

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e300
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	533MHz
Co-Processors/DSP	Communications; QUICC Engine
RAM Controllers	DDR, DDR2
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (1)
SATA	-
USB	USB 1.x (1)
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	-40°C ~ 105°C (TA)
Security Features	-
Package / Case	740-LBGA
Supplier Device Package	740-TBGA (37.5x37.5)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc8360czuajdg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

wide range of protocols including ATM, Ethernet, HDLC, and POS. The QUICC Engine module's enhanced interworking eases the transition and reduces investment costs from ATM to IP based systems. The other major features include a dual DDR SDRAM memory controller for the MPC8360E, which allows equipment providers to partition system parameters and data in an extremely efficient way, such as using one 32-bit DDR memory controller for control plane processing and the other for data plane processing. The MPC8358E has a single DDR SDRAM memory controller. The MPC8360E/58E also offers a 32-bit PCI controller, a flexible local bus, and a dedicated security engine.

This figure shows the MPC8360Eblock diagram.

Figure 1. MPC8360E Block Diagram

Overall DC Electrical Characteristics

2.1 **Overall DC Electrical Characteristics**

This section covers the ratings, conditions, and other characteristics.

2.1.1 Absolute Maximum Ratings

This table provides the absolute maximum ratings.

Table 1. Absolute Maximum Ratings¹

Characteristic		Symbol	Max Value	Unit	Notes
Core and PLL supply vo	ltage for	V _{DD} & AV _{DD}	-0.3 to 1.32	V	—
MPC8358 Device Part N Processor Frequency la QUICC Engine Frequen	Number with bel of AD=266MHz and AG=400MHz & icy label of E=300MHz & G=400MHz				
MPC8360 Device Part N Processor Frequency la QUICC Engine Frequen	Number with bel of AG=400MHz and AJ=533MHz & icy label of G=400MHz				
Core and PLL supply vo	ltage for	V _{DD} & AV _{DD}	-0.3 to 1.37	V	—
MPC8360 device Part N Processor Frequency la Frequency label of H=50	lumber with bel of AL=667MHz and QUICC Engine 00MHz				
DDR and DDR2 DRAM I/O voltage DDR DDR2		GV _{DD}	-0.3 to 2.75 -0.3 to 1.89	V	—
Three-speed Ethernet I	O, MII management voltage	LV _{DD}	-0.3 to 3.63	V	—
PCI, local bus, DUART, I ² C, SPI, and JTAG I/O	system control and power management, voltage	OV _{DD}	-0.3 to 3.63	V	—
Input voltage	DDR DRAM signals	MV _{IN}	-0.3 to (GV _{DD} + 0.3)	V	2, 5
	DDR DRAM reference	MV _{REF}	-0.3 to (GV _{DD} + 0.3)	V	2, 5
	Three-speed Ethernet signals	LV _{IN}	-0.3 to (LV _{DD} + 0.3)	V	4, 5
	Local bus, DUART, CLKIN, system control and power management, I ² C, SPI, and JTAG signals	OV _{IN}	-0.3 to (OV _{DD} + 0.3)	V	3, 5
	PCI	OV _{IN}	-0.3 to (OV _{DD} + 0.3)	V	6

Power Sequencing

2.2.1 Power-Up Sequencing

MPC8360E/58E does not require the core supply voltage (V_{DD} and AV_{DD}) and I/O supply voltages (GV_{DD} , LV_{DD} , and OV_{DD}) to be applied in any particular order. During the power ramp up, before the power supplies are stable and if the I/O voltages are supplied before the core voltage, there may be a period of time that all input and output pins are actively be driven and cause contention and excessive current from 3A to 5A. In order to avoid actively driving the I/O pins and to eliminate excessive current draw, apply the core voltage (V_{DD}) before the I/O voltage (GV_{DD} , LV_{DD} , and OV_{DD}) and assert PORESET before the power supplies fully ramp up. In the case where the core voltage is applied first, the core voltage supply must rise to 90% of its nominal value before the I/O supplies reach 0.7 V, see this figure.

Figure 5. Power Sequencing Example

I/O voltage supplies (GV_{DD}, LV_{DD}, and OV_{DD}) do not have any ordering requirements with respect to one another.

2.2.2 Power-Down Sequencing

The MPC8360E/58E does not require the core supply voltage and I/O supply voltages to be powered down in any particular order.

3 Power Characteristics

The estimated typical power dissipation values are shown in these tables.

Table 4. MPC8360E TBGA	Core Power	Dissipation ¹
------------------------	-------------------	--------------------------

Core Frequency (MHz)	CSB Frequency (MHz)	QUICC Engine Frequency (MHz)	Typical	Maximum	Unit	Notes
266	266	500	5.0	5.6	W	2, 3, 5
400	266	400	4.5	5.0	W	2, 3, 4
533	266	400	4.8	5.3	W	2, 3, 4
667	333	400	5.8	6.3	W	3, 6, 7, 8
500	333	500	5.9	6.4	W	3, 6, 7, 8

Power Sequencing

This table shows the estimated typical I/O power dissipation for the device.

Interface	Parameter	GV _{DD} (1.8 V)	GV _{DD} (2.5 V)	OV _{DD} (3.3 V)	LV _{DD} (3.3 V)	LV _{DD} (2.5 V)	Unit	Comments
DDR I/O	200 MHz, 1 \times 32 bits	0.3	0.46	_	_	—	W	—
$R_s = 20 \Omega$	200 MHz, 1 \times 64 bits	0.4	0.58		_	—	W	—
$R_t = 50 \Omega$	200 MHz, 2×32 bits	0.6	0.92	_	_	—	W	_
	266 MHz, 1 \times 32 bits	0.35	0.56	_	_	—	W	_
	266 MHz, 1 \times 64 bits	0.46	0.7	_	_	—	W	_
	266 MHz, 2×32 bits	0.7	1.11		—	—	W	_
	333 MHz, 1 \times 32 bits	0.4	0.65	_	_	—	W	_
	333 MHz, 1 \times 64 bits	0.53	0.82		—	—	W	_
	333 MHz, 2×32 bits	0.81	1.3		—	—	W	_
Local Bus I/O	133 MHz, 32 bits	—	—	0.22	_	_	W	_
3 pairs of clocks	83 MHz, 32 bits	—	—	0.14	—	—	W	—
	66 MHz, 32 bits	—	—	0.12	—	—	W	_
	50 MHz, 32 bits	—	—	0.09	—	—	W	_
PCI I/O	33 MHz, 32 bits	—	—	0.05	—	—	W	_
Load = 30 pF	66 MHz, 32 bits	—	—	0.07	—	—	W	—
10/100/1000	MII or RMII	—	—	_	0.01	—	W	Multiply by
Load = 20 pF	GMII or TBI	—	—	_	0.04	—	W	interfaces used.
	RGMII or RTBI	—	—	—	—	0.04	W	
Other I/O	_	—	_	0.1	—	—	W	_

Table 6. Estimated Typical I/O Power Dissipation

4 Clock Input Timing

This section provides the clock input DC and AC electrical characteristics for the MPC8360E/58E.

NOTE

The rise/fall time on QUICC Engine block input pins should not exceed 5 ns. This should be enforced especially on clock signals. Rise time refers to signal transitions from 10% to 90% of V_{DD} ; fall time refers to transitions from 90% to 10% of V_{DD} .

RESET DC Electrical Characteristics

Table 9. GTX_CLK125 AC Timing Specifications

At recommended operating conditions with LV_{DD} = 2.5 ± 0.125 mV/ 3.3 V ± 165 mV (continued)

Parameter/Condition	Symbol	Min	Typical	Max	Unit	Notes
GTX_CLK rise and fall time $\label{eq:VDD} \begin{array}{l} \text{LV}_{\text{DD}} = 2.5 \text{ V} \\ \text{LV}_{\text{DD}} = 3.3 \text{ V} \end{array}$	t _{G125R} /t _{G125F}	—	_	0.75 1.0	ns	1
GTX_CLK125 duty cycle GMII & TBI 1000Base-T for RGMII & RTBI	t _{G125H} /t _{G125}	45 47	—	55 53	%	2
GTX_CLK125 jitter	—	—	—	±150	ps	2

Notes:

- 1. Rise and fall times for GTX_CLK125 are measured from 0.5 and 2.0 V for LV_{DD} = 2.5 V and from 0.6 and 2.7 V for LV_{DD} = 3.3 V.
- GTX_CLK125 is used to generate the GTX clock for the UCC Ethernet transmitter with 2% degradation. The GTX_CLK125 duty cycle can be loosened from 47%/53% as long as the PHY device can tolerate the duty cycle generated by GTX_CLK. See Section 8.2.2, "MII AC Timing Specifications," Section 8.2.3, "RMII AC Timing Specifications," and Section 8.2.5, "RGMII and RTBI AC Timing Specifications" for the duty cycle for 10Base-T and 100Base-T reference clock.

5 **RESET Initialization**

This section describes the DC and AC electrical specifications for the reset initialization timing and electrical requirements of the MPC8360E/58E.

5.1 **RESET DC Electrical Characteristics**

This table provides the DC electrical characteristics for the RESET pins of the device.

Characteristic	Symbol	Condition	Min	Max	Unit
Input high voltage	V _{IH}	_	2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}	_	-0.3	0.8	V
Input current	I _{IN}	_	_	±10	μA
Output high voltage	V _{OH} ²	I _{OH} = -8.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	_	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	_	0.4	V

Table 10. RESET Pins DC Electrical Characteristics ¹

Notes:

1. This table applies for pins PORESET, HRESET, SRESET, and QUIESCE.

2. HRESET and SRESET are open drain pins, thus V_{OH} is not relevant for those pins.

DDR and DDR2 SDRAM AC Electrical Characteristics

This table provides the input AC timing specifications for the DDR SDRAM interface when $GV_{DD}(typ) = 2.5 \text{ V}$.

Table 19. DDR SDRAM Input AC Timing Specifications

At recommended operating conditions with GV_{DD} of 2.5 V ± 5%.

Parameter	Symbol	Min	Min Max		Notes
AC input low voltage	V _{IL}	—	MV _{REF} – 0.31	V	—
AC input high voltage	V _{IH}	MV _{REF} + 0.31	_	V	_

Table 20. DDR and DDR2 SDRAM Input AC Timing Specifications Mode

At recommended operating conditions with GV_{DD} of (1.8 or 2.5 V) ± 5%.

Parameter	Symbol	Min	Мах	Unit	Notes
MDQS—MDQ/MECC input skew per byte 333 MHz 266 MHz 200 MHz	t _{DISKEW}	-750 -1125 -1250	750 1125 1250	ps	1, 2

Notes:

1. AC timing values are based on the DDR data rate, which is twice the DDR memory bus frequency.

Maximum possible skew between a data strobe (MDQS[n]) and any corresponding bit of data (MDQ[8n + {0...7}] if 0 ≤n ≤7) or ECC (MECC[{0...7}] if n = 8).

This figure shows the input timing diagram for the DDR controller.

Figure 6. DDR Input Timing Diagram

GMII, MII, RMII, TBI, RGMII, and RTBI AC Timing Specifications

Table 32. RMII Receive AC Timing Specifications (continued)

At recommended operating conditions with $\text{LV}_{\text{DD}}/\text{OV}_{\text{DD}}$ of 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
RXD[1:0], CRS_DV, RX_ER setup time to REF_CLK	t _{RMRDVKH}	4.0	_	—	ns
RXD[1:0], CRS_DV, RX_ER hold time to REF_CLK	t _{RMRDXKH}	2.0	_	—	ns
REF_CLK clock rise time	t _{RMXR}	1.0	_	4.0	ns
REF_CLK clock fall time	t _{RMXF}	1.0	_	4.0	ns

Note:

1. The symbols used for timing specifications follow the pattern of t_{(first three letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{RMRDVKH} symbolizes RMII receive timing (RMR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{RMX} clock reference (K) going to the high (H) state or setup time. Also, t_{RMRDXKL} symbolizes RMII receive timing (RMR) with respect to the time data input signals (D) relative to the t_{RMX} clock reference (K) going to the low (L) state or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{RMX} represents the RMII (RM) reference (X) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}}

This figure provides the AC test load.

Figure 16. AC Test Load

This figure shows the RMII receive AC timing diagram.

Figure 17. RMII Receive AC Timing Diagram

8.2.4 TBI AC Timing Specifications

This section describes the TBI transmit and receive AC timing specifications.

Local Bus AC Electrical Specifications

Parameter	Symbol ¹	Min	Max	Unit	Notes
Local bus clock to output valid	t _{LBKHOV}	—	3	ns	3
Local bus clock to output high impedance for LAD/LDP	t _{LBKHOZ}		4	ns	8

Table 41. Local Bus General Timing Parameters—DLL Bypass Mode⁹ (continued)

Notes:

- The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{LBIXKH1} symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t_{LBK} clock reference (K) goes high (H), in this case for clock one (1). Also, t_{LBKHOX} symbolizes local bus timing (LB) for the to the output (O) going invalid (X) or output hold time.
 </sub>
- 2. All timings are in reference to falling edge of LCLK0 (for all outputs and for LGTA and LUPWAIT inputs) or rising edge of LCLK0 (for all other inputs).
- 3. All signals are measured from OV_{DD}/2 of the rising/falling edge of LCLK0 to 0.4 × OV_{DD} of the signal in question for 3.3-V signaling levels.
- 4. Input timings are measured at the pin.
- 5. t_{LBOTOT1} should be used when RCWH[LALE] is not set and when the load on LALE output pin is at least 10 pF less than the load on LAD output pins.
- t_{LBOTOT2} should be used when RCWH[LALE] is set and when the load on LALE output pin is at least 10 pF less than the load on LAD output pins.
- 7. t_{LBOTOT3} should be used when RCWH[LALE] is set and when the load on LALE output pin equals to the load on LAD output pins.
- 8. For purposes of active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 9. DLL bypass mode is not recommended for use at frequencies above 66 MHz.

This figure provides the AC test load for the local bus.

Figure 22. Local Bus C Test Load

PCI AC Electrical Specifications

Table 47. PCI AC Timing Specifications at 66 MHz (continued)

Parameter	Symbol ¹	Min	Мах	Unit	Notes
Clock to output high impedance	t _{PCKHOZ}	_	14	ns	2, 3
Input setup to clock	t _{PCIVKH}	3.0	_	ns	2, 4
Input hold from clock	t _{PCIXKH}	0.3	_	ns	2, 4, 6

Notes:

- The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{PCIVKH} symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, t_{SYS}, reference (K) going to the high (H) state or setup time. Also, t_{PCRHFV} symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.
 </sub>
- 2. See the timing measurement conditions in the PCI 2.2 Local Bus Specifications.
- 3. For purposes of active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 4. Input timings are measured at the pin.
- 5. In rev. 2.0 silicon, due to errata, t_{PCIHOV} maximum is 6.6 ns. Refer to Errata PCI21 in Chip Errata for the MPC8360E, Rev. 1.
- 6. In rev. 2.0 silicon, due to errata, t_{PCIXKH} minimum is 1 ns. Refer to Errata PCI17 in Chip Errata for the MPC8360E, Rev. 1.

Table 48. PCI AC Timing Specifications at 33 MHz

Parameter	Symbol ¹	Min	Max	Unit	Notes
Clock to output valid	t _{PCKHOV}	_	11	ns	2
Output hold from clock	t _{PCKHOX}	2	-	ns	2
Clock to output high impedance	t _{PCKHOZ}	_	14	ns	2, 3
Input setup to clock	t _{PCIVKH}	7.0	_	ns	2, 2
Input hold from clock	t _{PCIXKH}	0.3	_	ns	2, 4, 5

Notes:

- The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state)} for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{PCIVKH} symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, t_{SYS}, reference (K) going to the high (H) state or setup time. Also, t_{PCRHFV} symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.
- 2. See the timing measurement conditions in the PCI 2.2 Local Bus Specifications.
- 3. For purposes of active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 4. Input timings are measured at the pin.
- 5. In rev. 2.0 silicon, due to errata, t_{PCIXKH} minimum is 1 ns. Refer to Errata PCI17 in Chip Errata for the MPC8360E, Rev. 1.

This figure provides the AC test load for PCI.

Figure 36. PCI AC Test Load

Timers AC Timing Specifications

13.2 Timers AC Timing Specifications

This table provides the timer input and output AC timing specifications.

Table 50. Timers Input AC Timing Specifications¹

Characteristic	Symbol ²	Тур	Unit
Timers inputs—minimum pulse width		20	ns

Notes:

- 1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are measured at the pin.
- 2. Timers inputs and outputs are asynchronous to any visible clock. Timers outputs should be synchronized before use by any external synchronous logic. Timers inputs are required to be valid for at least t_{TIWID} ns to ensure proper operation.

This figure provides the AC test load for the timers.

Figure 39. Timers AC Test Load

14 GPIO

This section describes the DC and AC electrical specifications for the GPIO of the MPC8360E/58E.

14.1 GPIO DC Electrical Characteristics

This table provides the DC electrical characteristics for the device GPIO.

Table 51. GPIO DC Electrical Characteristic

Characteristic	Symbol	Condition	Min	Мах	Unit	Notes
Output high voltage	V _{OH}	I _{OH} = -6.0 mA	2.4	_	V	1
Output low voltage	V _{OL}	I _{OL} = 6.0 mA	—	0.5	V	1
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	—	0.4	V	1
Input high voltage	V _{IH}	—	2.0	OV _{DD} + 0.3	V	1
Input low voltage	V _{IL}	—	-0.3	0.8	V	—
Input current	I _{IN}	0 V ≤V _{IN} ≤OV _{DD}	—	±10	μA	—

Note:

1. This specification applies when operating from 3.3-V supply.

14.2 GPIO AC Timing Specifications

This table provides the GPIO input and output AC timing specifications.

Table 52. GPIO Input AC Timing Specifications¹

Characteristic	Symbol ²	Тур	Unit
GPIO inputs—minimum pulse width		20	ns

Notes:

- 1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are measured at the pin.
- 2. GPIO inputs and outputs are asynchronous to any visible clock. GPIO outputs should be synchronized before use by any external synchronous logic. GPIO inputs are required to be valid for at least t_{PIWID} ns to ensure proper operation.

This figure provides the AC test load for the GPIO.

Figure 40. GPIO AC Test Load

15 IPIC

This section describes the DC and AC electrical specifications for the external interrupt pins of the MPC8360E/58E.

15.1 IPIC DC Electrical Characteristics

This table provides the DC electrical characteristics for the external interrupt pins of the IPIC.

Table 53. IPIC DC Electrical Characteristics

Characteristic	Symbol	Condition	Min	Мах	Unit
Input high voltage	V _{IH}	—	2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	-0.3	0.8	V
Input current	I _{IN}	—	—	±10	μA
Output low voltage	V _{OL}	I _{OL} = 6.0 mA	—	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	_	0.4	V

Notes:

1. This table applies for pins IRQ[0:7], IRQ_OUT, MCP_OUT, and CE ports Interrupts.

2. IRQ_OUT and MCP_OUT are open drain pins, thus V_{OH} is not relevant for those pins.

Table 67. MPC8358E TBGA Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
IRQ[4:5]	G33, G32	I/O	OV _{DD}	—
IRQ[6]/LCS[6]/CKSTOP_OUT	E35	I/O	OV _{DD}	—
IRQ[7]/LCS[7]/CKSTOP_IN	H36	I/O	OV _{DD}	—
	DUART			
UART1_SOUT/M1SRCID[0]/ M2SRCID[0]/LSRCID[0]	E32	0	OV _{DD}	_
UART1_SIN/M1SRCID[1]/ M2SRCID[1]/LSRCID[1]	B34	I/O	OV _{DD}	
UART1_CTS/M1SRCID[2]/ M2SRCID[2]/LSRCID[2]	C34	I/O	OV _{DD}	
UART1_RTS/M1SRCID[3]/ M2SRCID[3]/LSRCID[3]	A35	0	OV _{DD}	_
	I ² C Interface			<u> </u>
IIC1_SDA	D34	I/O	OV _{DD}	2
IIC1_SCL	B35	I/O	OV _{DD}	2
IIC2_SDA	E33	I/O	OV _{DD}	2
IIC2_SCL	C35	I/O	OV _{DD}	2
	QUICC Engine			
CE_PA[0]	F8	I/O	LV _{DD0}	—
CE_PA[1:2]	AH1, AG5	I/O	OV _{DD}	—
CE_PA[3:7]	F6, D4, C3, E5, A3	I/O	LV _{DD} 0	—
CE_PA[8]	AG3	I/O	OV _{DD}	—
CE_PA[9:12]	F7, B3, E6, B4	I/O	LV _{DD} 0	—
CE_PA[13:14]	AG1, AF6	I/O	OV _{DD}	—
CE_PA[15]	B2	I/O	LV _{DD} 0	—
CE_PA[16]	AF4	I/O	OV _{DD}	—
CE_PA[17:21]	B16, A16, E17, A17, B17	I/O	LV _{DD} 1	—
CE_PA[22]	AF3	I/O	OV _{DD}	—
CE_PA[23:26]	C18, D18, E18, A18	I/O	LV _{DD} 1	—
CE_PA[27:28]	AF2, AE6	I/O	OV _{DD}	—
CE_PA[29]	B19	I/O	LV _{DD} 1	—
CE_PA[30]	AE5	I/O	OV_{DD}	—
CE_PA[31]	F16	I/O	LV _{DD} 1	—

Pinout Listings

Signal	Package Pin Number	Pin Type	Power Supply	Notes
LV _{DD} 1	C17, D16	Power for UCC2 Ethernet interface option 1 (2.5 V, 3.3 V)	LV _{DD} 1	9
LV _{DD} 2	B18, E21	Power for UCC2 Ethernet interface option 2 (2.5 V, 3.3 V)	LV _{DD} 2	9
V _{DD}	C36, D29, D35, E16, F9, F12, F15, F17, F18, F20, F21, F23, F25, F26, F29, F31, F32, F33, G6, J6, K32, M32, N6, P33, R6, R32, U32, V6, Y5, Y32, AB6, AB33, AD6, AF32, AK6, AL6, AM7, AM9, AM10, AM11, AM12, AM13, AM14, AM15, AM18, AM21, AM25, AM28, AM32, AN15, AN21, AN26, AU9, AU17	Power for core (1.2 V)	V _{DD}	_
OV _{DD}	A10, B9, B15, B32, C1, C12, C22, C29, D24, E3, E10, E27, G4, H35, J1, J35, K2, M4, N3, N34, R2, R37, T36, U2, U33, V4, V34, W3, Y35, Y37, AA1, AA36, AB2, AB34	PCI, 10/100 Ethernet, and other standard (3.3 V)	OV _{DD}	
MVREF1	AN20	I	DDR reference voltage	_
MVREF2	AU32	I	DDR reference voltage	
			Г	
SPARE1	B11	I/O	OV _{DD}	8
SPARE3	AH32		GV _{DD}	8
SPARE4	AU18	—	GV _{DD}	7
SPARE5	AP1	—	GV _{DD}	8

Table 67. MPC8358E TBGA Pinout Listing (continued)

Table 67. MPC8358E TBGA Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
	No Connect			
NC	AM16, AM17, AM20, AN13, AN16, AN17, AP10, AP11, AP13, AP15, AP18, AR11, AR13, AR14, AR15, AR16, AR17, AR20, AT11, AT12, AT13, AT14, AT16, AT17, AT18, AU10, AU11, AU12, AU13, AU15, AU19	_	_	

Notes:

- 1. This pin is an open drain signal. A weak pull-up resistor (1 k Ω) should be placed on this pin to OV_{DD}.
- 2. This pin is an open drain signal. A weak pull-up resistor (2–10 k Ω) should be placed on this pin to OV_{DD} .
- 3. This output is actively driven during reset rather than being three-stated during reset.
- 4. These JTAG pins have weak internal pull-up P-FETs that are always enabled.
- 5. This pin should have a weak pull up if the chip is in PCI host mode. Follow PCI specifications recommendation.
- 6. These are On Die Termination pins, used to control DDR2 memories internal termination resistance.
- 7. This pin must always be tied to GND.
- 8. This pin must always be left not connected.
- 9. Refer to MPC8360E PowerQUICC II Pro Integrated Communications Processor Reference Manual section on "RGMII Pins," for information about the two UCC2 Ethernet interface options.
- 10. This pin must always be tied to GV_{DD} .
- 11. It is recommended that MDIC0 be tied to GND using an 18.2 Ω resistor and MDIC1 be tied to DDR power using an 18.2 Ω resistor for DDR2.

This figure shows the internal distribution of clocks within the MPC8358E.

The primary clock source for the device can be one of two inputs, CLKIN or PCI_CLK, depending on whether the device is configured in PCI host or PCI agent mode. Note that in PCI host mode, the primary clock input also depends on whether PCI clock outputs are selected with RCWH[PCICKDRV]. When the device is configured as a PCI host device (RCWH[PCIHOST] = 1) and PCI clock output is selected (RCWH[PCICKDRV] = 1), CLKIN is its primary input clock. CLKIN feeds the PCI clock divider (\div 2) and the multiplexors for PCI_SYNC_OUT and PCI_CLK_OUT. The CFG_CLKIN_DIV configuration input selects whether CLKIN or CLKIN/2 is driven out on the PCI_SYNC_OUT signal. The OCCR[PCIOEN*n*] parameters enable the PCI_CLK_OUT*n*, respectively.

PCI_SYNC_OUT is connected externally to PCI_SYNC_IN to allow the internal clock subsystem to synchronize to the system PCI clocks. PCI_SYNC_OUT must be connected properly to PCI_SYNC_IN, with equal delay to all PCI agent devices in the system, to allow the device to function. When the device is configured as a PCI agent device, PCI_CLK is the primary input

Pinout Listings

clock. When the device is configured as a PCI agent device the CLKIN and the CFG_CLKIN_DIV signals should be tied to GND.

When the device is configured as a PCI host device (RCWH[PCIHOST] = 1) and PCI clock output is disabled (RCWH[PCICKDRV] = 0), clock distribution and balancing done externally on the board. Therefore, PCI_SYNC_IN is the primary input clock.

As shown in Figure 54 and Figure 55, the primary clock input (frequency) is multiplied by the QUICC Engine block phase-locked loop (PLL), the system PLL, and the clock unit to create the QUICC Engine clock (ce_clk), the coherent system bus clock (csb_clk), the internal DDRC1 controller clock ($ddr1_clk$), and the internal clock for the local bus interface unit and DDR2 memory controller (lb_clk).

The *csb_clk* frequency is derived from a complex set of factors that can be simplified into the following equation:

$$csb_clk = \{PCI_SYNC_IN \times (1 + CFG_CLKIN_DIV)\} \times SPMF$$

In PCI host mode, PCI_SYNC_IN \times (1 + CFG_CLKIN_DIV) is the CLKIN frequency; in PCI agent mode, CFG_CLKIN_DIV must be pulled down (low), so PCI_SYNC_IN \times (1 + CFG_CLKIN_DIV) is the PCI_CLK frequency.

The *csb_clk* serves as the clock input to the e300 core. A second PLL inside the e300 core multiplies up the *csb_clk* frequency to create the internal clock for the e300 core (*core_clk*). The system and core PLL multipliers are selected by the SPMF and COREPLL fields in the reset configuration word low (RCWL) which is loaded at power-on reset or by one of the hard-coded reset options. See Chapter 4, "Reset, Clocking, and Initialization," in the *MPC8360E PowerQUICC II Pro Integrated Communications Processor Reference Manual* for more information on the clock subsystem.

The *ce_clk* frequency is determined by the QUICC Engine PLL multiplication factor (RCWL[CEPMF) and the QUICC Engine PLL division factor (RCWL[CEPDF]) according to the following equation:

 $ce_clk = (primary clock input \times CEPMF) \div (1 + CEPDF)$

The internal *ddr1_clk* frequency is determined by the following equation:

 $ddr1_clk = csb_clk \times (1 + RCWL[DDR1CM])$

Note that the lb_clk clock frequency (for DDRC2) is determined by RCWL[LBCM]. The *internal ddr1_clk* frequency is not the external memory bus frequency; *ddr1_clk* passes through the DDRC1 clock divider (\div 2) to create the differential DDRC1 memory bus clock outputs (MEMC1_MCK and MEMC1_MCK). However, the data rate is the same frequency as *ddr1_clk*.

The internal *lb_clk* frequency is determined by the following equation:

 $lb_clk = csb_clk \times (1 + \text{RCWL[LBCM]})$

Note that *lb_clk* is not the external local bus or DDRC2 frequency; *lb_clk* passes through the a LB clock divider to create the external local bus clock outputs (LSYNC_OUT and LCLK[0:2]). The LB clock divider ratio is controlled by LCRR[CLKDIV].

Additionally, some of the internal units may be required to be shut off or operate at lower frequency than the *csb_clk* frequency. Those units have a default clock ratio that can be configured by a memory mapped register after the device comes out of reset. This table specifies which units have a configurable clock frequency.

Unit	Default Frequency	Options
Security core	csb_clk/3	Off, <i>csb_clk</i> ¹ , <i>csb_clk</i> /2, <i>csb_clk</i> /3
PCI and DMA complex	csb_clk	Off, <i>csb_clk</i>

Table 68	Configurable	Clock	Units
----------	--------------	-------	-------

¹ With limitation, only for slow csb_clk rates, up to 166 MHz.

This table provides the operating frequencies for the TBGA package under recommended operating conditions (see Table 2). All frequency combinations shown in the table below may not be available. Maximum operating frequencies depend on the part

21.3 QUICC Engine Block PLL Configuration

The QUICC Engine block PLL is controlled by the RCWL[CEPMF], RCWL[CEPDF], and RCWL[CEVCOD] parameters. This table shows the multiplication factor encodings for the QUICC Engine block PLL.

RCWL[CEPMF]	RCWL[CEPDF]	QUICC Engine PLL Multiplication Factor = RCWL[CEPMF]/ (1 + RCWL[CEPDF])
00000	0	× 16
00001	0	Reserved
00010	0	× 2
00011	0	× 3
00100	0	× 4
00101	0	× 5
00110	0	× 6
00111	0	× 7
01000	0	× 8
01001	0	× 9
01010	0	× 10
01011	0	× 11
01100	0	× 12
01101	0	× 13
01110	0	× 14
01111	0	× 15
10000	0	× 16
10001	0	× 17
10010	0	× 18
10011	0	× 19
10100	0	× 20
10101	0	× 21
10110	0	× 22
10111	0	× 23
11000	0	× 24
11001	0	× 25
11010	0	× 26
11011	0	× 27
11100	0	× 28

Table 74. QUICC Engine Block PLL Multiplication Factors

The QUICC Engine block VCO frequency is derived from the following equations:

 $ce_clk = (primary clock input \times CEPMF) \div (1 + CEPDF)$

QE VCO Frequency = $ce_clk \times VCO$ divider $\times (1 + CEPDF)$

21.4 Suggested PLL Configurations

To simplify the PLL configurations, the device might be separated into two clock domains. The first domain contains the CSB PLL and the core PLL. The core PLL is connected serially to the CSB PLL, and has the csb_clk as its input clock. The second clock domain has the QUICC Engine block PLL. The clock domains are independent, and each of their PLLs are configured separately. Both of the domains has one common input clock. This table shows suggested PLL configurations for 33 and 66 MHz input clocks and illustrates each of the clock domains separately. Any combination of clock domains setting with same input clock are valid. Refer to Section 21, "Clocking," for the appropriate operating frequencies for your device.

Conf No. ¹	SPMF	CORE PLL	CEPMF	CEPDF	Input Clock Freq (MHz)	CSB Freq (MHz)	Core Freq (MHz)	QUICC Engine Freq (MHz)	400 (MHz)	533 (MHz)	667 (MHz)
				33 MH:	z CLKIN/PCI	SYNC_IN	Options				
s1	0100	0000100	æ	æ	33	133	266	—	8	8	8
s2	0100	0000101	æ	æ	33	133	333	_	8	∞	8
s3	0101	0000100	æ	æ	33	166	333	_	8	8	8
s4	0101	0000101	æ	æ	33	166	416			8	8
s5	0110	0000100	æ	æ	33	200	400		8	8	8
s6	0110	0000110	æ	æ	33	200	600			—	8
s7	0111	0000011	æ	æ	33	233	350		8	8	8
s8	0111	0000100	æ	æ	33	233	466			8	8
s9	0111	0000101	æ	æ	33	233	583			_	8
s10	1000	0000011	æ	æ	33	266	400		8	8	8
s11	1000	0000100	æ	æ	33	266	533			8	8
s12	1000	0000101	æ	æ	33	266	667			_	8
s13	1001	0000010	æ	æ	33	300	300		8	8	8
s14	1001	0000011	æ	æ	33	300	450	_		8	8
s15	1001	0000100	æ	æ	33	300	600	_		—	8
s16	1010	0000010	æ	æ	33	333	333	_	8	8	8
s17	1010	0000011	æ	æ	33	333	500	_		8	8
s18	1010	0000100	æ	æ	33	333	667	_		—	8
c1	æ	æ	01001	0	33			300	8	8	8
c2	æ	æ	01100	0	33	_	_	400	8	8	8
c3	æ	æ	01110	0	33	_	_	466	_	8	8
c4	æ	æ	01111	0	33			500	_	8	8

Table 76. Suggested PLL Configurations

Suggested PLL Configurations

Conf No. ¹	SPMF	CORE PLL	CEPMF	CEPDF	Input Clock Freq (MHz)	CSB Freq (MHz)	Core Freq (MHz)	QUICC Engine Freq (MHz)	400 (MHz)	533 (MHz)	667 (MHz)
c5	æ	æ	10000	0	33	—	—	533		∞	8
c6	æ	æ	10001	0	33	—	—	566		_	8
66 MHz CLKIN/PCI_SYNC_IN Options											
s1h	0011	0000110	æ	æ	66	200	400	_	8	∞	8
s2h	0011	0000101	æ	æ	66	200	500	_	_	∞	8
s3h	0011	0000110	æ	æ	66	200	600	_	_	—	8
s4h	0100	0000011	æ	æ	66	266	400	_	8	∞	8
s5h	0100	0000100	æ	æ	66	266	533	_	_	∞	8
s6h	0100	0000101	æ	æ	66	266	667	_	_	—	8
s7h	0101	0000010	æ	æ	66	333	333	_	8	∞	8
s8h	0101	0000011	æ	æ	66	333	500	_	_	∞	8
s9h	0101	0000100	æ	æ	66	333	667	_		—	8
c1h	æ	æ	00101	0	66	—	—	333	~	∞	∞
c2h	æ	æ	00110	0	66	—	—	400	8	∞	8
c3h	æ	æ	00111	0	66	—	_	466		∞	8
c4h	æ	æ	01000	0	66	—	_	533		∞	8
c5h	æ	æ	01001	0	66	—	_	600		—	~

Table 76. Suggested PLL Configurations (continued)

Note:

1. The Conf No. consist of prefix, an index and a postfix. The prefix "s" and "c" stands for "syset" and "ce" respectively. The postfix "h" stands for "high input clock." The index is a serial number.

The following steps describe how to use above table. See Example 1.

- 2. Choose the up or down sections in the table according to input clock rate 33 MHz or 66 MHz.
- 3. Select a suitable CSB and core clock rates from Table 76. Copy the SPMF and CORE PLL configuration bits.
- 4. Select a suitable QUICC Engine block clock rate from Table 76. Copy the CEPMF and CEPDF configuration bits.
- 5. Insert the chosen SPMF, COREPLL, CEPMF and CEPDF to the RCWL fields, respectively.

Configuration Pin Muxing

Figure 57. Driver Impedance Measurement

The value of this resistance and the strength of the driver's current source can be found by making two measurements. First, the output voltage is measured while driving logic 1 without an external differential termination resistor. The measured voltage is $V_1 = R_{source} \times I_{source}$. Second, the output voltage is measured while driving logic 1 with an external precision differential termination resistor of value R_{term} . The measured voltage is $V_2 = 1/(1/R_1 + 1/R_2)) \times I_{source}$. Solving for the output impedance gives $R_{source} = R_{term} \times (V_1/V_2 - 1)$. The drive current is then $I_{source} = V_1/R_{source}$.

This table summarizes the signal impedance targets. The driver impedance are targeted at minimum V_{DD} , nominal OV_{DD} , 105° C.

Impedance	Local Bus, Ethernet, DUART, Control, Configuration, Power Management	PCI	DDR DRAM	Symbol	Unit
R _N	42 Target	25 Target	20 Target	Z ₀	W
R _P	42 Target	25 Target	20 Target	Z ₀	W
Differential	NA	NA	NA	Z _{DIFF}	W

Table 79. Impedance Characteristics

Note: Nominal supply voltages. See Table 1, $T_J = 105^{\circ}$ C.

23.6 Configuration Pin Muxing

The device provides the user with power-on configuration options that can be set through the use of external pull-up or pull-down resistors of 4.7 k Ω on certain output pins (see customer visible configuration pins). These pins are generally used as output only pins in normal operation.

While HRESET is asserted however, these pins are treated as inputs. The value presented on these pins while HRESET is asserted, is latched when HRESET deasserts, at which time the input receiver is disabled and the I/O circuit takes on its normal function. Careful board layout with stubless connections to these pull-up/pull-down resistors coupled with the large value of the pull-up/pull-down resistor should minimize the disruption of signal quality or speed for output pins thus configured.