E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	56800EX
Core Size	32-Bit
Speed	50MHz
Connectivity	I ² C, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	39
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 10x12b; D/A 2x12b
Oscillator Type	External, Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc56f82316vlf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.6.5 Comparator

- Full rail-to-rail comparison range
- Support for high and low speed modes
- Selectable input source includes external pins and internal DACs
- Programmable output polarity
- 6-bit programmable DAC as a voltage reference per comparator
- Three programmable hysteresis levels
- Selectable interrupt on rising-edge, falling-edge, or toggle of a comparator output

1.6.6 12-bit Digital-to-Analog Converter

- 12-bit resolution
- Powerdown mode
- Automatic mode allows the DAC to automatically generate pre-programmed output waveforms, including square, triangle, and sawtooth waveforms (for applications like slope compensation)
- Programmable period, update rate, and range
- Output can be routed to an internal comparator, ADC, or optionally to an off-chip destination

1.6.7 Quad Timer

- Four 16-bit up/down counters, with a programmable prescaler for each counter
- Operation modes: edge count, gated count, signed count, capture, compare, PWM, signal shot, single pulse, pulse string, cascaded, quadrature decode
- Programmable input filter
- Counting start can be synchronized across counters
- Up to 100 MHz operation clock

1.6.8 Queued Serial Communications Interface (QSCI) modules

- Operating clock can be up to two times the CPU operating frequency
- Four-word-deep FIFOs available on both transmit and receive buffers
- Standard mark/space non-return-to-zero (NRZ) format
- 16-bit integer and 3-bit fractional baud rate selection
- Full-duplex or single-wire operation
- Programmable 8-bit or 9-bit data format
- Error detection capability

MC56F823xx signal and pin descriptions

Table 2.	Signal	descriptions	(continued)
----------	--------	--------------	-------------

Signal Name	48 LQFP	32 LQFP	Туре	State During Reset	Signal Description
TMS	47	31	Input	Input, internal pullup enabled	 Test Mode Select Input — It is sampled on the rising edge of TCK and has an internal pullup resistor. After reset, the default state is TMS. NOTE: Always tie the TMS pin to V_{DD} through a 2.2K resistor if need to keep on-board debug capability. Otherwise, directly tie to V_{DD}.
(GPIOD3)			Input/ Output		GPIO Port D3
RESET or RESETB	2	2	Input	Input, internal pullup enabled	Reset — A direct hardware reset on the processor. When RESET is asserted low, the device is initialized and placed in the reset state. A Schmitt-trigger input is used for noise immunity. The internal reset signal is deasserted synchronous with the internal clocks after a fixed number of internal clocks. After reset, the default state is RESET. Recommended a capacitor of up to 0.1 μ F for filtering noise.
(GPIOD4)			Input/ Opendrain Output		GPIO Port D4 RESET functionality is disabled in this mode and the device can be reset only through POR, COP reset, or software reset.
GPIOA0	9	6	Input/ Output	Input, internal	GPIO Port A0
(ANA0&CMPA_I N3)			Input	pullup enabled	ANA0 is analog input to channel 0 of ADCA; CMPA_IN3 is positive input 3 of analog comparator A. After reset, the default state is GPIOA0.
(CMPC_O)			Output		Analog comparator C output
GPIOA1	10	7	Input/ Output	Input, internal	GPIO Port A1: After reset, the default state is GPIOA1.
(ANA1&CMPA_I N0)			Input	pullup enabled	ANA1 is analog input to channel 1 of ADCA; CMPA_IN0 is negative input 0 of analog comparator A. When used as an analog input, the signal goes to ANA1 and CMPA_IN0. The ADC control register configures this input as ANA1 or CMPA_IN0.
GPIOA2	11	8	Input/ Output	Input, internal	GPIO Port A2: After reset, the default state is GPIOA2.
(ANA2&VREFH A&CMPA_IN1)			Input	pullup enabled	ANA2 is analog input to channel 2 of ADCA; VREFHA is analog reference high of ADCA; CMPA_IN1 is negative input 1 of analog comparator A. When used as an analog input, the signal goes to both ANA2, VREFHA, and CMPA_IN1.
GPIOA3	12	_	Input/ Output	Input, internal	GPIO Port A3: After reset, the default state is GPIOA3.
(ANA3&VREFL A&CMPA_IN2)			Input	pullup enabled	ANA3 is analog input to channel 3 of ADCA; VREFLA is analog reference low of ADCA; CMPA_IN2 is negative input 2 of analog comparator A.
GPIOA4	8	—	Input/ Output	Input, internal	GPIO Port A4: After reset, the default state is GPIOA4.
(ANA4)			Input	pullup enabled	ANA4 is Analog input to channel 4 of ADCA.

Table continues on the next page ...

Table 2.	Signal	descriptions	(continued)
			(

Signal Name	48 LQFP	32 LQFP	Туре	State During Reset	Signal Description
GPIOB0	17	11	Input/ Output	Input, internal	GPIO Port B0: After reset, the default state is GPIOB0.
(ANB0&CMPB_I N3)			Input	pullup enabled	ANB0 is analog input to channel 0 of ADCB; CMPB_IN3 is positive input 3 of analog comparator B. When used as an analog input, the signal goes to ANB0 and CMPB_IN3. The ADC control register configures this input as ANB0.
GPIOB1	18	12	Input/ Output	Input, internal	GPIO Port B1: After reset, the default state is GPIOB1.
(ANB1&CMPB_I N0)			Input	pullup enabled	ANB1 is analog input to channel 1 of ADCB; CMPB_IN0 is negative input 0 of analog comparator B. When used as an analog input, the signal goes to ANB1 and CMPB_IN0. The ADC control register configures this input as ANB1.
DACB_O			Analog Output		12-bit digital-to-analog output
GPIOB2	20	13	Input/ Output	Input, internal	GPIO Port B2: After reset, the default state is GPIOB2.
(ANB2&VERFH B&CMPC_IN3)			Input	pullup enabled	ANB2 is snalog input to channel 2 of ADCB; VREFHB is analog reference high of ADCB; CMPC_IN3 is positive input 3 of analog comparator C. When used as an analog input, the signal goes to both ANB2 and CMPC_IN3.
GPIOB3	21	—	Input/ Output	Input, internal	GPIO Port B3: After reset, the default state is GPIOB3.
(ANB3&VREFL B&CMPC_IN0)			Input	pullup enabled	ANB3 is analog input to channel 3 of ADCB; VREFLB is analog reference low of ADCB; CMPC_IN0 is negative input 0 of analog comparator C.
GPIOB4	14	—	Input/ Output	Input, internal	GPIO Port B4: After reset, the default state is GPIOB4.
(ANB4&CMPC_ IN1)			Input	pullup enabled	ANB4 is analog input to channel 4 of ADCB; CMPC_IN1 is negative input 1 of analog comparator C.
GPIOC0	3	—	Input/ Output	Input, internal	GPIO Port C0: After reset, the default state is GPIOC0.
(EXTAL)			Analog Input	pullup enabled	The external crystal oscillator input (EXTAL) connects the internal crystal oscillator input to an external crystal or ceramic resonator.
(CLKIN0)			Input		External clock input 0 ¹
GPIOC1	4	—	Input/ Output	Input, internal	GPIO Port C1: After reset, the default state is GPIOC1.
(XTAL)			Input	pullup enabled	The external crystal oscillator output (XTAL) connects the internal crystal oscillator output to an external crystal or ceramic resonator.
GPIOC2	5	3	Input/ Output	Input, internal	GPIO Port C2: After reset, the default state is GPIOC2.
(TXD0)			Output	pullup enabled	SCI0 transmit data output or transmit/receive in singlewire operation
(XB_OUT11)	1		Output		Crossbar module output 11

Table continues on the next page...

MC56F823xx signal and pin descriptions

Table 2.	Signal	descriptions	(continued)
			(

Signal Name	48 LQFP	32 LQFP	Туре	State During Reset	Signal Description
(XB_IN2)			Input		Crossbar module input 2
(CLKO0)			Output		Buffered clock output 0: the clock source is selected by clockout select (CLKOSEL) bits in the clock output select register (CLKOUT) of the SIM.
GPIOC3	6	4	Input/ Output	Input, internal	GPIO Port C3: After reset, the default state is GPIOC3.
(TA0)			Input/ Output	pullup enabled	Quad timer module A channel 0 input/output
(CMPA_O)	_		Output		Analog comparator A output
(RXD0)			Input		SCI0 receive data input
(CLKIN1)			Input		External clock input 1
GPIOC4	7	5	Input/ Output	Input, internal	GPIO Port C4: After reset, the default state is GPIOC4.
(TA1)			Input/ Output	pullup enabled	Quad timer module A channel 1 input/output
(CMPB_O)			Output		Analog comparator B output
(XB_IN6)			Input		Crossbar module input 6
(EWM_OUT_B)			Output		External Watchdog Module output
GPIOC5	13	-	Input/ Output	Input, internal	GPIO Port C5: After reset, the default state is GPIOC5.
(DACA_O)			Analog Output	pullup enabled	12-bit digital-to-analog output
(XB_IN7)			Input		Crossbar module input 7
GPIOC6	23	15	Input/ Output	Input, internal	GPIO Port C6: After reset, the default state is GPIOC6.
(TA2)			Input/ Output	pullup enabled	Quad timer module A channel 2 input/output
(XB_IN3)			Input		Crossbar module input 3
(CMP_REF)			Analog Input		Positive input 3 of analog comparator A and B and C.
(<u>SS0_B</u>)			Input/ Output		In slave mode, <u>SS0_B</u> indicates to the SPI module 0 that the current transfer is to be received.
GPIOC7	24	-	Input/ Output	Input, internal	GPIO Port C7: After reset, the default state is GPIOC7.
(SS0_B)		Input/ Outpu	Input/ Output	pullup enable	In slave mode, $\overline{SS0_B}$ indicates to the SPI module 0 that the current transfer is to be received.
(TXD0)			Output		SCI0 transmit data output or transmit/receive in singlewire operation
(XB_IN8)	1		Input]	Crossbar module input 8
GPIOC8	25	16	Input/ Output	Input, internal	GPIO Port C8: After reset, the default state is GPIOC8.
(MISO0)			Input/ Output	pullup enabled	Master in/slave out for SPI0 — In master mode, MISO0 pin is the data input. In slave mode, MISO0 pin is the data output.

Table continues on the next page ...

Table 2.	Signal de	scriptions	(continued)
----------	-----------	------------	-------------

Signal Name	48 LQFP	32 LQFP	Туре	State During Reset	Signal Description
					The MISO line of a slave device is placed in the high- impedance state if the slave device is not selected.
(RXD0)	1		Input		SCI0 receive data input
(XB_IN9)			Input		Crossbar module input 9
(XB_OUT6)			Output]	Crossbar module output 6
GPIOC9	26	17	Input/ Output	Input, internal	GPIO Port C9: After reset, the default state is GPIOC9.
(SCLK0)			Input/ Output	pullup enabled	SPI0 serial clock. In master mode, SCLK0 pin is an output, clocking slaved listeners. In slave mode, SCLK0 pin is the data clock input.
(XB_IN4)]		Input		Crossbar module input 4
(TXD0)			Output		SCI0 transmit data output or transmit/receive in single wire operation
(XB_OUT8)	1		Output		Crossbar module output 8
GPIOC10	27	18	Input/ Output	Input, intemrnal	GPIO Port C10: After reset, the default state is GPIOC10.
(MOSI0)	_		Input/ Output	pullup enabled	Master out/slave in for SPI0 — In master mode, MOSI0 pin is the data output. In slave mode, MOSI0 pin is the data input.
(XB_IN5)			Input		Crossbar module input 5
(MISO0)			Input/ Output		Master in/slave out for SPI0 — In master mode, MISO0 pin is the data input. In slave mode, MISO0 pin is the data output. The MISO line of a slave device is placed in the high- impedance state if the slave device is not selected.
(XB_OUT9)			Output		Crossbar module output 9
GPIOC11	29	—	Input/ Output	Input, internal	GPIO Port C11: After reset, the default state is GPIOC11.
(SCL0)			Input/ Open-drain Output	pullup enabled	I ² C0 serial clock
(TXD1)			Output		SCI1 transmit data output or transmit/receive in single wire operation
GPIOC12	30	_	Input/ Output	Input, internal pullup enabled	GPIO Port C12: After reset, the default state is GPIOC12.
(SDA0)			Input/ Open-drain Output		I ² C0 serial data line
(RXD1)	1		Input	1	SCI1 receive data input
GPIOC13	37	_	Input/ Output	Input, internal	GPIO Port C13: After reset, the default state is GPIOC13.
(TA3)			Input/ Output	pullup enabled	Quad timer module A channel 3 input/output
(XB_IN6)	1		Input	1	Crossbar module input 6

Table continues on the next page ...

Signal Name	48 LQFP	32 LQFP	Туре	State During Reset	Signal Description
GPIOF0	28	—	Input/ Output	Input, internal	GPIO Port F0: After reset, the default state is GPIOF0.
(XB_IN6)	1		Input	pullup	Crossbar module input 6
(SCLK1)	-		Input/ Output	enabled	SPI1 serial clock — In master mode, SCLK1 pin is an output, clocking slaved listeners. In slave mode, SCLK1 pin is the data clock input 0.
GPIOF1	38	_	Input/ Output	Input, internal	GPIO Port F1: After reset, the default state is GPIOF1.
(CLKO1)	-		Output	pullup enabled	Buffered clock output 1: the clock source is selected by clockout select (CLKOSEL) bits in the clock output select register (CLKOUT) of the SIM.
(XB_IN7)	1		Input		Crossbar module input 7
GPIOF2	—	19	Input/ Output	Input, internal pullup enabled	GPIO Port F2: After reset, the default state is GPIOF2.
(SCL0)			Input/ Open- drain Output		I ² C0 serial clock
(XB_OUT6)			Output	-	Crossbar module output 6
(MISO1)			Input/ Output	-	Master in/slave out for SPI1 —In master mode, MISO1 pin is the data input. In slave mode, MISO1 pin is the data output. The MISO line of a slave device is placed in the high- impedance state if the slave device is not selected.
GPIOF3	_	20	Input/ Output	Input, internal	GPIO Port F3: After reset, the default state is GPIOF3.
(SDA0)			Input/ Open-drain Output	pullup enabled	I ² C0 serial data line
(XB_OUT7)]		Output]	Crossbar module output 7
(MOSI1)			Input/ Output		Master out/slave in for SPI1— In master mode, MOSI1 pin is the data output. In slave mode, MOSI1 pin is the data input.

1. If CLKIN is selected as the device's external clock input, then both the GPS_C0 bit (in GPS1) and the EXT_SEL bit (in OCCS oscillator control register (OSCTL)) must be set. Also, the crystal oscillator should be powered down.

2.1 Signal groups

The input and output signals of the MC56F8F823xx are organized into functional groups, as detailed in Table 3.

Terminology and guidelines

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	0.9	1.1	V

5.2 Definition: Operating behavior

Unless otherwise specified, an *operating behavior* is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions.

5.2.1 Example

This is an example of an operating behavior:

Symbol	Description	Min.	Max.	Unit
I _{WP}	Digital I/O weak pullup/ pulldown current	10	130	μA

5.3 Definition: Attribute

An *attribute* is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements.

5.3.1 Example

This is an example of an attribute:

Symbol	Description	Min.	Max.	Unit
CIN_D	Input capacitance: digital pins	—	7	pF

5.4 Definition: Rating

A *rating* is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:

Terminology and guidelines

5.7 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

- Never exceed any of the chip's ratings.
- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

5.8 Definition: Typical value

A *typical value* is a specified value for a technical characteristic that:

- Lies within the range of values specified by the operating behavior
- Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions

Typical values are provided as design guidelines and are neither tested nor guaranteed.

Characteristic	Symbol	Notes ¹	Min	Max	Unit
ADC High Voltage Reference	V _{REFHx}		-0.3	4.0	V
Voltage difference V _{DD} to V _{DDA}	ΔV_{DD}		-0.3	0.3	V
Voltage difference V _{SS} to V _{SSA}	ΔV_{SS}		-0.3	0.3	V
Digital Input Voltage Range	V _{IN}	Pin Group 1	-0.3	5.5	V
RESET Input Voltage Range	V _{IN_RESET}	Pin Group 2	-0.3	4.0	V
Oscillator Input Voltage Range	V _{OSC}	Pin Group 4	-0.4	4.0	V
Analog Input Voltage Range	V _{INA}	Pin Group 3	-0.3	4.0	V
Input clamp current, per pin ($V_{IN} < V_{SS} - 0.3 V$) ^{, 2} , ³	V _{IC}		_	-5.0	mA
Output clamp current, per pin ⁴	V _{OC}		_	±20.0	mA
Contiguous pin DC injection current—regional limit sum of 16 contiguous pins	I _{ICont}		-25	25	mA
Output Voltage Range (normal push-pull mode)	V _{OUT}	Pin Group 1, 2	-0.3	4.0	V
Output Voltage Range (open drain mode)	V _{OUTOD}	Pin Group 1	-0.3	5.5	V
RESET Output Voltage Range	V _{OUTOD_RE} SET	Pin Group 2	-0.3	4.0	V
DAC Output Voltage Range	V _{OUT_DAC}	Pin Group 5	-0.3	4.0	V
Ambient Temperature	T _A	V temperature	-40	105	°C
Junction Temperature	Tj	V temperature	-40	125	°C
Storage Temperature Range (Extended Industrial)	T _{STG}		-55	150	°C

Table 5. Absolute Maximum Ratings ($V_{SS} = 0 V$, $V_{SSA} = 0 V$) (continued)

1. Default Mode

- Pin Group 1: GPIO, TDI, TDO, TMS, TCK
- Pin Group 2: RESET
- Pin Group 3: ADC and Comparator Analog Inputs
- Pin Group 4: XTAL, EXTAL
- Pin Group 5: DAC analog output
- 2. Continuous clamp current
- All 5 volt tolerant digital I/O pins are internally clamped to V_{SS} through a ESD protection diode. There is no diode connection to V_{DD}. If V_{IN} greater than VDIO_MIN (= V_{SS}-0.3 V) is observed, then there is no need to provide current limiting resistors at the pads. If this limit cannot be observed, then a current limiting resistor is required.
- 4. I/O is configured as push-pull mode.

7 General

7.1 General characteristics

The device is fabricated in high-density, low-power CMOS with 5 V–tolerant TTLcompatible digital inputs, except for the RESET pin which is 3.3V only. The term "5 V– tolerant" refers to the capability of an I/O pin, built on a 3.3 V–compatible process technology, to withstand a voltage up to 5.5 V without damaging the device.

General

5 V-tolerant I/O is desirable because many systems have a mixture of devices designed for 3.3 V and 5 V power supplies. In such systems, a bus may carry both 3.3 V- and 5 Vcompatible I/O voltage levels (a standard 3.3 V I/O is designed to receive a maximum voltage of 3.3 V \pm 10% during normal operation without causing damage). This 5 Vtolerant capability therefore offers the power savings of 3.3 V I/O levels combined with the ability to receive 5 V levels without damage.

Absolute maximum ratings in Table 5 are stress ratings only, and functional operation at the maximum is not guaranteed. Stress beyond these ratings may affect device reliability or cause permanent damage to the device.

Unless otherwise stated, all specifications within this chapter apply to the temperature range specified in Table 5 over the following supply ranges: $V_{SS}=V_{SSA}=0V$, $V_{DD}=V_{DDA}=3.0V$ to 3.6V, CL \leq 50 pF, f_{OP}=50MHz.

CAUTION

This device contains protective circuitry to guard against damage due to high static voltage or electrical fields. However, normal precautions are advised to avoid application of any voltages higher than maximum-rated voltages to this highimpedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate voltage level.

7.2 AC electrical characteristics

Tests are conducted using the input levels specified in Table 8. Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured between the 10% and 90% points, as shown in Figure 3.

The midpoint is $V_{IL} + (V_{IH} - V_{IL})/2$.

Figure 3. Input signal measurement references

Figure 4 shows the definitions of the following signal states:

- Active state, when a bus or signal is driven, and enters a low impedance state
- Tri-stated, when a bus or signal is placed in a high impedance state
- Data Valid state, when a signal level has reached V_{OL} or V_{OH}
- Data Invalid state, when a signal level is in transition between $V_{\mbox{OL}}$ and $V_{\mbox{OH}}$

Symbol	Description	Min	Max	Unit	Notes ¹
	VLPS mode to VLPRUN mode	1424	1459	μs	4
	WAIT mode to RUN mode	0.570	0.620	μs	5
	LPWAIT mode to LPRUN mode	237.2	554	μs	3
	VLPWAIT mode to VLPRUN mode	1413	1500	μs	4

 Table 10.
 Power mode transition behavior (continued)

1. Wakeup times are measured from GPIO toggle for wakeup till GPIO toggle at the wakeup interrupt subroutine from respective stop/wait mode.

2. Clock configuration: CPU clock=4 MHz. System clock source is 8 MHz IRC in normal mode.

3. CPU clock = 200 KHz and 8 MHz IRC on standby. Exit by an interrupt on PORTC GPIO.

4. Using 64 KHz external clock; CPU Clock = 32KHz. Exit by an interrupt on PortC GPIO.

5. Clock configuration: CPU and system clocks= 50 MHz. Bus Clock = 50 MHz. Exit by interrupt on PORTC GPIO

7.3.5 Power consumption operating behaviors Table 11. Current Consumption (mA)

Mode	Maximum Frequency	Conditions	Турі 3.3 V	cal at , 25°C	Maxi at 3 10	mum .6 V, 5°C
			I _{DD} 1	I _{DDA}	I _{DD} ¹	I _{DDA}
RUN	50 MHz	 50 MHz Core and Peripheral clock Regulators are in full regulation Relaxation Oscillator on PLL powered on Continuous MAC instructions with fetches from Program Flash All peripheral modules enabled. TMRs and SCIs using 1X peripheral clock ADC/DAC (only one 12-bit DAC and all 6-bit DACs) powered on and clocked Comparator powered on 	27.6	9.9	43.5	13.2
WAIT	50 MHz	 50 MHz Core and Peripheral clock Regulators are in full regulation Relaxation Oscillator on PLL powered on Processor Core in WAIT state All Peripheral modules enabled. TMRs and SCIs using 1X Clock ADC/DAC (single 12-bit DAC, all 6-bit DACs), Comparator powered off 	24.0		41.3	
STOP	4 MHz	 4 MHz Device Clock Regulators are in full regulation Relaxation Oscillator on PLL powered off Processor Core in STOP state All peripheral module and core clocks are off ADC/DAC/Comparator powered off 	6.3		19.4	
LPRUN (LsRUN)	2 MHz	200 kHz Device Clock from Relaxation Oscillator's (ROSC) low speed clock	2.8	3.1	11.1	4.0

Table continues on the next page ...

Mode	Maximum Frequency	Conditions	Typical at 3.3 V, 25°C		Maximum at 3.6 V, 105°C	
			I _{DD} 1	I _{DDA}	ا _{DD} 1	I _{DDA}
		 PLL disabled All peripheral modules, except COP, disabled and clocks gated off Processor core in stop mode 				

 Table 11. Current Consumption (mA)

1. No output switching, all ports configured as inputs, all inputs low, no DC loads.

7.3.6 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

- 1. Go to www.freescale.com.
- 2. Perform a keyword search for "EMC design."

7.3.7 Capacitance attributes

 Table 12.
 Capacitance attributes

Description	Symbol	Min.	Тур.	Max.	Unit
Input capacitance	C _{IN}	—	10	_	pF
Output capacitance	C _{OUT}		10		pF

7.4 Switching specifications

7.4.1 Device clock specifications

Table 13. Device clock specifications

Symbol	Description	Min.	Max.	Unit	Notes			
Normal run mode								
f _{SYSCLK}	Device (system and core) clock frequencyusing relaxation oscillatorusing external clock source	0.001 0	50 50	MHz				
f _{BUS}	Bus clock	—	50	MHz				

7.4.2 General switching timing

Table 14. Switching timing

Symbol	Description	Min	Max	Unit	Notes
	GPIO pin interrupt pulse width ¹	1.5		IP Bus	
	Synchronous path			Clock Cycles	
	Port rise and fall time (high drive strength), Slew disabled 2.7 $\leq V_{DD} \leq 3.6V$.	5.5	15.1	ns	
	Port rise and fall time (high drive strength), Slew enabled 2.7 $\leq V_{DD} \leq 3.6V$.	1.5	6.8	ns	2
	Port rise and fall time (low drive strength). Slew disabled . 2.7 $\leq V_{\text{DD}} \leq 3.6 \text{V}$	8.2	17.8	ns	
	Port rise and fall time (low drive strength). Slew enabled . 2.7 $\leq V_{DD} \leq 3.6V$	3.2	9.2	ns	3

1. Applies to a pin only when it is configured as GPIO and configured to cause an interrupt by appropriately programming GPIOn_IPOLR and GPIOn_IENR.

- 2. 75 pF load
- 3. 15 pF load

7.5 Thermal specifications

7.5.1 Thermal operating requirements

Table 15. Thermal operating requirements

Symbol	Description	Min	Мах	Unit
TJ	Die junction temperature	-40	125	°C
T _A	Ambient temperature	-40	105	°C

7.5.2 Thermal attributes

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To account for $P_{I/O}$ in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} is very small.

8.2 System modules

8.2.1 Voltage regulator specifications

The voltage regulator supplies approximately 1.2 V to the MC56F82xxx's core logic. For proper operations, the voltage regulator requires an external 2.2 μ F capacitor on each V_{CAP} pin. Ceramic and tantalum capacitors tend to provide better performance tolerances. The output voltage can be measured directly on the V_{CAP} pin. The specifications for this regulator are shown in Table 17.

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage ¹	V _{CAP}	—	1.22	—	V
Short Circuit Current ²	I _{SS}	—	600	—	mA
Short Circuit Tolerance (V _{CAP} shorted to ground)	T _{RSC}	_	_	30	Minutes

Table 17. Regulator 1.2 V parameters

1. Value is after trim

2. Guaranteed by design

Table 18. Bandgap electrical specifications

Characteristic	Symbol	Min	Тур	Max	Unit
Reference Voltage (after trim)	V_{REF}		1.21	_	V

8.3 Clock modules

8.3.1 External clock operation timing

Parameters listed are guaranteed by design.

Table 19. External clock operation timing requirements

Characteristic	Symbol	Min	Тур	Max	Unit
Frequency of operation (external clock driver) ¹	f _{osc}	—	—	50	MHz
Clock pulse width ²	t _{PW}	8			ns
External clock input rise time ³	t _{rise}	—		1	ns
External clock input fall time ⁴	t _{fall}	—	_	1	ns
Input high voltage overdrive by an external clock	V _{ih}	0.85V _{DD}	_	_	V
Input low voltage overdrive by an external clock	V _{il}	_	_	0.3V _{DD}	V

System modules

Characteristic	Symbol	Min	Тур	Max	Unit
Spurious Free Dynamic Range	SFDR		77		dB
Signal to Noise plus Distortion	SINAD		66		dB
Effective Number of Bits	ENOB		—		bits
Gain = 1x (Fully Differential/Unipolar)			10.6		
Gain = 2x (Fully Differential/Unipolar)			—		
Gain = 4x (Fully Differential/Unipolar)			10.3		
Gain = 1x (Single Ended)			10.6		
Gain = 2x (Single Ended)			10.4		
Gain = 4x (Single Ended)			10.2		
Variation across channels ¹⁰			0.1		
ADC Inputs					
Input Leakage Current	I _{IN}		1		nA
Temperature sensor slope	T _{SLOPE}		1.7		mV/°C
Temperature sensor voltage at 25 $^\circ\mathrm{C}$	V _{TEMP25}		0.82		V
Disturbance					
Input Injection Current ¹¹	I _{INJ}			+/-3	mA
Channel to Channel Crosstalk ¹²	ISOXTLK		-82		dB
Memory Crosstalk ¹³	MEMXTLK		-71		dB
Input Capacitance	C _{ADI}		4.8		рF
Sampling Capacitor			-		

Table 27. 12-bit ADC Electrical Specifications (continued)

1. The ADC functions up to VDDA = 2.7 V. When VDDA is below 3.0 V, ADC specifications are not guaranteed

2. ADC clock duty cycle is $45\% \sim 55\%$

3. Conversion range is defined for x1 gain setting. For x2 and x4 the range is 1/2 and 1/4, respectively.

4. In unipolar mode, positive input must be ensured to be always greater than negative input.

5. First conversion takes 10 clock cycles.

6. INL/DNL is measured from $V_{IN} = V_{REFL}$ to $V_{IN} = V_{REFH}$ using Histogram method at x1 gain setting

- 7. Least Significant Bit = 0.806 mV at 3.3 V V_{DDA} , x1 gain Setting
- 8. Offset measured at 2048 code
- 9. Measured converting a 1 kHz input full scale sine wave
- 10. When code runs from internal RAM
- 11. The current that can be injected into or sourced from an unselected ADC input without affecting the performance of the ADC
- 12. Any off-channel with 50 kHz full-scale input to the channel being sampled with DC input (isolation crosstalk)
- 13. From a previously sampled channel with 50 kHz full-scale input to the channel being sampled with DC input (memory crosstalk).

8.5.1.1 Equivalent circuit for ADC inputs

The following figure shows the ADC input circuit during sample and hold. S1 and S2 are always opened/closed at non-overlapping phases, and both S1 and S2 are dependent on the ADC clock frequency. The following equation gives equivalent input impedance when the input is selected.

- 1. Parasitic capacitance due to package, pin-to-pin and pin-to-package base coupling = 1.8pF
- 2. Parasitic capacitance due to the chip bond pad, ESD protection devices and signal routing = 2.04pF
- 3. S1 and S2 switch phases are non-overlapping and depend on the ADC clock frequency

Figure 9. Equivalent circuit for A/D loading

8.5.2 12-bit Digital-to-Analog Converter (DAC) parameters Table 28. DAC parameters

Parameter	Conditions/Comments	Symbol	Min	Тур	Max	Unit			
	DC Specifications								
Resolution			12	12	12	bits			
Settling time ¹ At output load			—	1		μs			
RLD = 3 kΩ									
	CLD = 400 pF								
Power-up time Time from release of PWRDWN signal until DACOUT signal is valid		t _{DAPU}			11	μs			
Accuracy									
Integral non-linearity ²	Range of input digital words:	INL	_	+/- 3	+/- 4	LSB ³			
	T () · · ·	., .							

Table continues on the next page...

Figure 11. Typical hysteresis vs. Vin level (V_{DD} = 3.3 V, PMODE = 1)

8.6 Timer

8.6.1 Quad Timer timing

Parameters listed are guaranteed by design.

Table 30.	Timer	timing
-----------	-------	--------

Characteristic	Symbol	Min ¹	Max	Unit	See Figure
Timer input period	P _{IN}	2T + 10	—	ns	Figure 12
Timer input high/low period	P _{INHL}	1T + 5	—	ns	Figure 12
Timer output period	P _{OUT}	2T-2	—	ns	Figure 12
Timer output high/low period	POUTHL	1T-2	_	ns	Figure 12

1. T = clock cycle. For 50 MHz operation, T = 20 ns.

Timer

8.7.2 Queued Serial Communication Interface (SCI) timing

Parameters listed are guaranteed by design.

Characteristic	Symbol	Min	Max	Unit	See Figure
Baud rate ¹	BR	_	(f _{MAX} /16)	Mbit/s	—
RXD pulse width	RXD _{PW}	0.965/BR	1.04/BR	ns	Figure 17
TXD pulse width	TXD _{PW}	0.965/BR	1.04/BR	ns	Figure 18
	LIN	Slave Mode			
Deviation of slave node clock from nominal clock rate before synchronization	F _{TOL_UNSYNCH}	-14	14	%	_
Deviation of slave node clock relative to the master node clock after synchronization	F _{TOL_SYNCH}	-2	2	%	_
Minimum break character length	T _{BREAK}	13	_	Master node bit periods	_
		11	_	Slave node bit periods	_

Table 32. SCI timing

1. f_{MAX} is the frequency of operation of the SCI clock in MHz, which can be selected as the bus clock (max.)50 MHz.

Figure 18. TXD pulse width

8.7.3 Inter-Integrated Circuit Interface (I²C) timing

Table 33. 1²C timing

Characteristic	Symbol	Standard Mode		Fast	Unit	
		Minimum	Maximum	Minimum	Maximum	
SCL Clock Frequency	f _{SCL}	0	100	0	400	kHz
Hold time (repeated) START condition. After this period, the first clock pulse is generated.	t _{HD} ; STA	4	_	0.6	_	μs
LOW period of the SCL clock	t _{LOW}	4.7		1.3	—	μs

Table continues on the next page ...

10 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to **freescale.com** and perform a keyword search for the drawing's document number:

Drawing for package	Document number to be used
32LQFP	98ASH70029A
32QFN	98ASA00473D
48-pin LQFP	98ASH00962A

11 Pinout

11.1 Signal Multiplexing and Pin Assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The SIM's GPS registers are responsible for selecting which ALT functionality is available on most pins.

NOTE

- The RESETB pin is a 3.3 V pin only.
- If the GPIOC1 pin is used as GPIO, the XOSC should be powered down.
- Not all CMPD pins are not available on 48 LQFP.

NOTE

DAC and CMPC signals are not available on 32 LQFP package.

48 LQFP	32 LQFP	Pin Name	Default	ALTO	ALT1	ALT2	ALT3
_	19	GPIOF2	GPIOF2	SCLO	XB_OUT6		
_	20	GPIOF3	GPIOF3	SDA0	XB_OUT7		
1	1	ТСК	ТСК	GPIOD2			
2	2	RESETB	RESETB	GPIOD4			
3	_	GPIOC0	GPIOC0	EXTAL	CLKIN0		
4	_	GPIOC1	GPIOC1	XTAL			
5	3	GPIOC2	GPIOC2	TXD0	XB_OUT11	XB_IN2	CLKO0
6	4	GPIOC3	GPIOC3	TA0	CMPA_O	RXD0	CLKIN1