

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Details	
Product Status	Obsolete
Core Processor	XC800
Core Size	8-Bit
Speed	24MHz
Connectivity	LINbus, SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	34
Program Memory Size	24KB (24K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	1.75K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 140°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	PG-TQFP-48
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/saa-xc886lm-6ffa-5v-ac

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General Device Information

Symbol	Pin Number	Туре	Reset State	Function	
P0.4	1		Hi-Z	MTSR_1	SSC Master Transmit Output/ Slave Receive Input
				CC62_1	Input/Output of Capture/Compare channel 2
				TXD1_0	UART1 Transmit Data Output/Clock Output
P0.5	2		Hi-Z	MRST_1	SSC Master Receive Input/Slave Transmit Output
				EXINT0_0	External Interrupt Input 0
				T2EX1_1	Timer 21 External Trigger Input
				RXD1_0	UART1 Receive Data Input
				COUT62_1	Output of Capture/Compare channel 2
P0.7	47		PU	CLKOUT_1	Clock Output

Table 2Pin Definitions and Functions (cont'd)

General Device Information

Symbol	Pin Number	Туре	Reset State	Function						
P2		I		Port 2 Port 2 is an 8-bit general purpose input-only port. It can be used as alternate functions for the digital inputs of the JTAG and CCU6. It also used as the analog inputs for the ADC.						
P2.0	14		Hi-Z	CCPOS0_0 EXINT1_0 T12HR_2 TCK_1 CC61_3 AN0	CCU6 Hall Input 0 External Interrupt Input 1 CCU6 Timer 12 Hardware Run Input JTAG Clock Input Input of Capture/Compare channel 1 Analog Input 0					
P2.1	15		Hi-Z	CCPOS1_0 EXINT2_0 T13HR_2 TDI_1 CC62_3 AN1	CCU6 Hall Input 1 External Interrupt Input 2 CCU6 Timer 13 Hardware Run Input JTAG Serial Data Input Input of Capture/Compare channel 2 Analog Input 1					
P2.2	16		Hi-Z	CCPOS2_0 CTRAP_1 CC60_3 AN2	CCU6 Hall Input 2 CCU6 Trap Input Input of Capture/Compare channel 0 Analog Input 2					
P2.3	19		Hi-Z	AN3	Analog Input 3					
P2.4	20		Hi-Z	AN4	Analog Input 4					
P2.5	21		Hi-Z	AN5	Analog Input 5					
P2.6	22		Hi-Z	AN6	Analog Input 6					
P2.7	25		Hi-Z	AN7	Analog Input 7					

Table 2Pin Definitions and Functions (cont'd)

infineon

General Device Information

Symbol	Pin Number	Туре	Reset State	Function	
Р3		I/O		I/O port. It ca	B-bit bidirectional general purpose an be used as alternate functions ART1, Timer 21 and MultiCAN.
P3.0	35		Hi-Z	CCPOS1_2 CC60_0 RXDO1_1	CCU6 Hall Input 1 Input/Output of Capture/Compare channel 0 UART1 Transmit Data Output
P3.1	36		Hi-Z	CCPOS0_2 CC61_2 COUT60_0 TXD1_1	CCU6 Hall Input 0 Input/Output of Capture/Compare channel 1 Output of Capture/Compare channel 0 UART1 Transmit Data Output/Clock Output
P3.2	37		Hi-Z	CCPOS2_2 RXDC1_1 RXD1_1 CC61_0	CCU6 Hall Input 2 MultiCAN Node 1 Receiver Input UART1 Receive Data Input Input/Output of Capture/Compare channel 1
P3.3	38		Hi-Z	COUT61_0 TXDC1_1	Output of Capture/Compare channel 1 MultiCAN Node 1 Transmitter Output
P3.4	39		Hi-Z	CC62_0 RXDC0_1 T2EX1_0	Input/Output of Capture/Compare channel 2 MultiCAN Node 0 Receiver Input Timer 21 External Trigger Input
P3.5	40		Hi-Z	COUT62_0 EXF21_0 TXDC0_1	Output of Capture/Compare channel 2 Timer 21 External Flag Output MultiCAN Node 0 Transmitter Output
P3.6	33		PD	CTRAP_0	CCU6 Trap Input

Table 2Pin Definitions and Functions (cont'd)

General Device Information

Symbol	Pin Number	Туре	Reset State	Function					
P4		I/O		I/O port. It ca	Port 4 is an 8-bit bidirectional general purpose O port. It can be used as alternate functions or CCU6, Timer 0, Timer 1, Timer 21 and				
P4.0	45		Hi-Z	RXDC0_3 CC60_1	MultiCAN Node 0 Receiver Input Output of Capture/Compare channel 0				
P4.1	46		Hi-Z	TXDC0_3 COUT60_1	MultiCAN Node 0 Transmitter Output Output of Capture/Compare channel 0				
P4.3	32		Hi-Z	EXF21_1 COUT63_2	Timer 21 External Flag Output Output of Capture/Compare channel 3				

Table 2Pin Definitions and Functions (cont'd)

General Device Information

Symbol	Pin Number	Туре	Reset State	Function
V_{DDP}	7, 17, 43	_	_	I/O Port Supply (5.0 V) Also used by EVR and analog modules. All pins must be connected.
$V_{\rm SSP}$	18, 42	-	_	I/O Port Ground All pins must be connected.
V_{DDC}	6	-	_	Core Supply Monitor (2.5 V)
V _{SSC}	5	_	_	Core Supply Ground
V_{AREF}	24	_	_	ADC Reference Voltage
V_{AGND}	23	_	_	ADC Reference Ground
XTAL1	4	I	Hi-Z	External Oscillator Input (backup for on-chip OSC, normally NC)
XTAL2	3	0	Hi-Z	External Oscillator Output (backup for on-chip OSC, normally NC)
TMS	10	I	PD	Test Mode Select
RESET	41	I	PU	Reset Input
MBC ¹⁾	44	I	PU	Monitor & BootStrap Loader Control

Table 2Pin Definitions and Functions (cont'd)

1) An external pull-up device in the range of 4.7 k Ω to 100 k Ω . is required to enter user mode. Alternatively MBC can be tied to high if alternate functions (for debugging) of the pin are not utilized.

Functional Description

Addr	Register Name	Bit	7	6	5	4	3	2	1	0			
B3 _H	MD1 Reset: 00 _H	Bit Field		DATA									
	MDU Operand Register 1	Туре	rw										
вз _Н	MR1 Reset: 00 _H	Bit Field				DA	TA						
	MDU Result Register 1	Туре	rh										
B4 _H	MD2 Reset: 00 _H	Bit Field	DATA										
	MDU Operand Register 2	Туре	rw										
B4 _H	MR2 Reset: 00 _H	Bit Field	DATA										
	MDU Result Register 2	Туре		rh									
в5 _Н	MD3 Reset: 00 _H	Bit Field	DATA										
	MDU Operand Register 3	Туре	rw										
в5 _Н	MR3 Reset: 00 _H	Bit Field	DATA										
	MDU Result Register 3	Туре	rw DATA rh										
B6 _H	MD4 Reset: 00 _H	Bit Field				DA	ATA						
	MDU Operand Register 4	Туре				r	w						
B6 _H	MR4 Reset: 00 _H	Bit Field				DA	ΛTA						
	MDU Result Register 4	Туре				r	'n						
в7 _Н	MD5 Reset: 00 _H	Bit Field	DATA										
	MDU Operand Register 5	Туре				r	w						
в7 _Н	MR5 Reset: 00 _H	Reset: 00 _H Bit Field DATA											
	MDU Result Register 5	Туре				r	'n						

MDU Register Overview (cont'd) Table 5

İnfineon

CORDIC Registers 3.2.4.3

The CORDIC SFRs can be accessed in the mapped memory area (RMAP = 1).

CORDIC Register Overview Table 6

Addr	Register Name	Bit	7	6	5	4	3	2	1	0		
RMAP =	= 1					•						
9A _H	CD_CORDXL Reset: 00 _H	Bit Field	DATAL									
	CORDIC X Data Low Byte	Туре	rw									
9BH	CD_CORDXH Reset: 00 _H	Bit Field				DA	TAH					
	CORDIC X Data High Byte	Туре	rw									
9C _H	CD_CORDYL Reset: 00 _H	Bit Field				DA	TAL					
	CORDIC Y Data Low Byte	Туре	rw									
9D _H	CD_CORDYH Reset: 00 _H	Bit Field				DA	ТАН					
	CORDIC Y Data High Byte	Туре	rw									
9E _H	CD_CORDZL Reset: 00 _H	Bit Field	DATAL									
	CORDIC Z Data Low Byte	Туре	rw									

Table 6CORDIC Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
9F _H	CD_CORDZH Reset: 00 _H	Bit Field				DA	ГАН			
	CORDIC Z Data High Byte	Туре	rw							
۵0 _H	CD_STATC Reset: 00 _H CORDIC Status and Data	Bit Field	KEEP Z	KEEP Y	KEEP X	DMAP	INT_E N	EOC	ERRO R	BSY
	Control Register	Туре	rw	rw	rw	rw	rw	rwh	rh	rh
^{А1} Н	CD_CON Reset: 00 _H CORDIC Control Register	Bit Field	MPS		X_USI GN	ST_M ODE	ROTV EC	MC	DE	ST
		Туре	r	rw rw rw rw					rwh	

3.2.4.4 System Control Registers

The system control SFRs can be accessed in the mapped memory area (RMAP = 0).

Table 7 SCU Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 0 or 1									1
8F _H	SYSCON0 Reset: 04 _H System Control Register 0	Bit Field		0		IMOD E	0	1	0	RMAP
		Туре		r		rw	r	r	r	rw
RMAP =	= 0									
bf _H	SCU_PAGE Reset: 00 _H	Bit Field	C)P	ST	NR	0		PAGE	
	Page Register	Туре	,	w	١	N	r		rw	
RMAP =	= 0, PAGE 0									
вз _Н	MODPISEL Reset: 00 _H Peripheral Input Select Register	Bit Field	0	URRIS H	JTAGT DIS	JTAGT CKS	EXINT 2IS	EXINT 1IS	EXINT 0IS	URRIS
		Туре	r	rw	rw	rw	rw	rw	rw	rw
B4 _H	IRCON0 Reset: 00 _H Interrupt Request Register 0	Bit Field	0	EXINT 6	EXINT 5	EXINT 4	EXINT 3	EXINT 2	EXINT 1	EXINT 0
		Туре	r	rwh	rwh	rwh	rwh	rwh	rwh	rwh
в5 _Н	IRCON1 Reset: 00 _H Interrupt Request Register 1	Bit Field	0	CANS RC2	CANS RC1	ADCS R1	ADCS R0	RIR	TIR	EIR
		Туре	r	rwh	rwh	rwh	rwh	rwh	rwh	rwh
в6 _Н	IRCON2 Reset: 00 _H Interrupt Request Register 2	Bit Field		0		CANS RC3		0		CANS RC0
		Туре		r		rwh		r		rwh
в7 _Н	EXICON0 Reset: F0 _H	Bit Field	EX	INT3	EXI	NT2	EXI	NT1	EXI	NT0
	External Interrupt Control Register 0	Туре	r	W	r	w	r	w	r	w
ва _Н	EXICON1 Reset: 3F _H	Bit Field		0	EXI	NT6	EXI	NT5	EXI	NT4
	External Interrupt Control Register 1	Туре		r	r	w	r	w	r	W
вв _Н	NMICON Reset: 00 _H NMI Control Register	Bit Field	0	NMI ECC	NMI VDDP	NMI VDD	NMI OCDS	NMI FLASH	NMI PLL	NMI WDT
		Туре	r	rw	rw	rw	rw	rw	rw	rw

Table 13 CCU6 Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
FB _H	CCU6_CC60RH Reset: 00 _H	Bit Field				CC6	60VH				
	Capture/Compare Register for Channel CC60 High	Туре				r	'n				
FC _H	CCU6_CC61RL Reset: 00 _H	Bit Field				CC6	61VL				
	Capture/Compare Register for Channel CC61 Low	Туре				r	'n				
FD _H	CCU6_CC61RH Reset: 00 _H	Bit Field				CC6	61VH				
	Capture/Compare Register for Channel CC61 High	Туре				r	'n				
Fe _H	CCU6_CC62RL Reset: 00 _H	Bit Field				CCe	62VL				
	Capture/Compare Register for Channel CC62 Low	Туре				r	'n				
FF _H	CCU6_CC62RH Reset: 00 _H	Bit Field				CC6	S2VH				
	Capture/Compare Register for Channel CC62 High	Туре				r	'n				
RMAP =	= 0, PAGE 2										
9A _H	CCU6_T12MSELL Reset: 00 _H T12 Capture/Compare Mode Select	Bit Field		MSI	EL61			MSEL60			
	Register Low	Туре		r	W			r	w		
9B _H	CCU6_T12MSELH Reset: 00 _H	Bit Field	DBYP		HSYNC			MSEL62			
	T12 Capture/Compare Mode Select Register High	Туре	rw		rw			r			
9CH	CCU6_IENL Reset: 00 _H Capture/Compare Interrupt Enable Register Low	Bit Field	ENT1 2 PM	ENT1 2 OM	ENCC 62F	ENCC 62R	ENCC 61F	ENCC 61R	ENCC 60F	ENCC 60R	
		Туре	rw	rw	rw	rw	rw	rw	rw	rw	
9D _H	CCU6_IENH Reset: 00 _H Capture/Compare Interrupt Enable	Bit Field	EN STR	EN IDLE	EN WHE	EN CHE	0	EN TRPF	ENT1 3PM	ENT1 3CM	
	Register High	Туре	rw	rw	rw	rw	r	rw	rw	rw	
9E _H	CCU6_INPL Reset: 40 _H Capture/Compare Interrupt Node	Bit Field	INP	CHE	INPO	CC62	INPO	CC61	INPO	CC60	
	Pointer Register Low	Туре	r	W	r	W	r	W	r	W	
9F _H	CCU6_INPH Reset: 39 _H Capture/Compare Interrupt Node	Bit Field	(C	INP	T13	INF	T12	INP	ERR	
	Pointer Register High	Туре		r	r	w	r	w	r	w	
A4 _H	CCU6_ISSL Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	ST12 PM	ST12 OM	SCC6 2F	SCC6 2R	SCC6 1F	SCC6 1R	SCC6 0F	SCC6 0R	
	Set Register Low	Туре	w	w	w	w	w	w	w	w	
^{А5} Н	CCU6_ISSH Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	SSTR	SIDLE	SWHE	SCHE	SWH C	STRP F	ST13 PM	ST13 CM	
	Set Register High	Туре	w	w	w	w	w	w	w	w	
A6 _H	CCU6_PSLR Reset: 00 _H Passive State Level Register	Bit Field	PSL63	0			P	SL			
		Туре	rwh	r			r	vh			
^{А7} Н	CCU6_MCMCTR Reset: 00 _H Multi-Channel Mode Control Register	Bit Field		0		SYN	0		SWSEL		
		Type		r Tao	1	w	r		rw	T40	
FA _H	CCU6_TCTR2LReset: 00HTimer Control Register 2 Low	Bit Field	0	113	STED		T13TEC		T13 SSC	T12 SSC	
		Туре	r	r	W		rw		rw	rw	

3.2.4.12 SSC Registers

The SSC SFRs can be accessed in the standard memory area (RMAP = 0).

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
RMAP =	= 0										
A9 _H	SSC_PISEL Reset: 00 _H	Bit Field			0			CIS	SIS	MIS	
	Port Input Select Register	Туре			r			rw	rw	rw	
AA _H	SSC_CONL Reset: 00 _H	Bit Field	LB	PO	PH	HB		В	М		
	Control Register Low Programming Mode	Туре	rw	rw	rw	rw	rw				
AA _H	SSC_CONL Reset: 00 _H	Bit Field			0			BC			
	Control Register Low Operating Mode	Туре			r			r	h		
ab _h	SSC_CONH Reset: 00 _H	Bit Field	EN	MS	0	AREN	BEN	PEN	REN	TEN	
	Control Register High Programming Mode	Туре	rw	rw	r	rw	rw	rw	rw	rw	
ав _Н	SSC_CONH Reset: 00 _H	Bit Field	EN	MS	0	BSY	BE	PE	RE	TE	
	Control Register High Operating Mode	Туре	rw	rw	r	rh	rwh	rwh	rwh	rwh	
ac _h	SSC_TBL Reset: 00 _H	Bit Field				TB_V	ALUE				
	Transmitter Buffer Register Low	Туре				rv	W				
ad _H	SSC_RBL Reset: 00 _H	Bit Field				RB_V	ALUE				
	Receiver Buffer Register Low	Туре				r	h				
ае _Н	SSC_BRL Reset: 00 _H	Bit Field				BR_VALUE					
	Baud Rate Timer Reload Register Low	Туре			rw						
AF _H	SSC_BRH Reset: 00 _H	Bit Field				BR_V	ALUE				
	Baud Rate Timer Reload Register High	Туре				r	N				

Table 15 SSC Register Overview

3.2.4.13 MultiCAN Registers

The MultiCAN SFRs can be accessed in the standard memory area (RMAP = 0).

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 0									
D8 _H ADCON Reset: 00 _H CAN Address/Data Control Register		Bit Field	V3	V2	V1	V0	AUAD		BSY	RWEN
		Туре	rw	rw	rw	rw	rw		rh	rw
D9 _H	ADL Reset: 00 _H	Bit Field	CA9	CA8	CA7	CA6	CA5	CA4	CA3	CA2
	CAN Address Register Low	Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh
da _H	ADH Reset: 00 _H	Bit Field	0				CA13	CA12	CA11	CA10
	CAN Address Register High	Туре	r				rwh	rwh	rwh	rwh

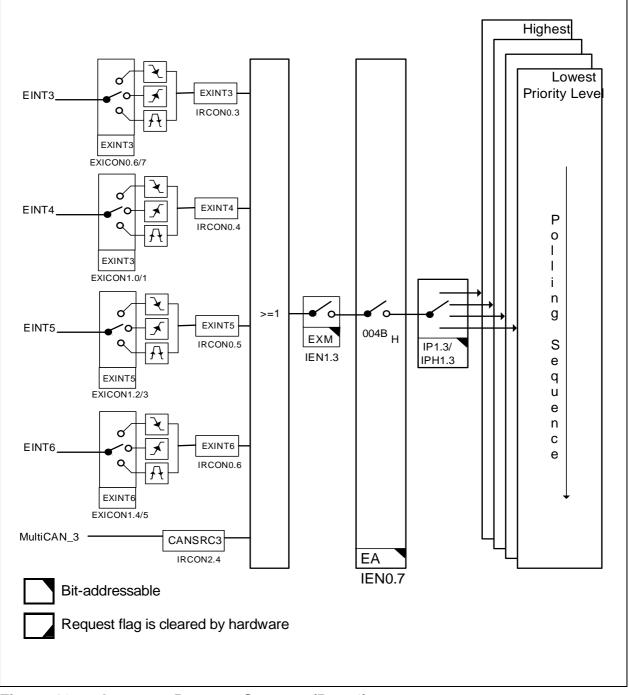


Figure 16 Interrupt Request Sources (Part 4)

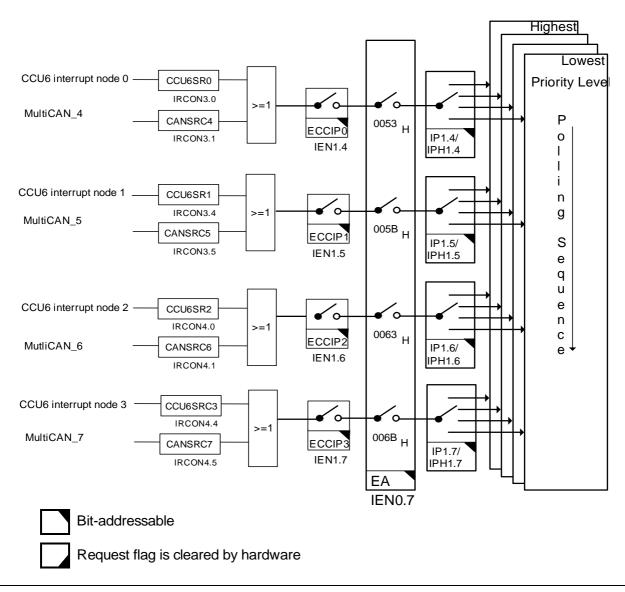


Figure 17 Interrupt Request Sources (Part 5)

Interrupt Source	Vector Address	Assignment for SAA- XC886	Enable Bit	SFR	
XINTR6	0033 _H	MultiCAN Nodes 1 and 2	EADC	IEN1	
		ADC[1:0]			
XINTR7	003B _H	SSC	ESSC		
XINTR8	0043 _H	External Interrupt 2	EX2		
		T21			
		CORDIC			
		UART1			
		UART1 Fractional Divider (Normal Divider Overflow)			
		MDU[1:0]			
XINTR9	004B _H	External Interrupt 3	EXM		
		External Interrupt 4			
		External Interrupt 5			
		External Interrupt 6			
		MultiCAN Node 3			
XINTR10	0053 _H	CCU6 INP0	ECCIP0		
		MultiCAN Node 4			
XINTR11	005B _H	CCU6 INP1	ECCIP1		
		MultiCAN Node 5			
XINTR12	0063 _H	CCU6 INP2	ECCIP2		
		MultiCAN Node 6			
XINTR13	006B _H	CCU6 INP3	ECCIP3		
		MultiCAN Node 7			

infineon

Functional Description

3.6 Power Supply System with Embedded Voltage Regulator

The SAA-XC886 microcontroller requires two different levels of power supply:

- 5.0 V for the Embedded Voltage Regulator (EVR) and Ports
- 2.5 V for the core, memory, on-chip oscillator, and peripherals

Figure 20 shows the SAA-XC886 power supply system. A power supply of 5.0 V must be provided from the external power supply pin. The 2.5 V power supply for the logic is generated by the EVR. The EVR helps to reduce the power consumption of the whole chip and the complexity of the application board design.

The EVR consists of a main voltage regulator and a low power voltage regulator. In active mode, both voltage regulators are enabled. In power-down mode, the main voltage regulator is switched off, while the low power voltage regulator continues to function and provide power supply to the system with low power consumption.

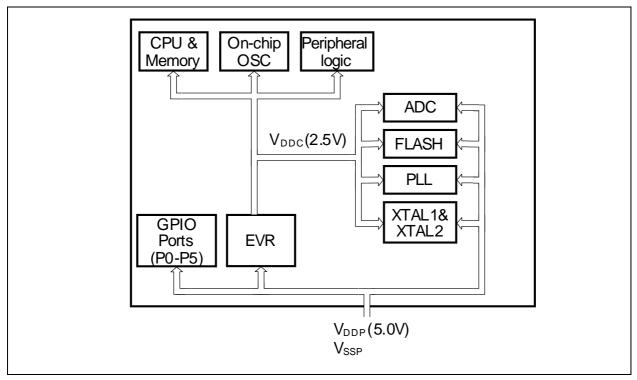


Figure 20 SAA-XC886 Power Supply System

EVR Features

- Input voltage (V_{DDP}): 5.0 V
- Output voltage (V_{DDC}): 2.5 V ± 7.5%
- Low power voltage regulator provided in power-down mode
- V_{DDC} and V_{DDP} prewarning detection
- V_{DDC} brownout detection

Table 32

Functional Description

3.18 Timer 2 and Timer 21

Timer 2 Modes

Timer 2 and Timer 21 are 16-bit general purpose timers (THL2) that are fully compatible and have two modes of operation, a 16-bit auto-reload mode and a 16-bit one channel capture mode, see **Table 32**. As a timer, the timers count with an input clock of PCLK/12 (if prescaler is disabled). As a counter, they count 1-to-0 transitions on pin T2. In the counter mode, the maximum resolution for the count is PCLK/24 (if prescaler is disabled).

I able 52	
Mode	Description
Auto-reload	 Up/Down Count Disabled Count up only Start counting from 16-bit reload value, overflow at FFFF_H Reload event configurable for trigger by overflow condition only, or by negative/positive edge at input pin T2EX as well Programmble reload value in register RC2 Interrupt is generated with reload event
	 Up/Down Count Enabled Count up or down, direction determined by level at input pin T2EX No interrupt is generated Count up Start counting from 16-bit reload value, overflow at FFFF_H Reload event triggered by overflow condition Programmble reload value in register RC2 Count down Start counting from FFFF_H, underflow at value defined in register RC2 Reload event triggered by underflow condition Reload event triggered by underflow condition
Channel capture	 Count up only Start counting from 0000_H, overflow at FFFF_H Reload event triggered by overflow condition Reload value fixed at 0000_H Capture event triggered by falling/rising edge at pin T2EX Captured timer value stored in register RC2 Interrupt is generated with reload or capture event

3.19 Capture/Compare Unit 6

The Capture/Compare Unit 6 (CCU6) provides two independent timers (T12, T13), which can be used for Pulse Width Modulation (PWM) generation, especially for AC-motor control. The CCU6 also supports special control modes for block commutation and multi-phase machines.

The timer T12 can function in capture and/or compare mode for its three channels. The timer T13 can work in compare mode only.

The multi-channel control unit generates output patterns, which can be modulated by T12 and/or T13. The modulation sources can be selected and combined for the signal modulation.

Timer T12 Features

- Three capture/compare channels, each channel can be used either as a capture or as a compare channel
- Supports generation of a three-phase PWM (six outputs, individual signals for highside and lowside switches)
- 16-bit resolution, maximum count frequency = peripheral clock frequency
- Dead-time control for each channel to avoid short-circuits in the power stage
- Concurrent update of the required T12/13 registers
- Generation of center-aligned and edge-aligned PWM
- Supports single-shot mode
- Supports many interrupt request sources
- Hysteresis-like control mode

Timer T13 Features

- One independent compare channel with one output
- 16-bit resolution, maximum count frequency = peripheral clock frequency
- Can be synchronized to T12
- Interrupt generation at period-match and compare-match
- Supports single-shot mode

Additional Features

- Implements block commutation for Brushless DC-drives
- Position detection via Hall-sensor pattern
- Automatic rotational speed measurement for block commutation
- Integrated error handling
- Fast emergency stop without CPU load via external signal (CTRAP)
- · Control modes for multi-channel AC-drives
- Output levels can be selected and adapted to the power stage

The block diagram of the CCU6 module is shown in **Figure 32**.

4.2.3 ADC Characteristics

The values in the table below are given for an analog power supply between 4.5 V to 5.5 V. All ground pins (V_{SS}) must be externally connected to one single star point in the system. The voltage difference between the ground pins must not exceed 200mV.

Parameter	Symbol		Lir	nit Val	ues	Unit	Test Conditions/ Remarks	
			min.	typ.	max.			
Analog reference voltage	V_{AREF}	SR	V _{AGND} + 1	V_{DDP}	V _{DDP} + 0.05	V	1)	
Analog reference ground	V_{AGND}	SR	V _{SS} - 0.05	V _{SS}	V _{AREF} - 1	V	1)	
Analog input voltage range	V_{AIN}	SR	V_{AGND}	_	V_{AREF}	V		
ADC clocks	$f_{\rm ADC}$		_	24	25.8	MHz	module clock ¹⁾	
	f _{adci}		-	_	10	MHz	internal analog clock ¹⁾ See Figure 34	
Sample time	t _S	СС	(2 + IN) t_{ADCI}	PCR0.	STC) ×	μS	1)	
Conversion time	t _C	CC	See Se	ection	4.2.3.1	μS	1)	
Total unadjusted	TUE	CC	-	_	1	LSB	8-bit conversion ²⁾	
error			_	_	2	LSB	10-bit conversion ²⁾	
Differential Nonlinearity	/EA _{DNL}	CC	-	1	-	LSB	10-bit conversion ¹⁾	
Integral Nonlinearity	/EA _{INL}	CC	-	1	-	LSB	10-bit conversion ¹⁾	
Offset	/EA _{OFF}	CC	_	1	-	LSB	10-bit conversion ¹⁾	
Gain	/EA _{GAIN}	CC	-	1	-	LSB	10-bit conversion ¹⁾	
Overload current coupling factor for	K _{OVA}	CC	-	_	1.0 x 10 ⁻⁴	-	$I_{\rm OV} > 0^{1/3}$	
analog inputs			-	_	1.5 x 10 ⁻³	-	$I_{\rm OV} < 0^{1)3)}$	
Overload current coupling factor for	K _{OVD}	CC	-	_	5.0 x 10 ⁻³	-	$I_{\rm OV} > 0^{1/3}$	
digital I/O pins			_	_	1.0 x 10 ⁻²	-	$I_{\rm OV} < 0^{1)3)}$	

Table 40ADC Characteristics (Operating Conditions apply; $V_{DDP} = 5V$ Range)

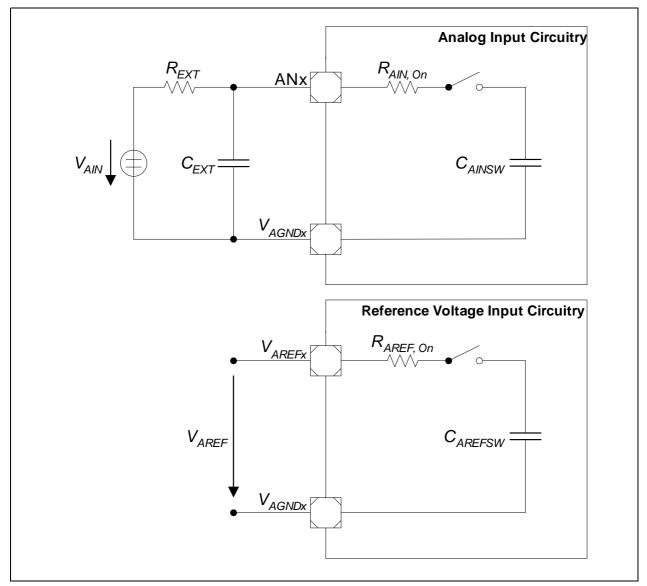


Figure 38 ADC Input Circuits

4.3 AC Parameters

The electrical characteristics of the AC Parameters are detailed in this section.

4.3.1 Testing Waveforms

The testing waveforms for rise/fall time, output delay and output high impedance are shown in **Figure 39**, **Figure 40** and **Figure 41**.

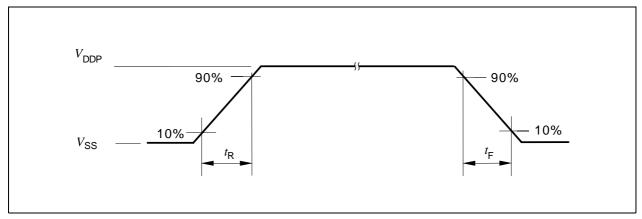


Figure 39 Rise/Fall Time Parameters

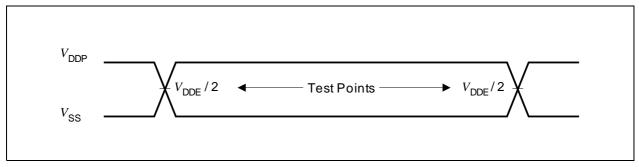


Figure 40 Testing Waveform, Output Delay

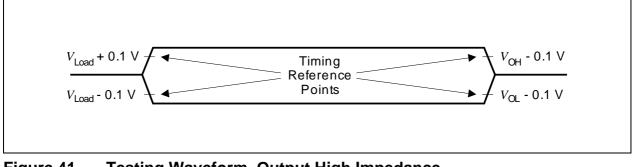


Figure 41 Testing Waveform, Output High Impedance

Table 48	JTAG Timing (Operating Conditions apply; CL = 50 pF) (cont'd)
----------	---

Parameter	Symbol		Lir	nits	Unit	Test Conditions	
			min	min max			
TDO high impedance to valid output from TCK	<i>t</i> ₄	CC	-	35	ns	1)	
TDO valid output to high impedance from TCK	<i>t</i> ₅	CC	-	27	ns	1)	

1) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

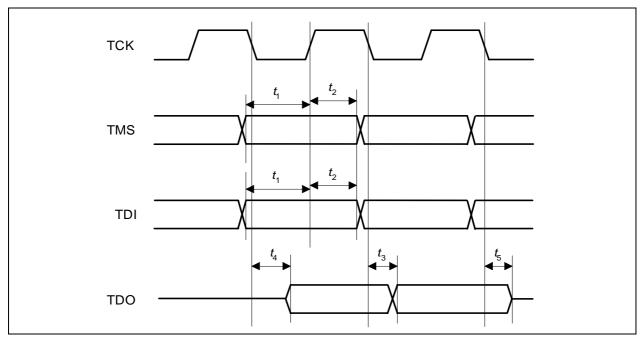


Figure 46 JTAG Timing

4.3.7 SSC Master Mode Timing

Table 49 provides the characteristics of the SSC timing in the SAA-XC886.

Table 49	SSC Master Mode Timing (Operating Conditions apply; CL = 50 pF)
----------	---

Parameter	Symbol		Limi	t Values	Unit	Test	
			min.	max.		Conditions	
SCLK clock period	t ₀	CC	2*T _{SSC}	_	ns	1)2)	
MTSR delay from SCLK	t ₁	CC	0	8	ns	2)	
MRST setup to SCLK	<i>t</i> ₂	SR	24	-	ns	2)	
MRST hold from SCLK	<i>t</i> ₃	SR	0	-	ns	2)	

1) $T_{SSCmin} = T_{CPU} = 1/f_{CPU}$. When $f_{CPU} = 24$ MHz, $t_0 = 83.3$ ns. T_{CPU} is the CPU clock period.

2) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

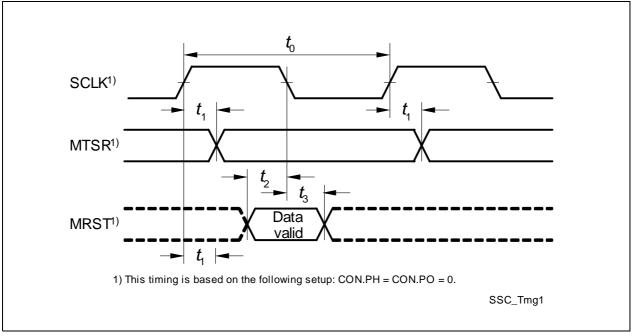


Figure 47 SSC Master Mode Timing