NXP USA Inc. - KMC8360CVVAJDGA Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e300
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	533MHz
Co-Processors/DSP	Communications; QUICC Engine
RAM Controllers	DDR, DDR2
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (1)
SATA	-
USB	USB 1.x (1)
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	-40°C ~ 105°C (TA)
Security Features	-
Package / Case	740-LBGA
Supplier Device Package	740-TBGA (37.5x37.5)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmc8360cvvajdga

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Characteristic	Symbol	Recommended Value	Unit	Notes
PCI, local bus, DUART, system control and power management, I^2C , SPI, and JTAG I/O voltage	OV _{DD}	3.3 V ± 330 mV	V	_
Junction temperature	TJ	0 to 105 -40 to 105	°C	2

Table 2. Recommended Operating Conditions (continued)

Notes:

- 1. GV_{DD}, LV_{DD}, OV_{DD}, AV_{DD}, and V_{DD} must track each other and must vary in the same direction—either in the positive or negative direction.
- The operating conditions for junction temperature, T_J, on the 600/333/400 MHz and 500/333/500 MHz on rev. 2.0 silicon is 0° to 70 °C. Refer to Errata General9 in *Chip Errata for the MPC8360E, Rev. 1*.
- 3. For more information on Part Numbering, refer to Table 80.

This figure shows the undershoot and overshoot voltages at the interfaces of the device.

1. Note that $t_{\mbox{interface}}$ refers to the clock period associated with the bus clock interface.

Figure 3. Overshoot/Undershoot Voltage for $GV_{DD}/OV_{DD}/LV_{DD}$

Power Sequencing

This figure shows the undershoot and overshoot voltage of the PCI interface of the device for the 3.3-V signals, respectively.

Figure 4. Maximum AC Waveforms on PCI interface for 3.3-V Signaling

2.1.3 Output Driver Characteristics

This table provides information on the characteristics of the output driver strengths. The values are preliminary estimates.

Driver Type	Output Impedance (Ω)	Supply Voltage
Local bus interface utilities signals	42	OV _{DD} = 3.3 V
PCI signals	25	
PCI output clocks (including PCI_SYNC_OUT)	42	
DDR signal	20 36 (half-strength mode) ¹	GV _{DD} = 2.5 V
DDR2 signal	18 36 (half-strength mode) ¹	GV _{DD} = 1.8 V
10/100/1000 Ethernet signals	42	LV _{DD} = 2.5/3.3 V
DUART, system control, I ² C, SPI, JTAG	42	OV _{DD} = 3.3 V
GPIO signals	42	OV _{DD} = 3.3 V LV _{DD} = 2.5/3.3 V

Note:

1. DDR output impedance values for half strength mode are verified by design and not tested.

2.2 Power Sequencing

This section details the power sequencing considerations for the MPC8360E/58E.

Table 4. MPC8360E TBGA Core Power Dissipation ¹	(continued)
--	-------------

Core Frequency (MHz)	CSB Frequency (MHz)	QUICC Engine Frequency (MHz)	Typical	Maximum	Unit	Notes
667	333	500	6.1	6.8	W	2, 3, 5, 9

Notes:

- 1. The values do not include I/O supply power (OV_{DD}, LV_{DD}, GV_{DD}) or AV_{DD}. For I/O power values, see Table 6.
- 2. Typical power is based on a voltage of V_{DD} = 1.2 V or 1.3 V, a junction temperature of T_J = 105°C, and a Dhrystone benchmark application.
- 3. Thermal solutions need to design to a value higher than typical power on the end application, T_A target, and I/O power.
- 4. Maximum power is based on a voltage of V_{DD} = 1.2 V, WC process, a junction T_J = 105°C, and an artificial smoke test.
- Maximum power is based on a voltage of V_{DD} = 1.3 V for applications that use 667 MHz (CPU)/500 (QE) with WC process, a junction T₁ = 105° C, and an artificial smoke test.
- 6. Typical power is based on a voltage of V_{DD} = 1.3 V, a junction temperature of T_J = 70° C, and a Dhrystone benchmark application.
- Maximum power is based on a voltage of V_{DD} = 1.3 V for applications that use 667 MHz (CPU) or 500 (QE) with WC process, a junction T_J = 70° C, and an artificial smoke test.
- 8. This frequency combination is only available for rev. 2.0 silicon.
- 9. This frequency combination is not available for rev. 2.0 silicon.

Table 5. MPC8358E TBGA Core Power Dissipation¹

Core Frequency (MHz)	CSB Frequency (MHz)	QUICC Engine Frequency (MHz)	Typical	Maximum	Unit	Notes
266	266	300	4.1	4.5	W	2, 3, 4
400	266	400	4.5	5.0	W	2, 3, 4

Notes:

- 1. The values do not include I/O supply power (OV_{DD}, LV_{DD} , GV_{DD}) or AV_{DD} . For I/O power values, see Table 6.
- Typical power is based on a voltage of V_{DD} = 1.2 V, a junction temperature of T_J = 105°C, and a Dhrystone benchmark application.
- 3. Thermal solutions need to design to a value higher than typical power on the end application, T_A target, and I/O power.
- 4. Maximum power is based on a voltage of V_{DD} = 1.2 V, WC process, a junction T_J = 105°C, and an artificial smoke test.

DDR and DDR2 SDRAM AC Electrical Characteristics

This table provides the input AC timing specifications for the DDR SDRAM interface when $GV_{DD}(typ) = 2.5 \text{ V}$.

Table 19. DDR SDRAM Input AC Timing Specifications

At recommended operating conditions with GV_{DD} of 2.5 V ± 5%.

Parameter	Symbol	Min	Мах	Unit	Notes
AC input low voltage	V _{IL}	—	MV _{REF} – 0.31	V	—
AC input high voltage	V _{IH}	MV _{REF} + 0.31	_	V	_

Table 20. DDR and DDR2 SDRAM Input AC Timing Specifications Mode

At recommended operating conditions with GV_{DD} of (1.8 or 2.5 V) ± 5%.

Parameter	Symbol	Min	Мах	Unit	Notes
MDQS—MDQ/MECC input skew per byte 333 MHz 266 MHz 200 MHz	t _{DISKEW}	-750 -1125 -1250	750 1125 1250	ps	1, 2

Notes:

1. AC timing values are based on the DDR data rate, which is twice the DDR memory bus frequency.

Maximum possible skew between a data strobe (MDQS[n]) and any corresponding bit of data (MDQ[8n + {0...7}] if 0 ≤n ≤7) or ECC (MECC[{0...7}] if n = 8).

This figure shows the input timing diagram for the DDR controller.

Figure 6. DDR Input Timing Diagram

This section describes the DC and AC electrical specifications for the DUART interface of the MPC8360E/58E.

7.1 DUART DC Electrical Characteristics

This table provides the DC electrical characteristics for the DUART interface of the device.

Table 23. DUART DC Electrical Characteristics

Parameter	Symbol	Min	Мах	Unit	Notes
High-level input voltage	V _{IH}	2	OV _{DD} + 0.3	V	—
Low-level input voltage OV _{DD}	V _{IL}	-0.3	0.8	V	—
High-level output voltage, I _{OH} = −100 μA	V _{OH}	OV _{DD} - 0.4	—	V	—
Low-level output voltage, I _{OL} = 100 μA	V _{OL}	—	0.2	V	—
Input current (0 V ≰⁄ _{IN} ≤OV _{DD})	I _{IN}	—	±10	μA	1

Note:

1. Note that the symbol V_{IN}, in this case, represents the OV_{IN} symbol referenced in Table 1 and Table 2.

7.2 DUART AC Electrical Specifications

This table provides the AC timing parameters for the DUART interface of the device.

Table 24.	DUART	AC T	iming	Speci	ifications
-----------	-------	------	-------	-------	------------

Parameter	Value	Unit	Notes
Minimum baud rate	256	baud	_
Maximum baud rate	>1,000,000	baud	1
Oversample rate	16	_	2

Notes:

- 1. Actual attainable baud rate is limited by the latency of interrupt processing.
- 2. The middle of a start bit is detected as the eighth sampled 0 after the 1-to-0 transition of the start bit. Subsequent bit values are sampled each sixteenth sample.

8 UCC Ethernet Controller: Three-Speed Ethernet, MII Management

This section provides the AC and DC electrical characteristics for three-speed, 10/100/1000, and MII management.

8.1 Three-Speed Ethernet Controller (10/100/1000 Mbps)— GMII/MII/RMII/TBI/RGMII/RTBI Electrical Characteristics

The electrical characteristics specified here apply to all GMII (gigabit media independent interface), MII (media independent interface), RMII (reduced media independent interface), TBI (ten-bit interface), RGMII (reduced gigabit media independent interface), and RTBI (reduced ten-bit interface) signals except MDIO (management data input/output) and MDC (management data clock). The MII, RMII, GMII, and TBI interfaces are only defined for 3.3 V, while the RGMII and RTBI interfaces are only defined for 2.5 V. The RGMII and RTBI interfaces follow the Hewlett-Packard reduced pin-count interface for Gigabit Ethernet

8.2.4.1 TBI Transmit AC Timing Specifications

This table provides the TBI transmit AC timing specifications.

Table 33. TBI Transmit AC Timing Specifications

At recommended operating conditions with LV_{DD}/OV_{DD} of 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit	Notes
GTX_CLK clock period	t _{TTX}	_	8.0	_	ns	—
GTX_CLK duty cycle	t _{TTXH} /t _{TTX}	40	—	60	%	—
GTX_CLK to TBI data TCG[9:0] delay	t _{TTKHDX} t _{TTKHDV}	1.0	—	 5.0	ns	3
GTX_CLK clock rise time, (20% to 80%)	t _{TTXR}	_	—	1.0	ns	—
GTX_CLK clock fall time, (80% to 20%)	t _{TTXF}	_	_	1.0	ns	—
GTX_CLK125 reference clock period	t _{G125}	_	8.0	_	ns	2
GTX_CLK125 reference clock duty cycle	t _{G125H} /t _{G125}	45	—	55	ns	—

Notes:

- The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{TTKHDV} symbolizes the TBI transmit timing (TT) with respect to the time from t_{TTX} (K) going high (H) until the referenced data signals (D) reach the valid state (V) or setup time. Also, t_{TTKHDX} symbolizes the TBI transmit timing (TT) with respect to the time from t_{TTX} (K) going high (H) until the referenced data signals (D) reach the valid state (V) or setup time. Also, t_{TTKHDX} symbolizes the TBI transmit timing (TT) with respect to the time from t_{TTX} (K) going high (H) until the referenced data signals (D) reach the invalid state (X) or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{TTX} represents the TBI (T) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
- 2. This symbol is used to represent the external GTX_CLK125 and does not follow the original symbol naming convention.
- 3. In rev. 2.0 silicon, due to errata, t_{TTKHDX} minimum is 0.7 ns for UCC1. Refer to Errata QE_ENET19 in Chip Errata for the MPC8360E, Rev. 1.

This figure shows the TBI transmit AC timing diagram.

Figure 18. TBI Transmit AC Timing Diagram

Local Bus DC Electrical Characteristics

8.3.3 IEEE 1588 Timer AC Specifications

This table provides the IEEE 1588 timer AC specifications.

Table 38. IEEE 1588 Timer AC Specifications

Parameter	Symbol	Min	Мах	Unit	Notes
Timer clock frequency	t _{TMRCK}	0	70	MHz	1
Input setup to timer clock	t _{TMRCKS}	—	—	—	2, 3
Input hold from timer clock	t _{TMRCKH}	—	—	—	2, 3
Output clock to output valid	t _{GCLKNV}	0	6	ns	_
Timer alarm to output valid	t _{TMRAL}	_	_	_	2

Notes:

1. The timer can operate on rtc_clock or tmr_clock. These clocks get muxed and any one of them can be selected. The minimum and maximum requirement for both rtc_clock and tmr_clock are the same.

- 2. These are asynchronous signals.
- 3. Inputs need to be stable at least one TMR clock.

9 Local Bus

This section describes the DC and AC electrical specifications for the local bus interface of the MPC8360E/58E.

9.1 Local Bus DC Electrical Characteristics

This table provides the DC electrical characteristics for the local bus interface.

Table 39. Local Bus DC Electrical Characteristics

Parameter	Symbol	Min	Max	Unit
High-level input voltage	V _{IH}	2	OV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	-0.3	0.8	V
High-level output voltage, I _{OH} = −100 μA	V _{OH}	OV _{DD} - 0.4	—	V
Low-level output voltage, $I_{OL} = 100 \ \mu A$	V _{OL}	—	0.2	V
Input current	I _{IN}	—	±10	μA

9.2 Local Bus AC Electrical Specifications

This table describes the general timing parameters of the local bus interface of the device.

Table 40. Local Bus General Timing Parameters—DLL Enabled

Parameter	Symbol ¹	Min	Мах	Unit	Notes
Local bus cycle time	t _{LBK}	7.5	_	ns	2
Input setup to local bus clock (except LUPWAIT)	t _{LBIVKH1}	1.7	_	ns	3, 4
LUPWAIT input setup to local bus clock	t _{LBIVKH2}	1.9	_	ns	3, 4
Input hold from local bus clock (except LUPWAIT)	t _{LBIXKH1}	1.0		ns	3, 4

This figure provides the test access port timing diagram.

VM = Midpoint Voltage (OV_{DD}/2)

Figure 33. Test Access Port Timing Diagram

11 I²C

This section describes the DC and AC electrical characteristics for the I^2C interface of the MPC8360E/58E.

11.1 I²C DC Electrical Characteristics

This table provides the DC electrical characteristics for the I^2C interface of the device.

Table 44. I²C DC Electrical Characteristics

At recommended operating conditions with OV_{DD} of 3.3 V ± 10%.

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage level	V _{IH}	$0.7 imes OV_{DD}$	OV _{DD} + 0.3	V	—
Input low voltage level	V _{IL}	-0.3	$0.3 imes OV_{DD}$	V	—
Low level output voltage	V _{OL}	0	0.4	V	1
Output fall time from $V_{IH}(\text{min})$ to $V_{IL}(\text{max})$ with a bus capacitance from 10 to 400 pF	^t I2KLKV	$20 + 0.1 \times C_B$	250	ns	2
Pulse width of spikes which must be suppressed by the input filter	t _{I2KHKL}	0	50	ns	3
Capacitance for each I/O pin	CI	_	10	pF	—
Input current (0 V ≤V _{IN} ≤OV _{DD})	I _{IN}		±10	μA	4

Notes:

1. Output voltage (open drain or open collector) condition = 3 mA sink current.

- 2. C_B = capacitance of one bus line in pF.
- 3. Refer to the MPC8360E Integrated Communications Processor Reference Manual for information on the digital filter used.
- 4. I/O pins obstruct the SDA and SCL lines if OV_{DD} is switched off.

PCI AC Electrical Specifications

Table 47. PCI AC Timing Specifications at 66 MHz (continued)

Parameter	Symbol ¹	Min	Мах	Unit	Notes
Clock to output high impedance	t _{PCKHOZ}	_	14	ns	2, 3
Input setup to clock	t _{PCIVKH}	3.0	_	ns	2, 4
Input hold from clock	t _{PCIXKH}	0.3	_	ns	2, 4, 6

Notes:

- The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{PCIVKH} symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, t_{SYS}, reference (K) going to the high (H) state or setup time. Also, t_{PCRHFV} symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.
 </sub>
- 2. See the timing measurement conditions in the PCI 2.2 Local Bus Specifications.
- 3. For purposes of active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 4. Input timings are measured at the pin.
- 5. In rev. 2.0 silicon, due to errata, t_{PCIHOV} maximum is 6.6 ns. Refer to Errata PCI21 in Chip Errata for the MPC8360E, Rev. 1.
- 6. In rev. 2.0 silicon, due to errata, t_{PCIXKH} minimum is 1 ns. Refer to Errata PCI17 in Chip Errata for the MPC8360E, Rev. 1.

Table 48. PCI AC Timing Specifications at 33 MHz

Parameter	Symbol ¹	Min	Max	Unit	Notes
Clock to output valid	t _{PCKHOV}	_	11	ns	2
Output hold from clock	t _{PCKHOX}	2	-	ns	2
Clock to output high impedance	t _{PCKHOZ}	_	14	ns	2, 3
Input setup to clock	t _{PCIVKH}	7.0	_	ns	2, 2
Input hold from clock	t _{PCIXKH}	0.3	_	ns	2, 4, 5

Notes:

- The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state)} for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{PCIVKH} symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, t_{SYS}, reference (K) going to the high (H) state or setup time. Also, t_{PCRHFV} symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.
- 2. See the timing measurement conditions in the PCI 2.2 Local Bus Specifications.
- 3. For purposes of active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 4. Input timings are measured at the pin.
- 5. In rev. 2.0 silicon, due to errata, t_{PCIXKH} minimum is 1 ns. Refer to Errata PCI17 in Chip Errata for the MPC8360E, Rev. 1.

This figure provides the AC test load for PCI.

Figure 36. PCI AC Test Load

Timers AC Timing Specifications

13.2 Timers AC Timing Specifications

This table provides the timer input and output AC timing specifications.

Table 50. Timers Input AC Timing Specifications¹

Characteristic	Symbol ²	Тур	Unit
Timers inputs—minimum pulse width	t _{TIWID}	20	ns

Notes:

- 1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are measured at the pin.
- 2. Timers inputs and outputs are asynchronous to any visible clock. Timers outputs should be synchronized before use by any external synchronous logic. Timers inputs are required to be valid for at least t_{TIWID} ns to ensure proper operation.

This figure provides the AC test load for the timers.

Figure 39. Timers AC Test Load

14 GPIO

This section describes the DC and AC electrical specifications for the GPIO of the MPC8360E/58E.

14.1 GPIO DC Electrical Characteristics

This table provides the DC electrical characteristics for the device GPIO.

Table 51. GPIO DC Electrical Characteristic

Characteristic	Symbol	Condition	Min	Мах	Unit	Notes
Output high voltage	V _{OH}	I _{OH} = -6.0 mA	2.4	_	V	1
Output low voltage	V _{OL}	I _{OL} = 6.0 mA	—	0.5	V	1
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	—	0.4	V	1
Input high voltage	V _{IH}	—	2.0	OV _{DD} + 0.3	V	1
Input low voltage	V _{IL}	—	-0.3	0.8	V	—
Input current	I _{IN}	0 V ≤V _{IN} ≤OV _{DD}	—	±10	μA	—

Note:

1. This specification applies when operating from 3.3-V supply.

This figure shows the TDM/SI timing with external clock.

Note: The clock edge is selectable on TDM/SI

17.3 UTOPIA/POS

This section describes the DC and AC electrical specifications for the UTOPIA/POS of the MPC8360E/58E.

17.4 UTOPIA/POS DC Electrical Characteristics

This table provides the DC electrical characteristics for the device UTOPIA.

 Table 59. UTOPIA DC Electrical Characteristics

Characteristic	Symbol	Condition	Min	Мах	Unit
Output high voltage	V _{OH}	I _{OH} = -8.0 mA	2.4	_	V
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	—	0.5	V
Input high voltage	V _{IH}	—	2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	-0.3	0.8	V
Input current	I _{IN}	$0 V \leq V_{IN} \leq OV_{DD}$	—	±10	μA

17.5 UTOPIA/POS AC Timing Specifications

This table provides the UTOPIA input and output AC timing specifications.

Table 60. UTOPIA AC Timing Specifications¹

Characteristic	Symbol ²	Min	Мах	Unit	Notes
UTOPIA outputs—Internal clock delay	t _{UIKHOV}	0	11.5	ns	_
UTOPIA outputs—External clock delay	t _{UEKHOV}	1	11.6	ns	_
UTOPIA outputs—Internal clock high impedance	t _{UIKHOX}	0	8.0	ns	—
UTOPIA outputs—External clock high impedance	t _{UEKHOX}	1	10.0	ns	_
UTOPIA inputs—Internal clock input setup time	t _{UIIVKH}	6	—	ns	—
UTOPIA inputs—External clock input setup time	t _{UEIVKH}	4	—	ns	3

Table 66. MPC8360E TBGA Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
PCI_DEVSEL/CE_PF[16]	E26	I/O	OV _{DD}	5
PCI_IDSEL/CE_PF[17]	F22	I/O	OV _{DD}	
PCI_SERR/CE_PF[18]	B29	I/O	OV _{DD}	5
PCI_PERR/CE_PF[19]	A29	I/O	OV _{DD}	5
PCI_REQ[0]/CE_PF[20]	F19	I/O	LV _{DD} 2	—
PCI_REQ[1]/CPCI_HS_ES/ CE_PF[21]	A21	I/O	LV _{DD} 2	—
PCI_REQ[2]/CE_PF[22]	C21	I/O	LV _{DD} 2	
PCI_GNT[0]/CE_PF[23]	E20	I/O	LV _{DD} 2	
PCI_GNT[1]/CPCI1_HS_LED/ CE_PF[24]	B20	I/O	LV _{DD} 2	
PCI_GNT[2]/CPCI1_HS_ENUM/ CE_PF[25]	C20	I/O	LV _{DD} 2	
PCI_MODE	D36	I	OV _{DD}	—
M66EN/CE_PF[4]	B37	I/O	OV _{DD}	
	Local Bus Controller Interface			
LAD[0:31]	N32, N33, N35, N36, P37, P32, P34, R36, R35, R34, R33, T37, T35, T34, T33, U37, T32, U36, U34, V36, V35, W37, W35, V33, V32, W34, Y36, W32, AA37, Y33, AA35, AA34	I/O	OV _{DD}	_
LDP[0]/CKSTOP_OUT	AB37	I/O	OV _{DD}	
LDP[1]/CKSTOP_IN	AB36	I/O	OV _{DD}	
LDP[2]/LCS[6]	AB35	I/O	OV _{DD}	
LDP[3]/LCS[7]	AA33	I/O	OV _{DD}	
LA[27:31]	AC37, AA32, AC36, AC34, AD36	0	OV _{DD}	
LCS[0:5]	AD33, AG37, AF34, AE33, AD32, AH37	0	OV_{DD}	
LWE[0:3]/LSDDQM[0:3]/LBS[0:3]	AG35, AG34, AH36, AE32	0	OV_{DD}	
LBCTL	AD35	0	OV_{DD}	
LALE	M37	0	OV_{DD}	
LGPL0/LSDA10/cfg_reset_source0	AB32	I/O	OV_{DD}	
LGPL1/LSDWE/cfg_reset_source1	AE37	I/O	OV_{DD}	
LGPL2/LSDRAS/LOE	AC33	0	OV_{DD}	
LGPL3/LSDCAS/cfg_reset_source2	AD34	I/O	OV_{DD}	
LGPL4/LGTA/LUPWAIT/LPBSE	AE35	I/O	OV_{DD}	
LGPL5/cfg_clkin_div	AF36	I/O	OV_{DD}	
LCKE	G36	0	OV _{DD}	—
LCLK[0]	J33	0	OV _{DD}	—
LCLK[1]/LCS[6]	J34	0	OV _{DD}	—

Signal Package Pin Number			Power Supply	Notes
LV _{DD} 0	D5, D6	Power for UCC1 Ethernet interface (2.5 V, 3.3 V)	LV _{DD} 0	
LV _{DD} 1	C17, D16	Power for UCC2 Ethernet interface option 1 (2.5 V, 3.3 V)	LV _{DD} 1	9
LV _{DD} 2	B18, E21	Power for UCC2 Ethernet interface option 2 (2.5 V, 3.3 V)	LV _{DD} 2	9
V _{DD}	C36, D29, D35, E16, F9, F12, F15, F17, F18, F20, F21, F23, F25, F26, F29, F31, F32, F33, G6, J6, K32, M32, N6, P33, R6, R32, U32, V6, Y5, Y32, AB6, AB33, AD6, AF32, AK6, AL6, AM7, AM9, AM10, AM11, AM12, AM13, AM14, AM15, AM18, AM21, AM25, AM28, AM32, AN15, AN21, AN26, AU9, AU17	Power for core (1.2 V)	V _{DD}	_
OV _{DD}	A10, B9, B15, B32, C1, C12, C22, C29, D24, E3, E10, E27, G4, H35, J1, J35, K2, M4, N3, N34, R2, R37, T36, U2, U33, V4, V34, W3, Y35, Y37, AA1, AA36, AB2, AB34	PCI, 10/100 Ethernet, and other standard (3.3 V)	OV _{DD}	_
MVREF1	AN20	I	DDR reference voltage	—
MVREF2	AU32	I	DDR reference voltage	_
SPARE1	B11	I/O	OV _{DD}	8
SPARE3	AH32		GV _{DD}	8
SPARE4	AU18	_	GV _{DD}	7
SPARE5	AP1	_	GV _{DD}	8

Table 66. MPC8360E TBGA Pinout Listing (continued)

Pinout Listings

Signal Package Pin Number			Power Supply	Notes	
CE_PB[0:27]	AE2, AE1, AD5, AD3, AD2, AC6, AC5, AC4, AC2, AC1, AB5, AB4, AB3, AB1, AA6, AA4, AA2, Y6, Y4, Y3, Y2, Y1, W6, W5, W2, V5, V3, V2	I/O	OV _{DD}	_	
CE_PC[0:1]	V1, U6	I/O	OV _{DD}		
CE_PC[2:3]	C16, A15	I/O	LV _{DD} 1	—	
CE_PC[4:6]	U4, U3, T6	I/O	OV _{DD}	—	
CE_PC[7]	C19	I/O	LV _{DD} 2	—	
CE_PC[8:9]	A4, C5	I/O	LV _{DD} 0	—	
CE_PC[10:30]	T5, T4, T2, T1, R5, R3, R1, C11, D12, F13, B10, C10, E12, A9, B8, D10, A14, E15, B14, D15, AH2	I/O	OV _{DD}	—	
CE_PD[0:27] E11, D9, C8, F11, A7, E9, C7, A6, F10, B6, D7, E8, B5, A5, C2, E4, F5, B1, D2, G5, D1, E2, H6, F3, E1, F2, G3, H4			OV _{DD}	—	
CE_PE[0:31]	E[0:31] K3, J2, F1, G2, J5, H3, G1, H2, K6, J3, K5, K4, L6, P6, P4, P3, P1, N4, N5, N2, N1, M2, M3, M5, M6, L1, L2, L4, E14, C13, C14, B13			—	
CE_PF[0:3]	F14, D13, A12, A11	I/O	OV _{DD}	—	
	Clocks				
PCI_CLK_OUT[0]/CE_PF[26]	B22	I/O	LV _{DD} 2	—	
PCI_CLK_OUT[1:2]/CE_PF[27:28]] D22, A23		OV _{DD}	—	
CLKIN	E37	I	OV _{DD}	—	
PCI_CLOCK/PCI_SYNC_IN	M36	I	OV _{DD}	—	
PCI_SYNC_OUT/CE_PF[29]	D37	I/O	OV _{DD}	3	
	JTAG				
ТСК	К33	I	OV _{DD}	_	
TDI	K34	I	OV _{DD}	4	
TDO	H37	0	OV _{DD}	3	
TMS	J36	I	OV _{DD}	4	
TRST	L32	I	OV _{DD}	4	
Test					
TEST	L35	I	OV _{DD}	7	
TEST_SEL	AU34	I	GV _{DD}	10	
	РМС				
QUIESCE	B36	0	OV _{DD}	—	
System Control					

Table 67. MPC8358E TBGA Pinout Listing (continued)

Pinout Listings

clock. When the device is configured as a PCI agent device the CLKIN and the CFG_CLKIN_DIV signals should be tied to GND.

When the device is configured as a PCI host device (RCWH[PCIHOST] = 1) and PCI clock output is disabled (RCWH[PCICKDRV] = 0), clock distribution and balancing done externally on the board. Therefore, PCI_SYNC_IN is the primary input clock.

As shown in Figure 54 and Figure 55, the primary clock input (frequency) is multiplied by the QUICC Engine block phase-locked loop (PLL), the system PLL, and the clock unit to create the QUICC Engine clock (ce_clk), the coherent system bus clock (csb_clk), the internal DDRC1 controller clock ($ddr1_clk$), and the internal clock for the local bus interface unit and DDR2 memory controller (lb_clk).

The *csb_clk* frequency is derived from a complex set of factors that can be simplified into the following equation:

$$csb_clk = \{PCI_SYNC_IN \times (1 + CFG_CLKIN_DIV)\} \times SPMF$$

In PCI host mode, PCI_SYNC_IN \times (1 + CFG_CLKIN_DIV) is the CLKIN frequency; in PCI agent mode, CFG_CLKIN_DIV must be pulled down (low), so PCI_SYNC_IN \times (1 + CFG_CLKIN_DIV) is the PCI_CLK frequency.

The *csb_clk* serves as the clock input to the e300 core. A second PLL inside the e300 core multiplies up the *csb_clk* frequency to create the internal clock for the e300 core (*core_clk*). The system and core PLL multipliers are selected by the SPMF and COREPLL fields in the reset configuration word low (RCWL) which is loaded at power-on reset or by one of the hard-coded reset options. See Chapter 4, "Reset, Clocking, and Initialization," in the *MPC8360E PowerQUICC II Pro Integrated Communications Processor Reference Manual* for more information on the clock subsystem.

The *ce_clk* frequency is determined by the QUICC Engine PLL multiplication factor (RCWL[CEPMF) and the QUICC Engine PLL division factor (RCWL[CEPDF]) according to the following equation:

 $ce_clk = (primary clock input \times CEPMF) \div (1 + CEPDF)$

The internal *ddr1_clk* frequency is determined by the following equation:

 $ddr1_clk = csb_clk \times (1 + RCWL[DDR1CM])$

Note that the lb_clk clock frequency (for DDRC2) is determined by RCWL[LBCM]. The *internal ddr1_clk* frequency is not the external memory bus frequency; *ddr1_clk* passes through the DDRC1 clock divider (\div 2) to create the differential DDRC1 memory bus clock outputs (MEMC1_MCK and MEMC1_MCK). However, the data rate is the same frequency as *ddr1_clk*.

The internal *lb_clk* frequency is determined by the following equation:

 $lb_clk = csb_clk \times (1 + \text{RCWL[LBCM]})$

Note that *lb_clk* is not the external local bus or DDRC2 frequency; *lb_clk* passes through the a LB clock divider to create the external local bus clock outputs (LSYNC_OUT and LCLK[0:2]). The LB clock divider ratio is controlled by LCRR[CLKDIV].

Additionally, some of the internal units may be required to be shut off or operate at lower frequency than the *csb_clk* frequency. Those units have a default clock ratio that can be configured by a memory mapped register after the device comes out of reset. This table specifies which units have a configurable clock frequency.

Unit	Default Frequency	Options
Security core	csb_clk/3	Off, <i>csb_clk</i> ¹ , <i>csb_clk</i> /2, <i>csb_clk</i> /3
PCI and DMA complex	csb_clk	Off, <i>csb_clk</i>

Table 68	Configurable	Clock	Units
----------	--------------	-------	-------

¹ With limitation, only for slow csb_clk rates, up to 166 MHz.

This table provides the operating frequencies for the TBGA package under recommended operating conditions (see Table 2). All frequency combinations shown in the table below may not be available. Maximum operating frequencies depend on the part

21.3 QUICC Engine Block PLL Configuration

The QUICC Engine block PLL is controlled by the RCWL[CEPMF], RCWL[CEPDF], and RCWL[CEVCOD] parameters. This table shows the multiplication factor encodings for the QUICC Engine block PLL.

RCWL[CEPMF]	RCWL[CEPDF]	QUICC Engine PLL Multiplication Factor = RCWL[CEPMF]/ (1 + RCWL[CEPDF])	
00000	0	× 16	
00001	0	Reserved	
00010	0	× 2	
00011	0	× 3	
00100	0	× 4	
00101	0	× 5	
00110	0	× 6	
00111	0	× 7	
01000	0	× 8	
01001	0	× 9	
01010	0	× 10	
01011	0	× 11	
01100	0	× 12	
01101	0	× 13	
01110	0	× 14	
01111	0	× 15	
10000	0	× 16	
10001	0	× 17	
10010	0	× 18	
10011	0	× 19	
10100	0	× 20	
10101	0	× 21	
10110	0	× 22	
10111	0	× 23	
11000	0	× 24	
11001	0	× 25	
11010	0	× 26	
11011	0	× 27	
11100	0	× 28	

Table 74. QUICC Engine Block PLL Multiplication Factors

The QUICC Engine block VCO frequency is derived from the following equations:

 $ce_clk = (primary clock input \times CEPMF) \div (1 + CEPDF)$

QE VCO Frequency = $ce_clk \times VCO$ divider $\times (1 + CEPDF)$

21.4 Suggested PLL Configurations

To simplify the PLL configurations, the device might be separated into two clock domains. The first domain contains the CSB PLL and the core PLL. The core PLL is connected serially to the CSB PLL, and has the csb_clk as its input clock. The second clock domain has the QUICC Engine block PLL. The clock domains are independent, and each of their PLLs are configured separately. Both of the domains has one common input clock. This table shows suggested PLL configurations for 33 and 66 MHz input clocks and illustrates each of the clock domains separately. Any combination of clock domains setting with same input clock are valid. Refer to Section 21, "Clocking," for the appropriate operating frequencies for your device.

Conf No. ¹	SPMF	CORE PLL	CEPMF	CEPDF	Input Clock Freq (MHz)	CSB Freq (MHz)	Core Freq (MHz)	QUICC Engine Freq (MHz)	400 (MHz)	533 (MHz)	667 (MHz)
				33 MH:	z CLKIN/PCI	SYNC_IN	Options				
s1	0100	0000100	æ	æ	33	133	266	—	8	8	8
s2	0100	0000101	æ	æ	33	133	333	_	8	8	8
s3	0101	0000100	æ	æ	33	166	333	_	8	8	8
s4	0101	0000101	æ	æ	33	166	416			8	8
s5	0110	0000100	æ	æ	33	200	400		8	8	8
s6	0110	0000110	æ	æ	33	200	600			—	8
s7	0111	0000011	æ	æ	33	233	350		8	8	8
s8	0111	0000100	æ	æ	33	233	466			8	8
s9	0111	0000101	æ	æ	33	233	583			_	8
s10	1000	0000011	æ	æ	33	266	400		8	8	8
s11	1000	0000100	æ	æ	33	266	533			8	8
s12	1000	0000101	æ	æ	33	266	667			_	8
s13	1001	0000010	æ	æ	33	300	300		8	8	8
s14	1001	0000011	æ	æ	33	300	450	_		8	8
s15	1001	0000100	æ	æ	33	300	600	_		—	8
s16	1010	0000010	æ	æ	33	333	333	_	8	8	8
s17	1010	0000011	æ	æ	33	333	500	_		8	8
s18	1010	0000100	æ	æ	33	333	667	_		—	8
c1	æ	æ	01001	0	33			300	8	8	8
c2	æ	æ	01100	0	33	_	_	400	8	8	8
c3	æ	æ	01110	0	33	_	_	466	_	8	8
c4	æ	æ	01111	0	33			500	_	8	8

Table 76. Suggested PLL Configurations

Thermal Management Information

This table shows heat sinks and junction-to-ambient thermal resistance for TBGA package.

Table 78. Heat Sinks and Junction-to-Ambien	t Thermal Resistance of TBGA Package
---	--------------------------------------

		35 imes 35 mm TBGA
Heat Sink Assuming Thermal Grease	Airflow	Junction-to-Ambient Thermal Resistance
AAVID 30 × 30 × 9.4 mm pin fin	Natural convention	10.7
AAVID 30 × 30 × 9.4 mm pin fin	1 m/s	6.2
AAVID 30 × 30 × 9.4 mm pin fin	2 m/s	5.3
AAVID 31 × 35 × 23 mm pin fin	Natural convention	8.1
AAVID 31 × 35 × 23 mm pin fin	1 m/s	4.4
AAVID 31 × 35 × 23 mm pin fin	2 m/s	3.7
Wakefield, 53 × 53 × 25 mm pin fin	Natural convention	5.4
Wakefield, 53 × 53 × 25 mm pin fin	1 m/s	3.2
Wakefield, 53 × 53 × 25 mm pin fin	2 m/s	2.4
MEI, 75 × 85 × 12 no adjacent board, extrusion	Natural convention	6.4
MEI, 75 × 85 × 12 no adjacent board, extrusion	1 m/s	3.8
MEI, 75 × 85 × 12 no adjacent board, extrusion	2 m/s	2.5
MEI, 75 × 85 × 12 mm, adjacent board, 40 mm side bypass	1 m/s	2.8

Accurate thermal design requires thermal modeling of the application environment using computational fluid dynamics software which can model both the conduction cooling and the convection cooling of the air moving through the application. Simplified thermal models of the packages can be assembled using the junction-to-case and junction-to-board thermal resistances listed in the thermal resistance table. More detailed thermal models can be made available on request.

Heat sink vendors include the following:

Aavid Thermalloy 80 Commercial St.	603-224-9988
Concord, NH 03301	
Internet: www.aavidthermalloy.com	
Alpha Novatech	408-749-7601
473 Sapena Ct. #15	
Santa Clara, CA 95054	
Internet: www.alphanovatech.com	
International Electronic Research Corporation (IERC)	818-842-7277
413 North Moss St.	
Burbank, CA 91502	
Internet: www.ctscorp.com	

Configuration Pin Muxing

Figure 57. Driver Impedance Measurement

The value of this resistance and the strength of the driver's current source can be found by making two measurements. First, the output voltage is measured while driving logic 1 without an external differential termination resistor. The measured voltage is $V_1 = R_{source} \times I_{source}$. Second, the output voltage is measured while driving logic 1 with an external precision differential termination resistor of value R_{term} . The measured voltage is $V_2 = 1/(1/R_1 + 1/R_2)) \times I_{source}$. Solving for the output impedance gives $R_{source} = R_{term} \times (V_1/V_2 - 1)$. The drive current is then $I_{source} = V_1/R_{source}$.

This table summarizes the signal impedance targets. The driver impedance are targeted at minimum V_{DD} , nominal OV_{DD} , 105° C.

Impedance	Local Bus, Ethernet, DUART, Control, Configuration, Power Management	PCI	DDR DRAM	Symbol	Unit
R _N	42 Target	25 Target	20 Target	Z ₀	W
R _P	42 Target	25 Target	20 Target	Z ₀	W
Differential	NA	NA	NA	Z _{DIFF}	W

Table 79. Impedance Characteristics

Note: Nominal supply voltages. See Table 1, $T_J = 105^{\circ}$ C.

23.6 Configuration Pin Muxing

The device provides the user with power-on configuration options that can be set through the use of external pull-up or pull-down resistors of 4.7 k Ω on certain output pins (see customer visible configuration pins). These pins are generally used as output only pins in normal operation.

While HRESET is asserted however, these pins are treated as inputs. The value presented on these pins while HRESET is asserted, is latched when HRESET deasserts, at which time the input receiver is disabled and the I/O circuit takes on its normal function. Careful board layout with stubless connections to these pull-up/pull-down resistors coupled with the large value of the pull-up/pull-down resistor should minimize the disruption of signal quality or speed for output pins thus configured.

Part Numbers Fully Addressed by this Document

Device	Package	SVR (Rev. 2.0)	SVR (Rev. 2.1)
MPC8358E	TBGA	0x804A_0020	0x804A_0021
MPC8358	TBGA	0x804B_0020	0x804B_0021

25 Document Revision History

This table provides a revision history for this document.

Table 82. Revision History

Rev. Number	Date	Substantive Change(s)
5	09/2011	 Section 2.2.1, "Power-Up Sequencing", added the current limitation "3A to 5A" for the excessive current. Section 2.1.2, "Power Supply Voltage Specification, Updated the Characteristic for TBGA (MPC8358 & MPC8360 Device) with specific frequency for Core and PLL voltages. Added table footnote 3 to Table 2. Applied table footnotes 1 and 2 to Table 10. Removed table footnotes from Table 19. Applied table footnotes 8 and 9 to Table 40. Applied table footnotes 2 and 3 to Table 41. Applied table footnotes from Table 46. Applied table footnote to last three rows of Table 65.
4	01/2011	 Updated references to the LCRR register throughout Removed references to DDR DLL mode in Section 6.2.2, "DDR and DDR2 SDRAM Output AC Timing Specifications." Changed "Junction-to-Case" to "Junction-to-Ambient" in Section 22.2.4, "Heat Sinks and Junction-to-Ambient Thermal Resistance," and Table 78, "Heat Sinks and Junction-to-Ambient Thermal Resistance of TBGA Package," titles.