5 V to 5.5 V. All ground pins (V_{SS}) must be externally connected to one single star point in the system. The voltage difference between the ground pins must not exceed 200mV.

Parameter	Symbol		Lir	nit Val	ues	Unit	Test Conditions/
			min.	typ.	max.		Remarks
Analog reference voltage	V_{AREF}	SR	V _{AGND} + 1	V_{DDP}	V _{DDP} + 0.05	V	1)
Analog reference ground	V_{AGND}	SR	V _{SS} - 0.05	V _{SS}	V _{AREF} - 1	V	1)
Analog input voltage range	V_{AIN}	SR	V_{AGND}	_	V_{AREF}	V	
ADC clocks	$f_{\rm ADC}$		_	24	25.8	MHz	module clock ¹⁾
	f _{adci}		-	_	10	MHz	internal analog clock ¹⁾ See Figure 34
Sample time	t _S	CC	$(2 + INPCR0.STC) \times t_{ADCI}$		μS	1)	
Conversion time	t _C	CC	See Se	ection	4.2.3.1	μS	1)
Total unadjusted	TUE	CC	_	_	1	LSB	8-bit conversion ²⁾
error			_	_	2	LSB	10-bit conversion ²⁾
Differential Nonlinearity	/EA _{DNL}	CC	-	1	-	LSB	10-bit conversion ¹⁾
Integral Nonlinearity	/EA _{INL}	CC	-	1	-	LSB	10-bit conversion ¹⁾
Offset	/EA _{OFF}	CC	_	1	_	LSB	10-bit conversion ¹⁾
Gain	/EA _{GAIN}	CC	_	1	-	LSB	10-bit conversion ¹⁾
Overload current coupling factor for	K _{OVA}	CC	-	_	1.0 x 10 ⁻⁴	-	$I_{\rm OV} > 0^{1)3)}$
analog inputs			-	_	1.5 x 10 ⁻³	-	$I_{\rm OV} < 0^{1)3)}$
Overload current coupling factor for	K _{OVD}	CC	-	_	5.0 x 10 ⁻³	-	$I_{\rm OV} > 0^{1)3)}$
digital I/O pins			_	_	1.0 x 10 ⁻²	-	$I_{\rm OV} < 0^{1)3)}$

Table 40ADC Characteristics (Operating Conditions apply; $V_{DDP} = 5V$ Range)

4.3.2 Output Rise/Fall Times

Table 43 provides the characteristics of the output rise/fall times in the SAA-XC886.

Table 43 Output Rise/Fall Times Parameters (Operating Conditions apply)

Parameter	Symbol		Limit Values		Test Conditions
		min.	max.		
$V_{\text{DDR}} = 5V$ Range					

Rise/fall times	t _R , t _F	_	10	ns	20 pF. ¹⁾²⁾³⁾

1) Rise/Fall time measurements are taken with 10% - 90% of pad supply.

2) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

3) Additional rise/fall time valid for $C_{L} = 20 \text{pF} - 100 \text{pF} @ 0.125 \text{ ns/pF}.$

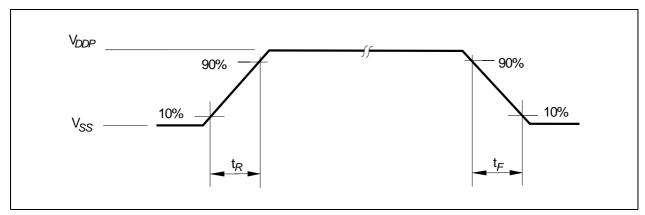


Figure 42 Rise/Fall Times Parameters

4.3.6 JTAG Timing

Table 47 provides the characteristics of the JTAG timing in the SAA-XC886.

Table 47TCK Clock Timing (Operating Conditions apply; CL = 50 pF)

Parameter	Sym	Symbol		nits	Unit	Test Conditions
			min	max		
TCK clock period	t _{TCK}	SR	50	-	ns	1)
TCK high time	<i>t</i> ₁	SR	20	_	ns	1)
TCK low time	<i>t</i> ₂	SR	20	-	ns	1)
TCK clock rise time	<i>t</i> ₃	SR	-	4	ns	1)
TCK clock fall time	t_4	SR	-	4	ns	1)

1) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

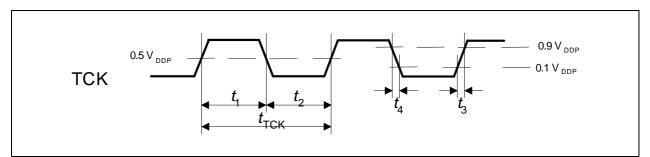


Figure 45 TCK Clock Timing

Table 48JTAG Timing (Operating Conditions apply; CL = 50 pF)

Parameter	Symbol		Limits		Unit	Test
			min	max		Conditions
TMS setup to TCK	t ₁	SR	8	-	ns	1)
TMS hold to TCK	<i>t</i> ₂	SR	24	-	ns	1)
TDI setup to TCK	t ₁	SR	11	-	ns	1)
TDI hold to TCK √	<i>t</i> ₂	SR	24	-	ns	1)
TDO valid output from TCK	<i>t</i> ₃	CC	-	27	ns	1)

Table 48	JTAG Timing (Operating Conditions apply; CL = 50 pF) (cont'd)
----------	---

Parameter	Symbol		Limits		Unit	Test
			min	max		Conditions
TDO high impedance to valid output from TCK	<i>t</i> ₄	CC	-	35	ns	1)
TDO valid output to high impedance from TCK	<i>t</i> ₅	CC	-	27	ns	1)

1) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

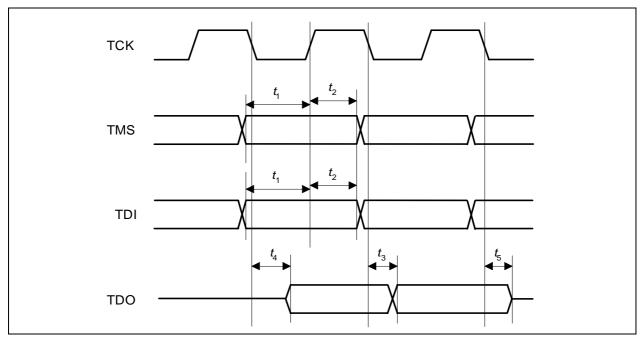


Figure 46 JTAG Timing

4.3.7 SSC Master Mode Timing

Table 49 provides the characteristics of the SSC timing in the SAA-XC886.

Table 49	SSC Master Mode Timing (Operating Conditions apply; CL = 50 pF)
----------	---

Parameter	Symbol		Limi	t Values	Unit	Test
			min.	max.		Conditions
SCLK clock period	t ₀	CC	2*T _{SSC}	_	ns	1)2)
MTSR delay from SCLK	t ₁	CC	0	8	ns	2)
MRST setup to SCLK	<i>t</i> ₂	SR	24	-	ns	2)
MRST hold from SCLK	<i>t</i> ₃	SR	0	-	ns	2)

1) $T_{SSCmin} = T_{CPU} = 1/f_{CPU}$. When $f_{CPU} = 24$ MHz, $t_0 = 83.3$ ns. T_{CPU} is the CPU clock period.

2) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

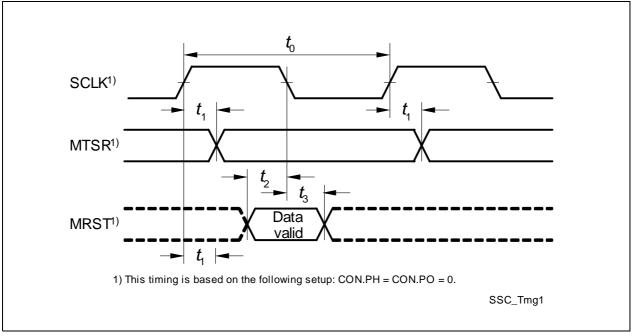


Figure 47 SSC Master Mode Timing