NXP USA Inc. - KMPC8360VVAJDG Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e300
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	533MHz
Co-Processors/DSP	Communications; QUICC Engine
RAM Controllers	DDR, DDR2
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (1)
SATA	-
USB	USB 1.x (1)
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	740-LBGA
Supplier Device Package	740-TBGA (37.5x37.5)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc8360vvajdg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Characteristic	Symbol	Max Value	Unit	Notes
Storage temperature range	T _{STG}	-55 to 150	°C	

Notes:

- 1. Functional and tested operating conditions are given in Table 2. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.
- 2. Caution: MV_{IN} must not exceed GV_{DD} by more than 0.3 V. This limit may be exceeded for a maximum of 100 ms during power-on reset and power-down sequences.
- 3. Caution: OV_{IN} must not exceed OV_{DD} by more than 0.3 V. This limit may be exceeded for a maximum of 100 ms during power-on reset and power-down sequences.
- 4. **Caution:** LV_{IN} must not exceed LV_{DD} by more than 0.3 V. This limit may be exceeded for a maximum of 100 ms during power-on reset and power-down sequences.
- 5. (M,L,O)V_{IN} and MV_{REF} may overshoot/undershoot to a voltage and for a maximum duration as shown in Figure 3.
- 6. OV_{IN} on the PCI interface may overshoot/undershoot according to the PCI Electrical Specification for 3.3-V operation, as shown in Figure 4.

2.1.2 Power Supply Voltage Specification

This table provides the recommended operating conditions for the device. Note that the values in this table are the recommended and tested operating conditions. Proper device operation outside of these conditions is not guaranteed.

Table 2. Recommended	Operating Conditions
----------------------	----------------------

Characteristic	Symbol	Recommended Value	Unit	Notes
Core and PLL supply voltage for	V _{DD} & AV _{DD}	1.2 V ± 60 mV	V	1, 3
MPC8358 Device Part Number with Processor Frequency label of AD=266MHz and AG=400MHz & QUICC Engine Frequency label of E=300MHz & G=400MHz MPC8360 Device Part Number with Processor Frequency label of AG=400MHz and AJ=533MHz & QUICC Engine Frequency label of G=400MHz				
Core and PLL supply voltage for MPC8360 Device Part Number with Processor Frequency label of AL=667MHz and QUICC Engine Frequency label of H=500MHz	V _{DD} & AV _{DD}	1.3 V ± 50 mV	V	1, 3
DDR and DDR2 DRAM I/O supply voltage DDR DDR2	GV _{DD}	2.5 V ± 125 mV 1.8 V ± 90 mV	V	_
Three-speed Ethernet I/O supply voltage	LV _{DD} 0	3.3 V ± 330 mV 2.5 V ± 125 mV	V	
Three-speed Ethernet I/O supply voltage	LV _{DD} 1	3.3 V ± 330 mV 2.5 V ± 125 mV	V	—
Three-speed Ethernet I/O supply voltage	LV _{DD} 2	3.3 V ± 330 mV 2.5 V ± 125 mV	V	_

Power Sequencing

This figure shows the undershoot and overshoot voltage of the PCI interface of the device for the 3.3-V signals, respectively.

Figure 4. Maximum AC Waveforms on PCI interface for 3.3-V Signaling

2.1.3 Output Driver Characteristics

This table provides information on the characteristics of the output driver strengths. The values are preliminary estimates.

Driver Type	Output Impedance (Ω)	Supply Voltage
Local bus interface utilities signals	42	OV _{DD} = 3.3 V
PCI signals	25	
PCI output clocks (including PCI_SYNC_OUT)	42	
DDR signal	20 36 (half-strength mode) ¹	GV _{DD} = 2.5 V
DDR2 signal	18 36 (half-strength mode) ¹	GV _{DD} = 1.8 V
10/100/1000 Ethernet signals	42	LV _{DD} = 2.5/3.3 V
DUART, system control, I ² C, SPI, JTAG	42	OV _{DD} = 3.3 V
GPIO signals	42	OV _{DD} = 3.3 V LV _{DD} = 2.5/3.3 V

Note:

1. DDR output impedance values for half strength mode are verified by design and not tested.

2.2 Power Sequencing

This section details the power sequencing considerations for the MPC8360E/58E.

Table 4. MPC8360E TBGA Core Power Dissipa	tion ¹ (continued)
---	-------------------------------

Core Frequency (MHz)	CSB Frequency (MHz)	QUICC Engine Frequency (MHz)	Typical	Maximum	Unit	Notes
667	333	500	6.1	6.8	W	2, 3, 5, 9

Notes:

- 1. The values do not include I/O supply power (OV_{DD}, LV_{DD}, GV_{DD}) or AV_{DD}. For I/O power values, see Table 6.
- 2. Typical power is based on a voltage of V_{DD} = 1.2 V or 1.3 V, a junction temperature of T_J = 105°C, and a Dhrystone benchmark application.
- 3. Thermal solutions need to design to a value higher than typical power on the end application, T_A target, and I/O power.
- 4. Maximum power is based on a voltage of V_{DD} = 1.2 V, WC process, a junction T_J = 105°C, and an artificial smoke test.
- Maximum power is based on a voltage of V_{DD} = 1.3 V for applications that use 667 MHz (CPU)/500 (QE) with WC process, a junction T₁ = 105° C, and an artificial smoke test.
- 6. Typical power is based on a voltage of V_{DD} = 1.3 V, a junction temperature of T_J = 70° C, and a Dhrystone benchmark application.
- Maximum power is based on a voltage of V_{DD} = 1.3 V for applications that use 667 MHz (CPU) or 500 (QE) with WC process, a junction T_J = 70° C, and an artificial smoke test.
- 8. This frequency combination is only available for rev. 2.0 silicon.
- 9. This frequency combination is not available for rev. 2.0 silicon.

Table 5. MPC8358E TBGA Core Power Dissipation¹

Core Frequency (MHz)	CSB Frequency (MHz)	QUICC Engine Frequency (MHz)	Typical	Maximum	Unit	Notes
266	266	300	4.1	4.5	W	2, 3, 4
400	266	400	4.5	5.0	W	2, 3, 4

Notes:

- 1. The values do not include I/O supply power (OV_{DD}, LV_{DD} , GV_{DD}) or AV_{DD} . For I/O power values, see Table 6.
- Typical power is based on a voltage of V_{DD} = 1.2 V, a junction temperature of T_J = 105°C, and a Dhrystone benchmark application.
- 3. Thermal solutions need to design to a value higher than typical power on the end application, T_A target, and I/O power.
- 4. Maximum power is based on a voltage of V_{DD} = 1.2 V, WC process, a junction T_J = 105°C, and an artificial smoke test.

DC Electrical Characteristics

4.1 DC Electrical Characteristics

This table provides the clock input (CLKIN/PCI_SYNC_IN) DC timing specifications for the device.

Parameter	Condition	Symbol	Min	Max	Unit
Input high voltage	—	V _{IH}	2.7	OV _{DD} + 0.3	V
Input low voltage	—	V _{IL}	-0.3	0.4	V
CLKIN input current	0 V ≤V _{IN} ≤OV _{DD}	I _{IN}	—	±10	μA
PCI_SYNC_IN input current	0 V ≤V _{IN} ≤0.5V or OV _{DD} – 0.5V ≤V _{IN} ≤OV _{DD}	I _{IN}	_	±10	μA
PCI_SYNC_IN input current	0.5 V ≤V _{IN} ≤OV _{DD} – 0.5 V	I _{IN}	—	±100	μA

4.2 AC Electrical Characteristics

The primary clock source for the device can be one of two inputs, CLKIN or PCI_CLK, depending on whether the device is configured in PCI host or PCI agent mode. This table provides the clock input (CLKIN/PCI_CLK) AC timing specifications for the device.

Table 8.	CLKIN	AC	Timing	Specifications
----------	--------------	----	--------	----------------

Parameter/Condition	Symbol	Min	Typical	Max	Unit	Notes
CLKIN/PCI_CLK frequency	f _{CLKIN}	—	_	66.67	MHz	1
CLKIN/PCI_CLK cycle time	t _{CLKIN}	15	—	_	ns	—
CLKIN/PCI_CLK rise and fall time	t _{KH} , t _{KL}	0.6	1.0	2.3	ns	2
CLKIN/PCI_CLK duty cycle	t _{KHK} /t _{CLKIN}	40	—	60	%	3
CLKIN/PCI_CLK jitter	_	—	—	±150	ps	4, 5

Notes:

- 1. **Caution:** The system, core, USB, security, and 10/100/1000 Ethernet must not exceed their respective maximum or minimum operating frequencies.
- 2. Rise and fall times for CLKIN/PCI_CLK are measured at 0.4 V and 2.7 V.
- 3. Timing is guaranteed by design and characterization.
- 4. This represents the total input jitter-short term and long term-and is guaranteed by design.
- 5. The CLKIN/PCI_CLK driver's closed loop jitter bandwidth should be <500 kHz at -20 dB. The bandwidth must be set low to allow cascade-connected PLL-based devices to track CLKIN drivers with the specified jitter.

4.3 Gigabit Reference Clock Input Timing

This table provides the Gigabit reference clocks (GTX_CLK125) AC timing specifications.

Table 9. GTX_CLK125 AC Timing Specifications

At recommended operating conditions with LV_{DD} = 2.5 \pm 0.125 mV/ 3.3 V \pm 165 mV

Parameter/Condition	Symbol	Min	Typical	Max	Unit	Notes
GTX_CLK125 frequency	t _{G125}	-	125	_	MHz	—
GTX_CLK125 cycle time	t _{G125}		8		ns	—

RESET DC Electrical Characteristics

Table 9. GTX_CLK125 AC Timing Specifications

At recommended operating conditions with LV_{DD} = 2.5 ± 0.125 mV/ 3.3 V ± 165 mV (continued)

Parameter/Condition	Symbol	Min	Typical	Мах	Unit	Notes
GTX_CLK rise and fall time $LV_{DD} = 2.5 V \\ LV_{DD} = 3.3 V$	t _{G125R} /t _{G125F}			0.75 1.0	ns	1
GTX_CLK125 duty cycle GMII & TBI 1000Base-T for RGMII & RTBI		45 47	_	55 53	%	2
GTX_CLK125 jitter	—	—	_	±150	ps	2

Notes:

- 1. Rise and fall times for GTX_CLK125 are measured from 0.5 and 2.0 V for LV_{DD} = 2.5 V and from 0.6 and 2.7 V for LV_{DD} = 3.3 V.
- GTX_CLK125 is used to generate the GTX clock for the UCC Ethernet transmitter with 2% degradation. The GTX_CLK125 duty cycle can be loosened from 47%/53% as long as the PHY device can tolerate the duty cycle generated by GTX_CLK. See Section 8.2.2, "MII AC Timing Specifications," Section 8.2.3, "RMII AC Timing Specifications," and Section 8.2.5, "RGMII and RTBI AC Timing Specifications" for the duty cycle for 10Base-T and 100Base-T reference clock.

5 **RESET Initialization**

This section describes the DC and AC electrical specifications for the reset initialization timing and electrical requirements of the MPC8360E/58E.

5.1 **RESET DC Electrical Characteristics**

This table provides the DC electrical characteristics for the RESET pins of the device.

Characteristic	Symbol	Condition	Min	Мах	Unit
Input high voltage	V _{IH}	_	2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	-0.3	0.8	V
Input current	I _{IN}	—	_	±10	μA
Output high voltage	V _{OH} ²	I _{OH} = -8.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	_	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	_	0.4	V

Table 10. RESET Pins DC Electrical Characteristics ¹

Notes:

1. This table applies for pins PORESET, HRESET, SRESET, and QUIESCE.

2. HRESET and SRESET are open drain pins, thus V_{OH} is not relevant for those pins.

5.2 **RESET AC Electrical Characteristics**

This section describes the AC electrical specifications for the reset initialization timing requirements of the device. This table provides the reset initialization AC timing specifications for the DDR SDRAM component(s).

Parameter/Condition	Min	Max	Unit	Notes
Required assertion time of $\overline{\text{HRESET}}$ or $\overline{\text{SRESET}}$ (input) to activate reset flow		-	t _{PCI_SYNC_IN}	1
Required assertion time of $\overrightarrow{\text{PORESET}}$ with stable clock applied to CLKIN when the device is in PCI host mode	32	-	^t CLKIN	2
Required assertion time of PORESET with stable clock applied to PCI_SYNC_IN when the device is in PCI agent mode	32	-	t _{PCI_SYNC_IN}	1
HRESET/SRESET assertion (output)	512	_	t _{PCI_SYNC_IN}	1
HRESET negation to SRESET negation (output)	16	—	t _{PCI_SYNC_IN}	1
Input setup time for POR config signals (CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV) with respect to negation of PORESET when the device is in PCI host mode	4	—	^t CLKIN	2
Input setup time for POR config signals (CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV) with respect to negation of PORESET when the device is in PCI agent mode	4	-	t _{PCI_SYNC_IN}	1
Input hold time for POR config signals with respect to negation of $\overline{\text{HRESET}}$	0	—	ns	—
Time for the device to turn off POR config signals with respect to the assertion of HRESET		4	ns	3
Time for the device to turn on POR config signals with respect to the negation of \overrightarrow{HRESET}	1	-	t _{PCI_SYNC_IN}	1, 3

Table 11. RESET Initialization Timing Specifications

Notes:

- t_{PCI_SYNC_IN} is the clock period of the input clock applied to PCI_SYNC_IN. When the device is In PCI host mode the primary clock is applied to the CLKIN input, and PCI_SYNC_IN period depends on the value of CFG_CLKIN_DIV. Refer MPC8360E PowerQUICC II Pro Integrated Communications Processor Reference Manual for more details.
- t_{CLKIN} is the clock period of the input clock applied to CLKIN. It is only valid when the device is in PCI host mode. Refer MPC8360E PowerQUICC II Pro Integrated Communications Processor Reference Manual for more details.
- 3. POR config signals consists of CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV.

This table provides the PLL and DLL lock times.

Table 12. PLL and DLL Lock Times

Parameter/Condition	Min	Max	Unit	Notes
PLL lock times	—	100	μs	
DLL lock times	7680	122,880	csb_clk cycles	1, 2

Notes:

1. DLL lock times are a function of the ratio between the output clock and the coherency system bus clock (csb_clk). A 2:1 ratio results in the minimum and an 8:1 ratio results in the maximum.

2. The csb_clk is determined by the CLKIN and system PLL ratio. See Section 21, "Clocking," for more information.

DDR and DDR2 SDRAM AC Electrical Characteristics

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
Input high voltage	V _{IH}	MV _{REF} + 0.18	GV _{DD} + 0.3	V	
Input low voltage	V _{IL}	-0.3	MV _{REF} – 0.18	V	_
Output leakage current	I _{OZ}	—	±10	μA	4
Output high current (V _{OUT} = 1.95 V)	I _{ОН}	-15.2		mA	—
Output low current (V _{OUT} = 0.35 V)	I _{OL}	15.2	_	mA	_
MV _{REF} input leakage current	I _{VREF}	—	±10	μA	—
Input current (0 V ≰⁄ _{IN} ≤OV _{DD})	I _{IN}	—	±10	μA	_

Table 16. DDR SDRAM DC Electrical Characteristics for GV_{DD}(typ) = 2.5 V (continued)

Notes:

1. GV_{DD} is expected to be within 50 mV of the DRAM GV_{DD} at all times.

- 2. MV_{REF} is expected to be equal to $0.5 \times GV_{DD}$, and to track GV_{DD} DC variations as measured at the receiver. Peak-to-peak noise on MV_{REF} may not exceed ±2% of the DC value.
- 3. V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to MV_{REF}. This rail should track variations in the DC level of MV_{REF}.
- 4. Output leakage is measured with all outputs disabled, 0 V \leq V_{OUT} \leq GV_{DD}.

This table provides the DDR capacitance when $GV_{DD}(typ) = 2.5$ V.

Table 17. DDR SDRAM Capacitance for GV_{DD}(typ) = 2.5 V

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
Input/output capacitance: DQ, DQS	C _{IO}	6	8	pF	1
Delta input/output capacitance: DQ, DQS	C _{DIO}	—	0.5	pF	1

Note:

1. This parameter is sampled. GV_{DD} = 2.5 V ± 0.125 V, f = 1 MHz, T_A = 25°C, V_{OUT} = $GV_{DD}/2$, V_{OUT} (peak-to-peak) = 0.2 V.

6.2 DDR and DDR2 SDRAM AC Electrical Characteristics

This section provides the AC electrical characteristics for the DDR and DDR2 SDRAM interface.

6.2.1 DDR and DDR2 SDRAM Input AC Timing Specifications

This table provides the input AC timing specifications for the DDR2 SDRAM interface when $GV_{DD}(typ) = 1.8 \text{ V}$.

Table 18. DDR2 SDRAM Input AC Timing Specifications for GV_{DD}(typ) = 1.8 V

At recommended operating conditions with GV_{DD} of 1.8 V ± 5%.

Parameter	Symbol	Min	Мах	Unit	Notes
AC input low voltage	V _{IL}	_	MV _{REF} – 0.25	V	—
AC input high voltage	V _{IH}	MV _{REF} + 0.25		V	—

DDR and DDR2 SDRAM AC Electrical Characteristics

6.2.2 DDR and DDR2 SDRAM Output AC Timing Specifications

Table 21 and Table 22 provide the output AC timing specifications and measurement conditions for the DDR and DDR2 SDRAM interface.

Table 21. DDR and DDR2 SDRAM Output AC Timing Specifications for Source Synchronous Mode

At recommended operating conditions with GV_{DD} of (1.8 V or 2.5 V) ± 5%.

Parameter ⁸	Symbol ¹	Min	Мах	Unit	Notes
MCK[n] cycle time, (MCK[n]/MCK[n] crossing)	t _{MCK}	6	10	ns	2
Skew between any MCK to ADDR/CMD 333 MHz 266 MHz 200 MHz		-1.0 -1.1 -1.2	0.2 0.3 0.4	ns	3
ADDR/CMD output setup with respect to MCK 333 MHz 266 MHz 200 MHz		2.1 2.8 3.5	_	ns	4
ADDR/CMD output hold with respect to MCK 333 MHz 266 MHz—DDR1 266 MHz—DDR2 200 MHz		2.0 2.7 2.8 3.5	_	ns	4
MCS(n) output setup with respect to MCK 333 MHz 266 MHz 200 MHz		2.1 2.8 3.5	_	ns	4
MCS(n) output hold with respect to MCK 333 MHz 266 MHz 200 MHz		2.0 2.7 3.5	_	ns	4
MCK to MDQS	t _{DDKHMH}	-0.8	0.7	ns	5, 9
MDQ/MECC/MDM output setup with respect to MDQS 333 MHz 266 MHz 200 MHz	2211220	0.7 1.0 1.2	_	ns	6
MDQ/MECC/MDM output hold with respect to MDQS 333 MHz 266 MHz 200 MHz	DDICEDX	0.7 1.0 1.2	_	ns	6
MDQS preamble start	t _{DDKHMP}	$-0.5 \times t_{MCK} - 0.6$	$-0.5\timest_{\text{MCK}}^{}+0.6$	ns	7

Table 21. DDR and DDR2 SDRAM Output AC Timing Specifications for Source Synchronous Mode (continued)

At recommended operating conditions with GV_{DD} of (1.8 V or 2.5 V) ± 5%.

Parameter ⁸	Symbol ¹	Min	Мах	Unit	Notes
MDQS epilogue end	t _{DDKHME}	-0.6	0.9	ns	7

Notes:

- The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. Output hold time can be read as DDR timing (DD) from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (AX or DX). For example, t_{DDKHAS} symbolizes DDR timing (DD) for the time t_{MCK} memory clock reference (K) goes from the high (H) state until outputs (A) are setup (S) or output valid time. Also, t_{DDKLDX} symbolizes DDR timing (DD) for the time t_{MCK} memory clock reference (K) goes low (L) until data outputs (D) are invalid (X) or data output hold time.
 </sub>
- 2. All MCK/ \overline{MCK} referenced measurements are made from the crossing of the two signals ±0.1 V.
- In the source synchronous mode, MCK/MCK can be shifted in ¼ applied cycle increments through the clock control register. For the skew measurements referenced for t_{AOSKEW} it is assumed that the clock adjustment is set to align the address/command valid with the rising edge of MCK.
- ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK, MCS, and MDQ/MECC/MDM/MDQS. For the ADDR/CMD setup and hold specifications, it is assumed that the clock control register is set to adjust the memory clocks by ½ applied cycle.
- 5. Note that t_{DDKHMH} follows the symbol conventions described in note 1. For example, t_{DDKHMH} describes the DDR timing (DD) from the rising edge of the MCK(n) clock (KH) until the MDQS signal is valid (MH). t_{DDKHMH} can be modified through control of the DQSS override bits in the TIMING_CFG_2 register. In source synchronous mode, this is typically set to the same delay as the clock adjust in the CLK_CNTL register. The timing parameters listed in the table assume that these two parameters have been set to the same adjustment value. Refer MPC8360E PowerQUICC II Pro Integrated Communications Processor Reference Manual for a description and understanding of the timing modifications enabled by use of these bits.
- Determined by maximum possible skew between a data strobe (MDQS) and any corresponding bit of data (MDQ), ECC (MECC), or data mask (MDM). The data strobe should be centered inside of the data eye at the pins of the device.
- All outputs are referenced to the rising edge of MCK(n) at the pins of the device. Note that t_{DDKHMP} follows the symbol conventions described in note 1.
- 8. AC timing values are based on the DDR data rate, which is twice the DDR memory bus frequency.
- In rev. 2.0 silicon, t_{DDKHMH} maximum meets the specification of 0.6 ns. In rev. 2.0 silicon, due to errata, t_{DDKHMH} minimum is –0.9 ns. Refer to Errata DDR18 in *Chip Errata for the MPC8360E, Rev. 1*.

This figure shows the DDR SDRAM output timing for address skew with respect to any MCK.

Local Bus DC Electrical Characteristics

8.3.3 IEEE 1588 Timer AC Specifications

This table provides the IEEE 1588 timer AC specifications.

Table 38. IEEE 1588 Timer AC Specifications

Parameter	Symbol	Min	Max	Unit	Notes
Timer clock frequency	t _{TMRCK}	0	70	MHz	1
Input setup to timer clock	t _{TMRCKS}	—	_	_	2, 3
Input hold from timer clock	t _{TMRCKH}	—	_	_	2, 3
Output clock to output valid	t _{GCLKNV}	0	6	ns	—
Timer alarm to output valid	t _{TMRAL}	—		_	2

Notes:

1. The timer can operate on rtc_clock or tmr_clock. These clocks get muxed and any one of them can be selected. The minimum and maximum requirement for both rtc_clock and tmr_clock are the same.

- 2. These are asynchronous signals.
- 3. Inputs need to be stable at least one TMR clock.

9 Local Bus

This section describes the DC and AC electrical specifications for the local bus interface of the MPC8360E/58E.

9.1 Local Bus DC Electrical Characteristics

This table provides the DC electrical characteristics for the local bus interface.

Table 39. Local Bus DC Electrical Characteristics

Parameter	Symbol	Min	Мах	Unit
High-level input voltage	V _{IH}	2	OV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	-0.3	0.8	V
High-level output voltage, I _{OH} = −100 μA	V _{OH}	OV _{DD} - 0.4	—	V
Low-level output voltage, I _{OL} = 100 μA	V _{OL}	—	0.2	V
Input current	I _{IN}	—	±10	μA

9.2 Local Bus AC Electrical Specifications

This table describes the general timing parameters of the local bus interface of the device.

Table 40. Local Bus General Timing Parameters—DLL Enabled

Parameter	Symbol ¹	Min	Max	Unit	Notes
Local bus cycle time	t _{LBK}	7.5	_	ns	2
Input setup to local bus clock (except LUPWAIT)	t _{LBIVKH1}	1.7	_	ns	3, 4
LUPWAIT input setup to local bus clock	t _{LBIVKH2}	1.9	_	ns	3, 4
Input hold from local bus clock (except LUPWAIT)	t _{LBIXKH1}	1.0		ns	3, 4

Parameter	Symbol ¹	Min	Мах	Unit	Notes
LUPWAIT input hold from local bus clock	t _{LBIXKH2}	1.0	_	ns	3, 4
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT1}	1.5		ns	5
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT2}	3.0		ns	6
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT3}	2.5		ns	7
Local bus clock to LALE rise	t _{LBKHLR}	—	4.5	ns	_
Local bus clock to output valid (except LAD/LDP and LALE)	t _{LBKHOV1}	—	4.5	ns	—
Local bus clock to data valid for LAD/LDP	t _{LBKHOV2}	—	4.5	ns	3
Local bus clock to address valid for LAD	t _{LBKHOV3}	—	4.5	ns	3
Output hold from local bus clock (except LAD/LDP and LALE)	t _{LBKHOX1}	1.0	_	ns	3
Output hold from local bus clock for LAD/LDP	t _{LBKHOX2}	1.0	_	ns	3
Local bus clock to output high impedance for LAD/LDP	t _{LBKHOZ}	—	3.8	ns	8

Table 40. Local Bus General Timing Parameters—DLL Enabled (continued)

Notes:

- The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{LBIXKH1} symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t_{LBK} clock reference (K) goes high (H), in this case for clock one (1). Also, t_{LBKHOX} symbolizes local bus timing (LB) for the output (O) going invalid (X) or output hold time.
 </sub>
- 2. All timings are in reference to rising edge of LSYNC_IN.
- 3. All signals are measured from $OV_{DD}/2$ of the rising edge of LSYNC_IN to $0.4 \times OV_{DD}$ of the signal in question for 3.3-V signaling levels.
- 4. Input timings are measured at the pin.
- 5. t_{LBOTOT1} should be used when RCWH[LALE] is not set and when the load on LALE output pin is at least 10 pF less than the load on LAD output pins.
- t_{LBOTOT2} should be used when RCWH[LALE] is set and when the load on LALE output pin is at least 10 pF less than the load on LAD output pins.
- 7. t_{LBOTOT3} should be used when RCWH[LALE] is set and when the load on LALE output pin equals to the load on LAD output pins.
- 8. For purposes of active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.

This table describes the general timing parameters of the local bus interface of the device.

Table 41. Local Bus General Timing Parameters—DLL Bypass Mode⁹

Parameter	Symbol ¹	Min	Max	Unit	Notes
Local bus cycle time	t _{LBK}	15	—	ns	2
Input setup to local bus clock	t _{LBIVKH}	7	—	ns	3, 4
Input hold from local bus clock	t _{LBIXKH}	1.0	—	ns	3, 4
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT1}	1.5	—	ns	5
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT2}	3	—	ns	6
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT3}	2.5	—	ns	7

10.2 JTAG AC Electrical Characteristics

This section describes the AC electrical specifications for the IEEE 1149.1 (JTAG) interface of the device.

This table provides the JTAG AC timing specifications as defined in Figure 30 through Figure 33.

Table 43. JTAG AC Timing Specifications (Independent of CLKIN)¹

At recommended operating conditions (see Table 2).

Parameter	Symbol ²	Min	Max	Unit	Notes
JTAG external clock frequency of operation	f _{JTG}	0	33.3	MHz	—
JTAG external clock cycle time	t _{JTG}	30	—	ns	—
JTAG external clock duty cycle	t _{JTKHKL} /t _{JTG}	45	55	%	—
JTAG external clock rise and fall times	t _{JTGR} & t _{JTGF}	0	2	ns	—
TRST assert time	t _{TRST}	25	—	ns	3
Input setup times: Boundary-scan data TMS, TDI	t _{JTDVKH} t _{JTIVKH}	4 4		ns	4
Input hold times: Boundary-scan data TMS, TDI	t _{JTDXKH} t _{JTIXKH}	10 10	_	ns	4
Valid times: Boundary-scan data TDO	t _{JTKLDV} t _{JTKLOV}	2 2	11 11	ns	5
Output hold times: Boundary-scan data TDO	t _{jtkldx} t _{jtklox}	2 2	_	ns	5
JTAG external clock to output high impedance: Boundary-scan data TDO	t _{jtkldz} t _{jtkloz}	2 2	19 9	ns	5, 6

Notes:

- 2. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{JTDVKH} symbolizes JTAG device timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the t_{JTG} clock reference (K) going to the high (H) state or setup time. Also, t_{JTDXKH} symbolizes JTAG timing (JT) with respect to the time data input signals (D) went invalid (X) relative to the t_{JTG} clock reference (K) going to the high (H) state. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
- 3. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.
- 4. Non-JTAG signal input timing with respect to t_{TCLK}.
- 5. Non-JTAG signal output timing with respect to t_{TCLK}.
- 6. Guaranteed by design and characterization.

All outputs are measured from the midpoint voltage of the falling/rising edge of t_{TCLK} to the midpoint of the signal in question. The output timings are measured at the pins. All output timings assume a purely resistive 50-Ω load (see Figure 22). Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.

JTAG AC Electrical Characteristics

This figure provides the AC test load for TDO and the boundary-scan outputs of the device.

Figure 29. AC Test Load for the JTAG Interface

This figure provides the JTAG clock input timing diagram.

VM = Midpoint Voltage (OV_{DD}/2)

Figure 30. JTAG Clock Input Timing Diagram

This figure provides the $\overline{\text{TRST}}$ timing diagram.

This figure provides the boundary-scan timing diagram.

VM = Midpoint Voltage (OV_{DD}/2)

This figure shows the PCI input AC timing conditions.

Figure 37. PCI Input AC Timing Measurement Conditions

This figure shows the PCI output AC timing conditions.

13 Timers

This section describes the DC and AC electrical specifications for the timers of the MPC8360E/58E.

13.1 Timers DC Electrical Characteristics

This table provides the DC electrical characteristics for the device timer pins, including TIN, TOUT, TGATE, and RTC_CLK.

Table 49. Timers DC Electrical Characteristics

Characteristic	Symbol	Condition	Min	Max	Unit
Output high voltage	V _{OH}	I _{OH} = -6.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 6.0 mA	_	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	_	0.4	V
Input high voltage	V _{IH}	—	2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	-0.3	0.8	V
Input current	I _{IN}	0 V ≤V _{IN} ≤OV _{DD}	_	±10	μΑ

TDM/SI DC Electrical Characteristics

17 TDM/SI

This section describes the DC and AC electrical specifications for the time-division-multiplexed and serial interface of the MPC8360E/58E.

17.1 TDM/SI DC Electrical Characteristics

This table provides the DC electrical characteristics for the device TDM/SI.

Table 57. TDM/SI DC Electrical Characteristics

Characteristic	Symbol	Condition	Min	Мах	Unit
Output high voltage	V _{OH}	I _{OH} = -2.0 mA	2.4	_	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	_	0.5	V
Input high voltage	V _{IH}	_	2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}	_	-0.3	0.8	V
Input current	I _{IN}	0 V ≤V _{IN} ≤OV _{DD}	—	±10	μA

17.2 TDM/SI AC Timing Specifications

This table provides the TDM/SI input and output AC timing specifications.

Table 58.	TDM/SI	AC	Timina	S	pecifications ¹	l
			· · · · · · · · · · · · · · · · · · ·	-	o o o ni o dano no	

Characteristic	Symbol ²	Min	Max ³	Unit
TDM/SI outputs—External clock delay	t _{SEKHOV}	2	10	ns
TDM/SI outputs—External clock high impedance	t _{SEKHOX}	2	10	ns
TDM/SI inputs—External clock input setup time	t _{SEIVKH}	5	—	ns
TDM/SI inputs—External clock input hold time	t _{SEIXKH}	2	—	ns

Notes:

- 1. Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are measured at the pin.
- The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{SEKHOX} symbolizes the TDM/SI outputs external timing (SE) for the time t_{TDM/SI} memory clock reference (K) goes from the high state (H) until outputs (O) are invalid (X).
 </sub>
- 3. Timings are measured from the positive or negative edge of the clock, according to SIxMR [CE] and SITXCEI[TXCEIx]. Refer *MPC8360E Integrated Communications Processor Reference Manual* for more details.

This figure provides the AC test load for the TDM/SI.

Figure 44. TDM/SI AC Test Load

Figure 45 represents the AC timing from Table 56. Note that although the specifications generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge is the active edge.

Table 66. MPC8360E TBG	A Pinout Listing	(continued)
------------------------	------------------	-------------

-

Signal	Package Pin Number	Pin Type	Power Supply	Notes
CE_PA[22]	AF3	I/O	OV _{DD}	—
CE_PA[23:26]	C18, D18, E18, A18	I/O	LV _{DD} 1	—
CE_PA[27:28]	AF2, AE6	I/O	OV _{DD}	—
CE_PA[29]	B19	I/O	LV _{DD} 1	—
CE_PA[30]	AE5	I/O	OV _{DD}	—
CE_PA[31]	F16	I/O	LV _{DD} 1	—
CE_PB[0:27]	AE2, AE1, AD5, AD3, AD2, AC6, AC5, AC4, AC2, AC1, AB5, AB4, AB3, AB1, AA6, AA4, AA2, Y6, Y4, Y3, Y2, Y1, W6, W5, W2, V5, V3, V2	I/O	OV _{DD}	—
CE_PC[0:1]	V1, U6	I/O	OV _{DD}	—
CE_PC[2:3]	C16, A15	I/O	LV _{DD} 1	—
CE_PC[4:6]	U4, U3, T6	I/O	OV _{DD}	—
CE_PC[7]	C19	I/O	LV _{DD} 2	—
CE_PC[8:9]	A4, C5	I/O	LV _{DD} 0	—
CE_PC[10:30]	T5, T4, T2, T1, R5, R3, R1, C11, D12, F13, B10, C10, E12, A9, B8, D10, A14, E15, B14, D15, AH2	I/O	OV _{DD}	-
CE_PD[0:27]	E11, D9, C8, F11, A7, E9, C7, A6, F10, B6, D7, E8, B5, A5, C2, E4, F5, B1, D2, G5, D1, E2, H6, F3, E1, F2, G3, H4	I/O	OV _{DD}	—
CE_PE[0:31]	K3, J2, F1, G2, J5, H3, G1, H2, K6, J3, K5, K4, L6, P6, P4, P3, P1, N4, N5, N2, N1, M2, M3, M5, M6, L1, L2, L4, E14, C13, C14, B13	I/O	OV _{DD}	—
CE_PF[0:3]	F14, D13, A12, A11	I/O	OV _{DD}	—
	Clocks			-
PCI_CLK_OUT[0]/CE_PF[26]	B22	I/O	LV _{DD} 2	_
PCI_CLK_OUT[1:2]/CE_PF[27:28]	D22, A23	I/O	OV _{DD}	
CLKIN	E37	I	OV _{DD}	_
PCI_CLOCK/PCI_SYNC_IN	M36	I	OV _{DD}	—
PCI_SYNC_OUT/CE_PF[29]	D37	I/O	OV _{DD}	3
	JTAG	I	I	-1
ТСК	K33	I	OV _{DD}	—
TDI	K34	I	OV _{DD}	4
TDO	H37	0	OV _{DD}	3
TMS			OV _{DD}	4
TRST	L32	I	OV _{DD}	4
	Test	l		.1
TEST	L35	I	OV _{DD}	7
TEST_SEL	AU34	I	GV _{DD}	7

Table 67. MPC8358E TBGA Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
	No Connect			
NC	AM16, AM17, AM20, AN13, AN16, AN17, AP10, AP11, AP13, AP15, AP18, AR11, AR13, AR14, AR15, AR16, AR17, AR20, AT11, AT12, AT13, AT14, AT16, AT17, AT18, AU10, AU11, AU12, AU13, AU15, AU19	_	_	—

Notes:

- 1. This pin is an open drain signal. A weak pull-up resistor (1 k Ω) should be placed on this pin to OV_{DD}.
- 2. This pin is an open drain signal. A weak pull-up resistor (2–10 k Ω) should be placed on this pin to OV_{DD} .
- 3. This output is actively driven during reset rather than being three-stated during reset.
- 4. These JTAG pins have weak internal pull-up P-FETs that are always enabled.
- 5. This pin should have a weak pull up if the chip is in PCI host mode. Follow PCI specifications recommendation.
- 6. These are On Die Termination pins, used to control DDR2 memories internal termination resistance.
- 7. This pin must always be tied to GND.
- 8. This pin must always be left not connected.
- 9. Refer to MPC8360E PowerQUICC II Pro Integrated Communications Processor Reference Manual section on "RGMII Pins," for information about the two UCC2 Ethernet interface options.
- 10. This pin must always be tied to GV_{DD} .
- 11. It is recommended that MDIC0 be tied to GND using an 18.2 Ω resistor and MDIC1 be tied to DDR power using an 18.2 Ω resistor for DDR2.

ordered, see Section 24.1, "Part Numbers Fully Addressed by this Document," for part ordering details and contact your Freescale sales representative or authorized distributor for more information.

Characteristic ¹	400 MHz 533 MHz		667 MHz ²	Unit
e300 core frequency (<i>core_clk</i>)	266–400	266–533	266–667	MHz
Coherent system bus frequency (<i>csb_clk</i>)	cy (csb_clk) 133–333		MHz	
QUICC Engine frequency ³ (<i>ce_clk</i>)	266–500		MHz	
DDR and DDR2 memory bus frequency (MCLK) ⁴	100–166.67		MHz	
Local bus frequency (LCLK <i>n</i>) ⁵ 16.67–133			MHz	
PCI input frequency (CLKIN or PCI_CLK)	25–66.67		MHz	
Security core maximum internal operating frequency	133	133	166	MHz

Table 69. Operating Frequencies for the TBGA Package

Notes:

- 1. The CLKIN frequency, RCWL[SPMF], and RCWL[COREPLL] settings must be chosen such that the resulting *csb_clk*, MCLK, LCLK[0:2], and *core_clk* frequencies do not exceed their respective maximum or minimum operating frequencies.
- 2. The 667 MHz core frequency is based on a 1.3 V V_{DD} supply voltage.
- 3. The 500 MHz QE frequency is based on a 1.3 V V_{DD} supply voltage.
- 4. The DDR data rate is 2x the DDR memory bus frequency.
- 5. The local bus frequency is 1/2, 1/4, or 1/8 of the *lb_clk* frequency (depending on LCRR[CLKDIV]) which is in turn 1× or 2× the *csb_clk* frequency (depending on RCWL[LBCM]).

21.1 System PLL Configuration

The system PLL is controlled by the RCWL[SPMF] and RCWL[SVCOD] parameters. This table shows the multiplication factor encodings for the system PLL.

RCWL[SPMF]	System PLL Multiplication Factor
0000	× 16
0001	Reserved
0010	× 2
0011	× 3
0100	× 4
0101	× 5
0110	× 6
0111	× 7
1000	× 8
1001	× 9
1010	× 10
1011	× 11

Table 70. System PLL Multiplication Factors

Heat Sink Attachment

Loroco 671 Ea San Jo	nium Electronics (MEI) o Sites ast Brokaw Road se, CA 95112 et: www.mei-millennium.com	408-436-8770
Chip C P.O. B Harris	Electronics Coolers TM ox 3668 burg, PA 17105-3668 et: www.chipcoolers.com	800-522-6752
33 Bri Pelhar	ield Engineering dge St. n, NH 03076 et: www.wakefield.com	603-635-5102
Chome 77 Dra Wobu	al vendors include the following: erics, Inc. agon Ct. rn, MA 01888-4014 et: www.chomerics.com	781-935-4850
Dow-0 2200 V Midlar	Corning Corporation Corning Electronic Materials W. Salzburg Rd. nd, MI 48686-0997 et: www.dowcorning.com	800-248-2481
10028 Phoen	Etsu MicroSi, Inc. S. 51st St. ix, AZ 85044 et: www.microsi.com	888-642-7674
18930 Chanh	ergquist Company West 78th St. assen, MN 55317 et: www.bergquistcompany.com	800-347-4572

22.3 Heat Sink Attachment

When attaching heat sinks to these devices, an interface material is required. The best method is to use thermal grease and a spring clip. The spring clip should connect to the printed-circuit board, either to the board itself, to hooks soldered to the board, or to a plastic stiffener. Avoid attachment forces which would lift the edge of the package or peel the package from the board. Such peeling forces reduce the solder joint lifetime of the package. Recommended maximum force on the top of the package is 10 lb force (4.5 kg force). If an adhesive attachment is planned, the adhesive should be intended for attachment to painted or plastic surfaces and its performance verified under the application requirements.

Rev. Number	Date	Substantive Change(s)
3	03/2010	 Changed references to RCWH[PCICKEN] to RCWH[PCICKDRV]. In Table 2, added extended temperature characteristics. Added Figure 6, "DDR Input Timing Diagram." In Figure 53, "Mechanical Dimensions and Bottom Surface Nomenclature of the TBGA Package," removed watermark. Updated the title of Table 19,"DDR SDRAM Input AC Timing Specifications." In Table 20, "DDR and DDR2 SDRAM Input AC Timing Specifications Mode," changed table subtitle. In Table 20, "DDR and DDR2 SDRAM Input AC Timing Specifications Mode," changed table subtitle. In Table 20, "DDR and DDR2 SDRAM Input AC Timing Specifications Mode," changed table subtitle. In Table 27–Table 30, and Table 33—Table 34, changed the rise and fall time specifications to reference 20–80% and 80–20% of the voltage supply, respectively. In Table 38, "IEEE 1588 Timer AC Specifications," changed first parameter to "Timer clock frequency." In Table 45, "I2C AC Electrical Specifications," changed units to "ns" for t_{I2DVKH}. In Table 66, "MPC8360E TBGA Pinout Listing," and Table 67 "MPC8358E TBGA Pinout Listing, added note 7: "This pin must always be tied to GND" to the TEST pin and added a note to SPARE1 stating: "This pin must always be tied to GND" to the TEST pin and added a note to SPARE1 stating: "This pin must always be teet clock Input Timing." Updated Section 4.3, "Gigabit Reference Clock Input Timing." Updated Section 4.1, "10/100/1000 Ethernet DC Electrical Characteristics." In Section 20.3, "Pinout Listings," added sentence stating "Refer to AN3097, MPC8360/MPC8358E PowerQUICC Design Checklist," for proper pin termination and usage." In Section 21, "Clocking," removed statement: "The OCCR[PCICDn] parameters select whether CLKIN or CLKIN/2 is driven out on the PCI_CLK_OUTn signals." In Section 21.1, "System PLL Configuration," updated the system VCO frequency conditions. In Table 80, added extended temperature
2	12/2007	Initial release.