

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	XC800
Core Size	8-Bit
Speed	24MHz
Connectivity	CANbus, SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	34
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.75K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 140°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	PG-TQFP-48
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc886cm8ffa5vacaxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General Device Information

2.3 Pin Configuration

The pin configuration of the XC886, which is based on the PG-TQFP-48 package, is shown in **Figure 4**.

Figure 4 XC886 Pin Configuration, PG-TQFP-48 Package (top view)

General Device Information

Symbol	Pin Number	Туре	Reset State	Function					
P2		I		Port 2 Port 2 is an 8-bit general purpose input-only port. It can be used as alternate functions for the digital inputs of the JTAG and CCU6. It is also used as the analog inputs for the ADC.					
P2.0	14		Hi-Z	CCPOS0_0 EXINT1_0 T12HR_2 TCK_1 CC61_3 AN0	CCU6 Hall Input 0 External Interrupt Input 1 CCU6 Timer 12 Hardware Run Input JTAG Clock Input Input of Capture/Compare channel 1 Analog Input 0				
P2.1	15		Hi-Z	CCPOS1_0 EXINT2_0 T13HR_2 TDI_1 CC62_3 AN1	CCU6 Hall Input 1 External Interrupt Input 2 CCU6 Timer 13 Hardware Run Input JTAG Serial Data Input Input of Capture/Compare channel 2 Analog Input 1				
P2.2	16		Hi-Z	CCPOS2_0 CTRAP_1 CC60_3 AN2	CCU6 Hall Input 2 CCU6 Trap Input Input of Capture/Compare channel 0 Analog Input 2				
P2.3	19		Hi-Z	AN3	Analog Input 3				
P2.4	20		Hi-Z	AN4	Analog Input 4				
P2.5	21		Hi-Z	AN5	Analog Input 5				
P2.6	22		Hi-Z	AN6	Analog Input 6				
P2.7	25		Hi-Z	AN7	Analog Input 7				

Table 2Pin Definitions and Functions (cont'd)

infineon

3.2.1 Memory Protection Strategy

İnfineon

The SAA-XC886 memory protection strategy includes:

- Read-out protection: The user is able to protect the contents in the Flash memory from being read
 - Flash protection is enabled by programming a valid password (8-bit non-zero value) via BSL mode 6.
- Flash program and erase protection.

3.2.1.1 Flash Memory Protection

As long as a valid password is available, all external access to the device, including the Flash, will be blocked.

For additional security, the Flash hardware protection can be enabled to implement a second layer of read-out protection, as well as to enable program and erase protection.

Flash hardware protection is available only for Flash devices and comes in two modes:

- Mode 0: Only the P-Flash is protected; the D-Flash is unprotected
- Mode 1: Both the P-Flash and D-Flash are protected

The selection of each protection mode and the restrictions imposed are summarized in **Table 3**.

Flash Protection	Without hardware protection	With hardware protection					
Hardware Protection Mode	-	0	1				
Activation	Program a valid passv	vord via BSL mode 6					
Selection	Bit 4 of password = 0	Bit 4 of password = 1 MSB of password = 0	Bit 4 of password = 1 MSB of password = 1				
P-Flash contents can be read by	Read instructions in any program memory	Read instructions in the P-Flash	Read instructions in the P-Flash or D-Flash				
External access to P-Flash	Not possible	Not possible	Not possible				
P-Flash program and erase	Possible	Not possible	Not possible				
D-Flash contents can be read by	Read instructions in any program memory	Read instructions in any program memory	Read instructions in the P-Flash or D- Flash				

Table 3 Flash Protection Modes

3.2.4 SAA-XC886 Register Overview

The SFRs of the SAA-XC886 are organized into groups according to their functional units. The contents (bits) of the SFRs are summarized in **Chapter 3.2.4.14**.

Note: The addresses of the bitaddressable SFRs appear in bold typeface.

3.2.4.1 CPU Registers

The CPU SFRs can be accessed in both the standard and mapped memory areas (RMAP = 0 or 1).

Addr	Register Name	Bit	7	6	5	4	3	2	1	0		
RMAP =	= 0 or 1											
81 _H	SP Reset: 07 _H	Bit Field				S	P					
	Stack Pointer Register	Туре	rw									
82 _H	DPL Reset: 00 _H	Bit Field	DPL7	DPL6	DPL5	DPL4	DPL3	DPL2	DPL1	DPL0		
	Data Pointer Register Low	Туре	rw	rw	rw	rw	rw	rw	rw	rw		
83 _H	DPH Reset: 00 _H	Bit Field	DPH7	DPH6	DPH5	DPH4	DPH3	DPH2	DPH1	DPH0		
	Data Pointer Register High	Туре	rw	rw	rw	rw	rw	rw	rw	rw		
87 _H	PCON Reset: 00 _H	Bit Field	SMOD		0		GF1	GF0	0	IDLE		
	Power Control Register	Туре	rw		r		rw	rw	r	rw		
88 _H	TCON Reset: 00 _H	Bit Field	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0		
	Timer Control Register	Туре	rwh	rw	rwh	rw	rwh	rw	rwh	rw		
⁸⁹ H	TMOD Reset: 00 _H Timer Mode Register	Bit Field	GATE 1	T1S	T1	М	GATE 0	TOS	ТОМ			
		Туре	rw	rw	r	N	rw	rw	r	N		
8A _H	TL0 Reset: 00 _H	Bit Field	3it Field VAL									
	Timer 0 Register Low	Туре				rv	vh					
8B _H	TL1 Reset: 00 _H	Bit Field				V	۹L					
	Limer 1 Register Low	Туре				rv	vh					
8C _H	THO Reset: 00 _H	Bit Field				V	۹L					
	Timer 0 Register High	Туре				rv	vh					
8D _H	TH1 Reset: 00 _H	Bit Field				V	۹L					
	Timer 1 Register High	Туре	e rw				vh					
98 _H	SCON Reset: 00 _H	Bit Field	SM0	SM1	SM2	REN	TB8	RB8	TI	RI		
	Serial Channel Control Register	Туре	rw	rw	rw	rw	rw	rwh	rwh	rwh		
99 _H	SBUF Reset: 00 _H	Bit Field				V	AL					
	Serial Data Butter Register	Туре				rv	vh					

Table 4 CPU Register Overview

Table 7SCU Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
вс _Н	NMISR Reset: 00 _H NMI Status Register	Bit Field	0	FNMI ECC	FNMI VDDP	FNMI VDD	FNMI OCDS	FNMI FLASH	FNMI PLL	FNMI WDT	
		Туре	r	rwh	rwh	rwh	rwh	rwh	rwh	rwh	
вd _Н	BCON Reset: 00 _H	Bit Field	BG	SEL	0	BRDIS		BRPRE		R	
	Baud Rate Control Register	Туре	r	W	r	rw		rw		rw	
ве _Н	BG Reset: 00 _H	Bit Field					•				
	Baud Rate Timer/Reload Register	Туре				r١	vh				
E9 _H	FDCON Reset: 00 _H Fractional Divider Control	Bit Field	BGS	SYNE N	ERRS YN	EOFS YN	BRK	NDOV	FDM	FDEN	
	Register	Туре	rw	rw	rwh	rwh	rwh	rwh	rw	rw	
EA _H	FDSTEP Reset: 00 _H	Bit Field				ST	ΈP				
	Fractional Divider Reload Register	Туре				r	w				
EB _H	FDRES Reset: 00 _H	Bit Field				RES	SULT				
	Fractional Divider Result Register	Туре				r	'n	h			
RMAP =	= 0, PAGE 1	•									
вз _Н	ID Reset: UU _H	Bit Field			PRODID				VERID		
	Identity Register	Туре			r		r				
B4 _H	PMCON0 Reset: 00 _H Power Mode Control Register 0	Bit Field	0	WDT RST	WKRS	WK SEL	SD	PD	N	/S	
		Туре	r	rwh	rwh	rw	rw	rwh	r	w	
в5 _Н	PMCON1 Reset: 00 _H Power Mode Control Register 1	Bit Field	0	CDC_ DIS	CAN_ DIS	MDU_ DIS	T2_ DIS	CCU_ DIS	SSC_ DIS	ADC_ DIS	
		Туре	r	rw	rw	rw	rw	rw	rw	rw	
в6 _Н	OSC_CON Reset: 08 _H OSC Control Register	Bit Field		0		OSC PD	XPD	OSC SS	ORD RES	OSCR	
		Туре		r		rw	rw	rw	rwh	rh	
в7 _Н	PLL_CON Reset: 90 _H PLL Control Register	Bit Field		N	VIV		VCO BYP	OSC DISC	RESL D	LOCK	
		Туре		r	w		rw	rw	rwh	rh	
ва _Н	CMCON Reset: 10 _H Clock Control Register	Bit Field	VCO SEL	KDIV	0	FCCF G		CLK	REL		
		Туре	rw	rw	r	rw		r	w		
вв _Н	PASSWD Reset: 07 _H Password Register	Bit Field			PASS			PROT ECT_S	MC	DE	
		Туре			wh			rh	r	W	
вс _Н	FEAL Reset: 00 _H	Bit Field				ECCER	RADDR				
	Low	Туре				r	'n				
вd _Н	BD _H FEAH Reset: 00 _H					ECCER	RADDR				
	Flash Error Address Register High	Туре				r	'n				

Table 8 WDT Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0		
be _h	WDTL Reset: 00 _H	Bit Field		WDT								
	Watchdog Timer Register Low	Туре		rh								
bf _H	WDTH Reset: 00 _H	Bit Field	Field WDT									
	Watchdog Timer Register High	Туре										

3.2.4.6 Port Registers

The Port SFRs can be accessed in the standard memory area (RMAP = 0).

Table 9Port Register Overview

Addr	Register Nam	е	Bit	7	6	5	4	3	2	1	0
RMAP =	= 0										
в2 _Н	PORT_PAGE	Reset: 00 _H	Bit Field	OP		STNR		0	PAGE		
	Page Register		Туре	w		١	N	r		rw	
RMAP =	= 0, PAGE 0					•			•		
80 _H	P0_DATA	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Data Register		Туре	rw	rw	rw	rw	rw	rw	rw	rw
86 _H	P0_DIR	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Direction Regist	er	Туре	rw	rw	rw	rw	rw	rw	rw	rw
90 _H	P1_DATA	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Data Register		Туре	rw	rw	rw	rw	rw	rw	rw	rw
91 _H	P1_DIR	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Direction Regist	er	Туре	rw	rw	rw	rw	rw	rw	rw	rw
92 _H	H P5_DATA Reset: 00 _H P5 Data Register	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0	
			Туре	rw	rw	rw	rw	rw	rw	rw	rw
93 _H	P5_DIR	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Direction Regist	er	Туре	rw	rw	rw	rw	rw	rw	rw	rw
A0 _H	P2_DATA	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P2 Data Register		Туре	rw	rw	rw	rw	rw	rw	rw	rw
A1 _H	P2_DIR	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P2 Direction Regist	er	Туре	rw	rw	rw	rw	rw	rw	rw	rw
во _Н	P3_DATA	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Data Register		Туре	rw	rw	rw	rw	rw	rw	rw	rw
в1 _Н	P3_DIR	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Direction Regist	er	Туре	rw	rw	rw	rw	rw	rw	rw	rw
C8 _H	P4_DATA	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Data Register		Туре	rw	rw	rw	rw	rw	rw	rw	rw
C9 _H	P4_DIR	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Direction Register		Туре	rw	rw	rw	rw	rw	rw	rw	rw

0 P0 rw P0 rw P0 rw P0 rw P0 rw

P0 rw P0 rw P0 rw P0 rw P0

rw

Functional Description

iapie											
Addr	Register Name	Bit	7	6	5	4	3	2	1		
⁹³ H	P5_ALTSEL1 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1		
	P5 Alternate Select 1 Register	Туре	rw								
во _Н	P3_ALTSEL0 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1		
	P3 Alternate Select 0 Register	Туре	rw								
31 _H	P3_ALTSEL1 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1		
	P3 Alternate Select 1 Register	Туре	rw								
C8 _H	P4_ALTSEL0 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1		
	P4 Alternate Select 0 Register	Туре	rw								
C9 _H	P4_ALTSEL1 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1		
	P4 Alternate Select 1 Register	Туре	rw								
RMAP =	0, PAGE 3										
³⁰ H	P0_OD Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1		
	P0 Open Drain Control Register	Туре	rw								
90 _H	P1_OD Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1		
	P1 Open Drain Control Register	Туре	rw								
92 _H	P5_OD Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1		
	P5 Open Drain Control Register	Туре	rw								
^{во} н	P3_OD Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1		
	P3 Open Drain Control Register	Туре	rw								
C8 _H	P4_OD Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1		
	P4 Open Drain Control Register	Туре	rw								

Port Pagister Overview (cont'd) Table O

3.2.4.7 **ADC Registers**

The ADC SFRs can be accessed in the standard memory area (RMAP = 0).

Table 10	ADC Register	Overview
----------	--------------	----------

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 0		•	•	•					•
D1 _H	ADC_PAGE Reset: 00 _H	Bit Field	C	OP		NR	0	PAGE		
	Page Register		١	N	Ņ	N	r		rw	
RMAP =	= 0, PAGE 0									
са _Н	CA _H ADC_GLOBCTR Reset: 30 _H		ANON	DW	CTC		(0		
	Global Control Register	Туре	rw	rw	r	W		r		
св _Н	ADC_GLOBSTR Reset: 00 _H Global Status Register	Bit Field	(0		CHNR		0	SAMP LE	BUSY
		Туре		r	rh			r	rh	rh
cc ^H	ADC_PRAR Reset: 00 _H Priority and Arbitration Register	Bit Field	ASEN 1	ASEN 0	0	ARBM	CSM1	PRIO1	CSM0	PRIO0
		Туре	rw	rw	r	rw	rw	rw	rw	rw

Table 13 CCU6 Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
FB _H	CCU6_TCTR2H Reset: 00 _H	Bit Field			0	1	T13F	RSEL	T12F	RSEL
	Timer Control Register 2 High	Туре			r		r	w	r	w
FC _H	CCU6_MODCTRL Reset: 00 _H Modulation Control Register Low	Bit Field	MCM EN	0			T12M	ODEN	1	
		Туре	rw	r	rw					
FD _H	CCU6_MODCTRH Reset: 00 _H Modulation Control Register High	Bit Field	ECT1 3O	0			T13M	ODEN		
		Туре	rw	r			r	w		
FE _H	CCU6_TRPCTRL Reset: 00 _H Trap Control Register Low	Bit Field			0			TRPM 2	TRPM 1	TRPM 0
		Туре			r			rw	rw	rw
FF _H	CCU6_TRPCTRHReset: 00HTrap Control Register High	Bit Field	TRPP EN	TRPE N13	PE TRPEN 3					
		Туре	rw	rw	/ rw					
RMAP =	0, PAGE 3	1			1					
9A _H	CCU6_MCMOUTL Reset: 00 _H	Bit Field	0	R	МСМР					
	Low		r	rh	rh					
9B _H	H CCU6_MCMOUTH Reset: 00 _H Multi-Channel Mode Output Register High		(C		CURH			EXPH	
				r		rh			rh	
9CH	CCU6_ISL Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	T12 PM	T12 OM	ICC62 F	ICC62 R	ICC61 F	ICC61 R	ICC60 F	ICC60 R
	Register Low	Туре	rh	rh	rh	rh	rh	rh	rh	rh
9D _H	CCU6_ISH Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	STR	IDLE	WHE	CHE	TRPS	TRPF	T13 PM	T13 CM
	Register High	Туре	rh	rh	rh	rh	rh	rh	rh	rh
9E _H	CCU6_PISEL0L Reset: 00 _H	Bit Field	IST	RP	ISC	C62	ISC	[,] C61	ISC	C60
	Port input Select Register 0 Low	Туре	r	w	r	w	r	w	r	w
9F _H	CCU6_PISEL0H Reset: 00 _H	Bit Field	IST1	2HR	ISP	OS2	ISP	OS1	ISP	OS0
	Port input Select Register o High	Туре	r	w	r	w	r	w	r	w
A4 _H	CCU6_PISEL2 Reset: 00 _H	Bit Field			(0			IST1	3HR
		Туре				r			r	w
FA _H	CCU6_T12L Reset: 00 _H	Bit Field				T12	CVL			
		Туре				rv	vh			
FB _H	CCU6_T12H Reset: 00 _H	Bit Field				T12	CVH			
		Туре				rv	vh			
FC _H	CCU6_T13L Reset: 00 _H	Bit Field				T13	CVL			
		Туре				rv	vh			
FDH	CCU6_T13H Reset: 00 _H	Bit Field				T13	CVH			
		Туре				rv	vh			

3.4.2 Interrupt Source and Vector

Each interrupt event source has an associated interrupt vector address for the interrupt node it belongs to. This vector is accessed to service the corresponding interrupt node request. The interrupt service of each interrupt source can be individually enabled or disabled via an enable bit. The assignment of the SAA-XC886 interrupt sources to the interrupt vector address and the corresponding interrupt node enable bits are summarized in **Table 19**.

Interrupt Source	Vector Address	Assignment for SAA- XC886	Enable Bit	SFR
NMI	0073 _H	Watchdog Timer NMI	NMIWDT	NMICON
		PLL NMI	NMIPLL	
	Flash NMI		NMIFLASH	
		VDDC Prewarning NMI	NMIVDD	
		VDDP Prewarning NMI	NMIVDDP	
		Flash ECC NMI	NMIECC	
XINTR0	0003 _H	External Interrupt 0	EX0	IEN0
XINTR1	000B _H	Timer 0	ET0	
XINTR2	0013 _H	External Interrupt 1	EX1	
XINTR3	001B _H	Timer 1	ET1	
XINTR4	0023 _H	UART	ES	
XINTR5	002B _H	T2	ET2	
		UART Fractional Divider (Normal Divider Overflow)		
		MultiCAN Node 0		
		LIN		

Table 19 Interrupt Vector Addresses

infineon

Figure 18 General Structure of Bidirectional Port

PLL Mode

The system clock is derived from the oscillator clock, multiplied by the N factor, and divided by the P and K factors. Both VCO bypass and PLL bypass must be inactive for this PLL mode. The PLL mode is used during normal system operation.

$$f_{SYS} = f_{OSC} \times \frac{N}{P \times K}$$

(3.3)

System Frequency Selection

For the SAA-XC886, the value of P is fixed to 1. In order to obtain the required fsys, the value of N and K can be selected by bits NDIV and KDIV respectively for different oscillator inputs. The output frequency must always be configured for 96 MHz. **Table 23** provides examples on how $f_{\rm sys}$ = 96 MHz can be obtained for the different oscillator sources.

Table 23	System frequency (f_{svs} = 96 MHz)
----------	--

Oscillator	Fosc	Ν	Ρ	K	Fsys	
On-chip	9.6 MHz	20	1	2	96 MHz	
External	8 MHz	24	1	2	96 MHz	
	6 MHz	32	1	2	96 MHz	
	4 MHz	48	1	2	96 MHz	

Figure 24 External Oscillator Circuitry

Note: For crystal operation, it is strongly recommended to measure the negative resistance in the final target system (layout) to determine the optimum parameters for the oscillator operation. Please refer to the minimum and maximum values of the negative resistance specified by the crystal supplier.

Table 30	Deviation Error for UART with Fractional Divider enabled
----------	--

f_{PCLK}	Prescaling Factor (2BRPRE)	Reload Value (BR_VALUE + 1)	STEP	Deviation Error
24 MHz	1	10 (A _H)	197 (C5 _H)	+0.20 %
12 MHz	1	6 (6 _H)	236 (EC _H)	+0.03 %
8 MHz	1	4 (4 _H)	236 (EC _H)	+0.03 %
6 MHz	1	3 (3 _H)	236 (EC _H)	+0.03 %

3.13.2 Baud Rate Generation using Timer 1

In UART modes 1 and 3 of UART module, Timer 1 can be used for generating the variable baud rates. In theory, this timer could be used in any of its modes. But in practice, it should be set into auto-reload mode (Timer 1 mode 2), with its high byte set to the appropriate value for the required baud rate. The baud rate is determined by the Timer 1 overflow rate and the value of SMOD as follows:

Mode 1, 3 baud rate =
$$\frac{2^{\text{SMOD}} \times f_{\text{PCLK}}}{32 \times 2 \times (256 - \text{TH1})}$$

(3.7)

3.14 Normal Divider Mode (8-bit Auto-reload Timer)

Setting bit FDM in register FDCON to 1 configures the fractional divider to normal divider mode, while at the same time disables baud rate generation (see **Figure 29**). Once the fractional divider is enabled (FDEN = 1), it functions as an 8-bit auto-reload timer (with no relation to baud rate generation) and counts up from the reload value with each input clock pulse. Bit field RESULT in register FDRES represents the timer value, while bit field STEP in register FDSTEP defines the reload value. At each timer overflow, an overflow flag (FDCON.NDOV) will be set and an interrupt request generated. This gives an output clock f_{MOD} that is 1/n of the input clock f_{DIV} , where n is defined by 256 - STEP. The output frequency in normal divider mode is derived as follows:

$$f_{MOD} = f_{DIV} \times \frac{1}{256 - STEP}$$

(3.8)

3.21 Analog-to-Digital Converter

The SAA-XC886 includes a high-performance 10-bit Analog-to-Digital Converter (ADC) with eight multiplexed analog input channels. The ADC uses a successive approximation technique to convert the analog voltage levels from up to eight different sources. The analog input channels of the ADC are available at Port 2.

Features

- Successive approximation
- 8-bit or 10-bit resolution (TUE of ± 1 LSB and ± 2 LSB, respectively)
- Eight analog channels
- Four independent result registers
- Result data protection for slow CPU access (wait-for-read mode)
- Single conversion mode
- Autoscan functionality
- Limit checking for conversion results
- Data reduction filter (accumulation of up to 2 conversion results)
- Two independent conversion request sources with programmable priority
- Selectable conversion request trigger
- Flexible interrupt generation with configurable service nodes
- Programmable sample time
- Programmable clock divider
- · Cancel/restart feature for running conversions
- Integrated sample and hold circuitry
- Compensation of offset errors
- Low power modes

3.21.1 ADC Clocking Scheme

A common module clock f_{ADC} generates the various clock signals used by the analog and digital parts of the ADC module:

- f_{ADCA} is input clock for the analog part.
- f_{ADCI} is internal clock for the analog part (defines the time base for conversion length and the sample time). This clock is generated internally in the analog part, based on the input clock f_{ADCA} to generate a correct duty cycle for the analog components.
- f_{ADCD} is input clock for the digital part.

The internal clock for the analog part f_{ADCI} is limited to a maximum frequency of 10 MHz. Therefore, the ADC clock prescaler must be programmed to a value that ensures f_{ADCI} does not exceed 10 MHz. The prescaler ratio is selected by bit field CTC in register

GLOBCTR. A prescaling ratio of 32 can be selected when the maximum performance of the ADC is not required.

Figure 34 ADC Clocking Scheme

For module clock f_{ADC} = 24 MHz, the analog clock f_{ADCI} frequency can be selected as shown in **Table 33**.

Table 33	f_{ADCI} Frequency Selection
----------	--------------------------------

J ADCI	1 2		
Module Clock f_{ADC}	СТС	Prescaling Ratio	Analog Clock f_{ADCI}
24 MHz	00 _B	÷2	12 MHz (N.A)
	01 _B	÷ 3	8 MHz
	10 _B	÷ 4	6 MHz
	11 _B (default)	÷ 32	750 kHz

As $f_{\rm ADCI}$ cannot exceed 10 MHz, bit field CTC should not be set to $00_{\rm B}$ when $f_{\rm ADC}$ is 24 MHz. During slow-down mode where $f_{\rm ADC}$ may be reduced to 12 MHz, 6 MHz etc., CTC can be set to $00_{\rm B}$ as long as the divided analog clock $f_{\rm ADCI}$ does not exceed 10 MHz.

Electrical Parameters

4.1.2 Absolute Maximum Rating

Maximum ratings are the extreme limits to which the SAA-XC886 can be subjected to without permanent damage.

Parameter	Symbol	Limit Values		Unit	Notes	
		min.	max.			
Ambient temperature	T _A	-40	140	°C	under bias	
Storage temperature	T _{ST}	-65	150	°C	1)	
Junction temperature	TJ	-40	150	°C	under bias ¹⁾	
Voltage on power supply pin with respect to $V_{\rm SS}$	V _{DDP}	-0.5	6	V	1)	
Voltage on any pin with respect to $V_{\rm SS}$	V _{IN}	-0.5	V _{DDP} + 0.5 or max. 6	V	whichever is lower ¹⁾	
Input current on any pin during overload condition	I _{IN}	-10	10	mA	1)	
Absolute sum of all input currents during overload condition	$\Sigma I_{\sf IN} $	-	50	mA	1)	

Table 36	Absolute Maximum Rating Parameters
----------	------------------------------------

1) Not subjected to production test, verified by design/characterization.

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During absolute maximum rating overload conditions ($V_{IN} > V_{DDP}$ or $V_{IN} < V_{SS}$) the voltage on V_{DDP} pin with respect to ground (V_{SS}) must not exceed the values defined by the absolute maximum ratings.

Electrical Parameters

4.1.3 Operating Conditions

The following operating conditions must not be exceeded in order to ensure correct operation of the SAA-XC886. All parameters mentioned in the following table refer to these operating conditions, unless otherwise noted.

Table 37 Operating Condition Parameters

Parameter	Symbol	Limit Values		Unit	Notes/	
		min.	max.		Conditions	
Digital power supply voltage	V_{DDP}	4.5	5.5	V	5V Device	
Digital ground voltage	V _{SS}	0		V		
Digital core supply voltage	V _{DDC}	2.3	2.7	V		
System Clock Frequency ¹⁾	$f_{\rm SYS}$	88.8	103.2	MHz		
Ambient temperature	T _A	-40	140	°C	SAA-XC886	

1) f_{SYS} is the PLL output clock. During normal operating mode, CPU clock is f_{SYS} / 4. Please refer to Figure 25 for detailed description.

4.2.2 Supply Threshold Characteristics

İnfineon

Table 39 provides the characteristics of the supply threshold in the SAA-XC886.

Figure 37 Supply Threshold Parameters

Table 39	Supply Threshold Parameters (Operating Conditions apply)
----------	-------------------------------	-------------------------------------

Parameters	Symbol		L	es	Unit	
			min.	typ.	max.	
$V_{\rm DDC}$ prewarning voltage ¹⁾	V _{DDCPW}	CC	2.2	2.3	2.4	V
V_{DDC} brownout voltage in active mode ¹⁾	V _{DDCBO}	CC	2.0	2.1	2.2	V
RAM data retention voltage	V _{DDCRDR}	CC	0.9	1.0	1.1	V
V_{DDC} brownout voltage in power-down mode ²⁾	V _{DDCBOPD}	CC	1.3	1.5	1.7	V
$V_{\rm DDP}$ prewarning voltage ³⁾	$V_{\rm DDPPW}$	CC	3.4	4.0	4.6	V
Power-on reset voltage ²⁾⁴⁾	V _{DDCPOR}	CC	1.3	1.5	1.7	V

1) Detection is disabled in power-down mode.

2) Detection is enabled in both active and power-down mode.

3) Detection is enabled for external power supply of 5.0V.

4) The reset of EVR is extended by 300 μ s typically after the VDDC reaches the power-on reset voltage.

Electrical Parameters

4.2.4 Power Supply Current

Table 41 and **Table 42** provide the characteristics of the power supply current in the SAA-XC886.

Table 41Power Supply Current Parameters (Operating Conditions apply; $V_{\text{DDP}} = 5V$ range)

Parameter	Symbol	Limit	Values	Unit	Test Condition
		typ. ¹⁾	max. ²⁾		
V _{DDP} = 5V Range					
Active Mode	I _{DDP}	26.9	31.9	mA	3)
Idle Mode	I _{DDP}	20.3	24.4	mA	4)
Active Mode with slow-down enabled	I _{DDP}	13.7	17.0	mA	5)
Idle Mode with slow-down enabled	I _{DDP}	11.4	14.2	mA	6)

1) The typical I_{DDP} values are periodically measured at T_{A} = + 25 °C and V_{DDP} = 5.0 V.

2)The maximum I_{DDP} values are measured under worst case conditions (T_{A} = + 140 °C and V_{DDP} = 5.5 V).

3) I_{DDP} (active mode) is measured with: CPU clock and input clock to all peripherals running at 24 MHz(set by on-chip oscillator of 9.6 MHz and NDIV in PLL_CON to 1001_B), RESET = V_{DDP} , no load on ports.

4) I_{DDP} (idle mode) is measured with: CPU clock disabled, watchdog timer disabled, input clock to all peripherals enabled and running at 24 MHz, $\overline{\text{RESET}} = V_{\text{DDP}}$, no load on ports.

5) I_{DDP} (active mode with slow-down mode) is measured with: CPU clock and input clock to all peripherals running at 8 MHz by setting CLKREL in CMCON to 0110_B, RESET = V_{DDP} , no load on ports.

6) I_{DDP} (idle mode with slow-down mode) is measured with: CPU clock disabled, watchdog timer disabled, input clock to all peripherals enabled and running at 8 MHz by setting CLKREL in CMCON to 0110_B, RESET = V_{DDP} , no load on ports.

Package and Quality Declaration

5 Package and Quality Declaration

Chapter 5 provides the information of the SAA-XC886 package and reliability section.

5.1 Package Parameters

Table 50 provides the thermal characteristics of the package used in SAA-XC886.

Table 50 Thermal Characteristics of the Packages

Parameter	Symbol	Limit Values		Unit	Notes
		Min.	Max.		

PG-TQFP-48

Thermal resistance junction case	R _{TJC}	CC	-	11.6	K/W	1)2)
Thermal resistance junction lead	R_{TJL}	CC	-	33.2	K/W	1)2)

1) The thermal resistances between the case and the ambient (R_{TCA}) , the lead and the ambient (R_{TLA}) are to be combined with the thermal resistances between the junction and the case (R_{TJC}) , the junction and the lead (R_{TJL}) given above, in order to calculate the total thermal resistance between the junction and the ambient (R_{TJA}) . The thermal resistances between the case and the ambient (R_{TCA}) , the lead and the ambient (R_{TLA}) depend on the external system (PCB, case) characteristics, and are under user responsibility. The junction temperature can be calculated using the following equation: $T_J=T_A+R_{TJA} \times P_D$, where the R_{TJA} is the total thermal resistance between the junction and the ambient. This total junction ambient resistance R_{TJA} can be obtained from the upper four partial thermal resistances, by a) simply adding only the two thermal resistances (junction lead and lead ambient), or

b) by taking all four resistances into account, depending on the precision needed.

2) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.