

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Discontinued at Digi-Key
Core Processor	XC800
Core Size	8-Bit
Speed	24MHz
Connectivity	CANbus, LINbus, SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	34
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.75K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 140°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	PG-TQFP-48
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc886clm8ffaacaxuma1

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General Device Information

2.2 Logic Symbol

The logic symbols of the SAA-XC886 are shown in Figure 3.

Figure 3 SAA-XC886 Logic Symbol

General Device Information

Symbol	Pin Number	Туре	Reset State	Function	
P2		I		Port 2 Port 2 is an 8 port. It can be the digital inp also used as	B-bit general purpose input-only e used as alternate functions for puts of the JTAG and CCU6. It is the analog inputs for the ADC.
P2.0	14		Hi-Z	CCPOS0_0 EXINT1_0 T12HR_2 TCK_1 CC61_3 AN0	CCU6 Hall Input 0 External Interrupt Input 1 CCU6 Timer 12 Hardware Run Input JTAG Clock Input Input of Capture/Compare channel 1 Analog Input 0
P2.1	15		Hi-Z	CCPOS1_0 EXINT2_0 T13HR_2 TDI_1 CC62_3 AN1	CCU6 Hall Input 1 External Interrupt Input 2 CCU6 Timer 13 Hardware Run Input JTAG Serial Data Input Input of Capture/Compare channel 2 Analog Input 1
P2.2	16		Hi-Z	CCPOS2_0 CTRAP_1 CC60_3 AN2	CCU6 Hall Input 2 CCU6 Trap Input Input of Capture/Compare channel 0 Analog Input 2
P2.3	19		Hi-Z	AN3	Analog Input 3
P2.4	20		Hi-Z	AN4	Analog Input 4
P2.5	21		Hi-Z	AN5	Analog Input 5
P2.6	22		Hi-Z	AN6	Analog Input 6
P2.7	25		Hi-Z	AN7	Analog Input 7

Table 2Pin Definitions and Functions (cont'd)

infineon

SAA-XC886CLM

General Device Information

Symbol	Pin Number	Туре	Reset State	Function	
P4		I/O		Port 4 Port 4 is an 8 I/O port. It ca for CCU6, Ti MultiCAN.	B-bit bidirectional general purpose an be used as alternate functions mer 0, Timer 1, Timer 21 and
P4.0	45		Hi-Z	RXDC0_3 CC60_1	MultiCAN Node 0 Receiver Input Output of Capture/Compare channel 0
P4.1	46		Hi-Z	TXDC0_3 COUT60_1	MultiCAN Node 0 Transmitter Output Output of Capture/Compare channel 0
P4.3	32		Hi-Z	EXF21_1 COUT63_2	Timer 21 External Flag Output Output of Capture/Compare channel 3

Table 2Pin Definitions and Functions (cont'd)

SYSCON0

Functional Description

System Control Register 0 Reset Value: 04 7 5 4 3 2 1 0 6 1 0 IMODE 0 0 RMAP r r rw r r rw

Field	Bits	Туре	Description
RMAP	0	rw	 Interrupt Node XINTR0 Enable The access to the standard SFR area is enabled The access to the mapped SFR area is enabled
1	2	r	Reserved Returns 1 if read; should be written with 1.
0	[7:5], 3,1	r	Reserved Returns 0 if read; should be written with 0.

Note: The RMAP bit should be cleared/set by ANL or ORL instructions.

3.2.2.2 Address Extension by Paging

Address extension is further performed at the module level by paging. With the address extension by mapping, the SAA-XC886 has a 256-SFR address range. However, this is still less than the total number of SFRs needed by the on-chip peripherals. To meet this requirement, some peripherals have a built-in local address extension mechanism for increasing the number of addressable SFRs. The extended address range is not directly controlled by the CPU instruction itself, but is derived from bit field PAGE in the module page register MOD_PAGE. Hence, the bit field PAGE must be programmed before accessing the SFR of the target module. Each module may contain a different number of pages and a different number of SFRs per page, depending on the specific requirement. Besides setting the correct RMAP bit value to select the SFR area, the user must also ensure that a valid PAGE is selected to target the desired SFR. A page inside the extended address range can be selected as shown in **Figure 8**.

0

DFLAS HEN rwh

CCU6 SR0 rwh CCU6 SR2 rwh JTAGT CKS1 rw TOIS rw T21_D IS rw WDTS USP

Functional Description

able	able 7 SCU Register Overview (cont d)								
٩ddr	Register Name	Bit	7	6	5	4	3	2	1
^{BE} H	COCON Reset: 00 _H Clock Output Control Register	Bit Field	(0	TLEN	COUT S	COREL		REL
		Туре		r	rw	rw		r	N
⁹ H	MISC_CON Reset: 00 _H Miscellaneous Control Register	Bit Field				0			
		Туре				r			
RMAP =	0, PAGE 3								
³³ H	XADDRH Reset: F0 _H	Bit Field				ADI	ORH		
	On-chip XRAM Address Higher Order	Туре				r	w		
³⁴ H	IRCON3 Reset: 00 _H Interrupt Request Register 3	Bit Field	0		CANS RC5	CCU6 SR1	0 0		CANS RC4
		Туре		r	rwh	rwh	r		rwh
³⁵ H	IRCON4 Reset: 00 _H Interrupt Request Register 4	Bit Field	0		CANS RC7	CCU6 SR3	0		CANS RC6
		Туре		r	rwh	rwh	r		rwh
³⁷ H	MODPISEL1 Reset: 00 _H Peripheral Input Select Register	Bit Field	EXINT 6IS	(0	UR1RIS T21EX IS		T21EX IS	JTAGT DIS1
	1	Туре	rw		r	rw		rw	rw
^{3A} H	MODPISEL2 Reset: 00 _H	Bit Field	0 T21IS T2IS		T2IS	T1IS			
	Peripheral Input Select Register 2	Туре	r		rw rw		rw	rw	
^{3B} H	PMCON2 Reset: 00 _H Power Mode Control Register 2	Bit Field	0			UART 1_DIS			
		Туре				r			rw
3D _H	MODSUSP Reset: 01 _H Module Suspend Control	Bit Field		0		T21SU SP	T2SUS P	T13SU SP	T12SU SP
	Register	-							

SCIL Pagister Overview (cont'd) shla 7

3.2.4.5 **WDT Registers**

The WDT SFRs can be accessed in the mapped memory area (RMAP = 1).

Туре

Table 8 **WDT Register Overview**

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 1									
вв _Н	WDTCON Reset: 00 _H Watchdog Timer Control	Bit Field	()	WINB EN	WDTP R	0	WDTE N	WDTR S	WDTI N
	Register			r	rw	rh	r	rw	rwh	rw
вс _Н	C _H WDTREL Reset: 00 _H		WDTREL							
	Watchdog Timer Reload Register	Туре				r	w			
вd _Н	BD _H WDTWINB Reset: 00 _H Watchdog Window-Boundary Count Register		WDTWINB							
			rw							

r

rw

rw

rw

rw

rw

3.4 Interrupt System

The XC800 Core supports one non-maskable interrupt (NMI) and 14 maskable interrupt requests. In addition to the standard interrupt functions supported by the core, e.g., configurable interrupt priority and interrupt masking, the SAA-XC886 interrupt system provides extended interrupt support capabilities such as the mapping of each interrupt vector to several interrupt sources to increase the number of interrupt sources supported, and additional status registers for detecting and determining the interrupt source.

3.4.1 Interrupt Source

Figure 12 to **Figure 16** give a general overview of the interrupt sources and nodes, and their corresponding control and status flags.

Figure 12 Non-Maskable Interrupt Request Sources

SAA-XC886CLM

Functional Description

Figure 13 Interrupt Request Sources (Part 1)

Figure 14 Interrupt Request Sources (Part 2)

3.4.2 Interrupt Source and Vector

Each interrupt event source has an associated interrupt vector address for the interrupt node it belongs to. This vector is accessed to service the corresponding interrupt node request. The interrupt service of each interrupt source can be individually enabled or disabled via an enable bit. The assignment of the SAA-XC886 interrupt sources to the interrupt vector address and the corresponding interrupt node enable bits are summarized in **Table 19**.

Interrupt Source	Vector Address	Assignment for SAA- XC886	Enable Bit	SFR
NMI	0073 _H	Watchdog Timer NMI	NMIWDT	NMICON
		PLL NMI	NMIPLL	
		Flash NMI	NMIFLASH	
		VDDC Prewarning NMI	NMIVDD	
		VDDP Prewarning NMI	NMIVDDP	
		Flash ECC NMI	NMIECC	
XINTR0	0003 _H	External Interrupt 0	EX0	IEN0
XINTR1	000B _H	Timer 0	ET0	
XINTR2	0013 _H	External Interrupt 1	EX1	
XINTR3	001B _H	Timer 1	ET1	
XINTR4	0023 _H	UART	ES	
XINTR5	002B _H	T2	ET2	
		UART Fractional Divider (Normal Divider Overflow)		
		MultiCAN Node 0		
		LIN		

Table 19 Interrupt Vector Addresses

infineon

Figure 18 General Structure of Bidirectional Port

Figure 19 General Structure of Input Port

PLL Mode

The system clock is derived from the oscillator clock, multiplied by the N factor, and divided by the P and K factors. Both VCO bypass and PLL bypass must be inactive for this PLL mode. The PLL mode is used during normal system operation.

$$f_{SYS} = f_{OSC} \times \frac{N}{P \times K}$$

(3.3)

System Frequency Selection

For the SAA-XC886, the value of P is fixed to 1. In order to obtain the required fsys, the value of N and K can be selected by bits NDIV and KDIV respectively for different oscillator inputs. The output frequency must always be configured for 96 MHz. **Table 23** provides examples on how $f_{\rm sys}$ = 96 MHz can be obtained for the different oscillator sources.

Table 23	System frequency (f_{svs} = 96 MHz)
----------	--

Oscillator	Fosc	Ν	Ρ	K	Fsys	
On-chip	9.6 MHz	20	1	2	96 MHz	
External	8 MHz	24	1	2	96 MHz	
	6 MHz	32	1	2	96 MHz	
	4 MHz	48	1	2	96 MHz	

Figure 24 External Oscillator Circuitry

Note: For crystal operation, it is strongly recommended to measure the negative resistance in the final target system (layout) to determine the optimum parameters for the oscillator operation. Please refer to the minimum and maximum values of the negative resistance specified by the crystal supplier.

For power saving purposes, the clocks may be disabled or slowed down according to **Table 25**.

Table 25System frequency ($f_{sys} = 96 \text{ MHz}$)

Power Saving Mode	Action
Idle	Clock to the CPU is disabled.
Slow-down	Clocks to the CPU and all the peripherals are divided by a common programmable factor defined by bit field CMCON.CLKREL.
Power-down	Oscillator and PLL are switched off.

3.21 Analog-to-Digital Converter

The SAA-XC886 includes a high-performance 10-bit Analog-to-Digital Converter (ADC) with eight multiplexed analog input channels. The ADC uses a successive approximation technique to convert the analog voltage levels from up to eight different sources. The analog input channels of the ADC are available at Port 2.

Features

- Successive approximation
- 8-bit or 10-bit resolution (TUE of ± 1 LSB and ± 2 LSB, respectively)
- Eight analog channels
- Four independent result registers
- Result data protection for slow CPU access (wait-for-read mode)
- Single conversion mode
- Autoscan functionality
- Limit checking for conversion results
- Data reduction filter (accumulation of up to 2 conversion results)
- Two independent conversion request sources with programmable priority
- Selectable conversion request trigger
- Flexible interrupt generation with configurable service nodes
- Programmable sample time
- Programmable clock divider
- · Cancel/restart feature for running conversions
- Integrated sample and hold circuitry
- Compensation of offset errors
- Low power modes

3.21.1 ADC Clocking Scheme

A common module clock f_{ADC} generates the various clock signals used by the analog and digital parts of the ADC module:

- f_{ADCA} is input clock for the analog part.
- f_{ADCI} is internal clock for the analog part (defines the time base for conversion length and the sample time). This clock is generated internally in the analog part, based on the input clock f_{ADCA} to generate a correct duty cycle for the analog components.
- f_{ADCD} is input clock for the digital part.

The internal clock for the analog part f_{ADCI} is limited to a maximum frequency of 10 MHz. Therefore, the ADC clock prescaler must be programmed to a value that ensures f_{ADCI} does not exceed 10 MHz. The prescaler ratio is selected by bit field CTC in register

3.22.1 JTAG ID Register

This is a read-only register located inside the JTAG module, and is used to recognize the device(s) connected to the JTAG interface. Its content is shifted out when INSTRUCTION register contains the IDCODE command (opcode 04_H), and the same is also true immediately after reset.

The JTAG ID register contents for the SAA-XC886 Flash devices are given in Table 34.

Table 34	JTAG ID Summary
----------	-----------------

Device Type	Device Name	JTAG ID
Flash	SAA-XC886*-8FF	1012 0083 _H
	SAA-XC886*-6FF	1012 5083 _H

Note: The asterisk (*) above denotes all possible device configurations.

4.2.4 Power Supply Current

Table 41 and **Table 42** provide the characteristics of the power supply current in the SAA-XC886.

Table 41Power Supply Current Parameters (Operating Conditions apply; $V_{\text{DDP}} = 5V$ range)

Parameter	Symbol	Limit Values		Unit	Test Condition
		typ. ¹⁾	max. ²⁾		
V _{DDP} = 5V Range					
Active Mode	I _{DDP}	26.9	31.9	mA	3)
Idle Mode	I _{DDP}	20.3	24.4	mA	4)
Active Mode with slow-down enabled	I _{DDP}	13.7	17.0	mA	5)
Idle Mode with slow-down enabled	I _{DDP}	11.4	14.2	mA	6)

1) The typical I_{DDP} values are periodically measured at T_{A} = + 25 °C and V_{DDP} = 5.0 V.

2)The maximum I_{DDP} values are measured under worst case conditions (T_{A} = + 140 °C and V_{DDP} = 5.5 V).

3) I_{DDP} (active mode) is measured with: CPU clock and input clock to all peripherals running at 24 MHz(set by on-chip oscillator of 9.6 MHz and NDIV in PLL_CON to 1001_B), RESET = V_{DDP} , no load on ports.

4) I_{DDP} (idle mode) is measured with: CPU clock disabled, watchdog timer disabled, input clock to all peripherals enabled and running at 24 MHz, $\overline{\text{RESET}} = V_{\text{DDP}}$, no load on ports.

5) I_{DDP} (active mode with slow-down mode) is measured with: CPU clock and input clock to all peripherals running at 8 MHz by setting CLKREL in CMCON to 0110_B, RESET = V_{DDP} , no load on ports.

6) I_{DDP} (idle mode with slow-down mode) is measured with: CPU clock disabled, watchdog timer disabled, input clock to all peripherals enabled and running at 8 MHz by setting CLKREL in CMCON to 0110_B, RESET = V_{DDP} , no load on ports.

4.3.2 Output Rise/Fall Times

Table 43 provides the characteristics of the output rise/fall times in the SAA-XC886.

Table 43 Output Rise/Fall Times Parameters (Operating Conditions apply)

Parameter	Symbol	Limit Values		Unit	Test Conditions
		min.	max.		
$V_{\text{DDD}} = 5V$ Range	· · ·				

Rise/fall times	t _R , t _F	_	10	ns	20 pF. ¹⁾²⁾³⁾

1) Rise/Fall time measurements are taken with 10% - 90% of pad supply.

2) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

3) Additional rise/fall time valid for $C_{L} = 20 \text{pF} - 100 \text{pF} @ 0.125 \text{ ns/pF}.$

Figure 42 Rise/Fall Times Parameters

4.3.3 Power-on Reset and PLL Timing

Table 47 provides the characteristics of the power-on reset and PLL timing in the SAA-XC886.

Table 44	Power-On Reset and PLL Timing (Operating Conditions apply))

Parameter	Symbol		Limit Values			Unit	Test Conditions	
			min.	typ.	max.			
Pad operating voltage	V_{PAD}	CC	2.3	_	_	V	1)	
On-Chip Oscillator start-up time	t _{OSCST}	СС	_	_	500	ns	1)	
Flash initialization time	t _{FINIT}	CC	_	160	_	μS	1)	
RESET hold time	t _{RST}	SR	_	500	_	μS	$V_{ m DDP}$ rise time (10% – 90%) \leq 500 μ s ¹⁾²⁾	
PLL lock-in in time	t _{LOCK}	CC	_	_	200	μs	1)	
PLL accumulated jitter	D _P		_	_	0.7	ns	1)3)	

1) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

2) RESET signal has to be active (low) until V_{DDC} has reached 90% of its maximum value (typ. 2.5 V).

3) PLL lock at 96 MHz using a 4 MHz external oscillator. The PLL Divider settings are K = 2, N = 48 and P = 1.

Table 48 JT	AG Timing (Operating	Conditions apply; C	L = 50 pF) (cont'd)
-------------	----------------------	---------------------	----------------------------

Parameter		Symbol		nits	Unit	Test
			min	max		Conditions
TDO high impedance to valid output from TCK	t ₄	CC	-	35	ns	1)
TDO valid output to high impedance from TCK	<i>t</i> ₅	CC	-	27	ns	1)

1) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

Figure 46 JTAG Timing