NXP USA Inc. - MPC8358ECVVADDE Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e300
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	266MHz
Co-Processors/DSP	Communications; QUICC Engine, Security; SEC
RAM Controllers	DDR, DDR2
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (1)
SATA	-
USB	USB 1.x (1)
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	-40°C ~ 105°C (TA)
Security Features	Cryptography, Random Number Generator
Package / Case	740-LBGA
Supplier Device Package	740-TBGA (37.5x37.5)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8358ecvvadde

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

DC Electrical Characteristics

4.1 DC Electrical Characteristics

This table provides the clock input (CLKIN/PCI_SYNC_IN) DC timing specifications for the device.

|--|

Parameter	Condition	Symbol	Min	Мах	Unit
Input high voltage	—	V _{IH}	2.7	OV _{DD} + 0.3	V
Input low voltage	—	V _{IL}	-0.3	0.4	V
CLKIN input current	0 V ≤V _{IN} ≤OV _{DD}	I _{IN}	—	±10	μA
PCI_SYNC_IN input current	0 V ≤V _{IN} ≤0.5V or OV _{DD} – 0.5V ≤V _{IN} ≤OV _{DD}	I _{IN}	_	±10	μΑ
PCI_SYNC_IN input current	0.5 V ≤V _{IN} ≤OV _{DD} – 0.5 V	I _{IN}	—	±100	μA

4.2 AC Electrical Characteristics

The primary clock source for the device can be one of two inputs, CLKIN or PCI_CLK, depending on whether the device is configured in PCI host or PCI agent mode. This table provides the clock input (CLKIN/PCI_CLK) AC timing specifications for the device.

Table 8.	CLKIN	AC	Timing	Specifications
----------	-------	----	--------	-----------------------

Parameter/Condition	Symbol	Min	Typical	Мах	Unit	Notes
CLKIN/PCI_CLK frequency	f _{CLKIN}	—	—	66.67	MHz	1
CLKIN/PCI_CLK cycle time	t _{CLKIN}	15	—	_	ns	—
CLKIN/PCI_CLK rise and fall time	t _{KH} , t _{KL}	0.6	1.0	2.3	ns	2
CLKIN/PCI_CLK duty cycle	t _{KHK} /t _{CLKIN}	40	—	60	%	3
CLKIN/PCI_CLK jitter	—	—	—	±150	ps	4, 5

Notes:

- 1. **Caution:** The system, core, USB, security, and 10/100/1000 Ethernet must not exceed their respective maximum or minimum operating frequencies.
- 2. Rise and fall times for CLKIN/PCI_CLK are measured at 0.4 V and 2.7 V.
- 3. Timing is guaranteed by design and characterization.
- 4. This represents the total input jitter-short term and long term-and is guaranteed by design.
- 5. The CLKIN/PCI_CLK driver's closed loop jitter bandwidth should be <500 kHz at -20 dB. The bandwidth must be set low to allow cascade-connected PLL-based devices to track CLKIN drivers with the specified jitter.

4.3 Gigabit Reference Clock Input Timing

This table provides the Gigabit reference clocks (GTX_CLK125) AC timing specifications.

Table 9. GTX_CLK125 AC Timing Specifications

At recommended operating conditions with LV_{DD} = 2.5 \pm 0.125 mV/ 3.3 V \pm 165 mV

Parameter/Condition	Symbol	Min	Typical	Max	Unit	Notes
GTX_CLK125 frequency	t _{G125}	_	125	_	MHz	_
GTX_CLK125 cycle time	t _{G125}	_	8		ns	

6.1 DDR and DDR2 SDRAM DC Electrical Characteristics

This table provides the recommended operating conditions for the DDR2 SDRAM component(s) of the device when $GV_{DD}(typ) = 1.8 \text{ V}.$

Parameter/Condition	Symbol	Min	Max	Unit	Notes
I/O supply voltage	GV _{DD}	1.71	1.89	V	1
I/O reference voltage	MV _{REF}	$0.49 imes GV_{DD}$	$0.51 imes GV_{DD}$	V	2
I/O termination voltage	V _{TT}	MV _{REF} – 0.04	MV _{REF} + 0.04	V	3
Input high voltage	V _{IH}	MV _{REF} + 0.125	GV _{DD} + 0.3	V	_
Input low voltage	V _{IL}	-0.3	MV _{REF} – 0.125	V	_
Output leakage current	I _{OZ}	_	±10	μA	4
Output high current (V _{OUT} = 1.420 V)	I _{OH}	-13.4	—	mA	
Output low current (V _{OUT} = 0.280 V)	I _{OL}	13.4	—	mA	
MV _{REF} input leakage current	I _{VREF}	_	±10	μA	
Input current (0 V ≰⁄ _{IN} ≤OV _{DD})	I _{IN}	—	±10	μA	_

Table 14. DDR2 SDRAM DC Electrical Characteristics for GV_{DD}(typ) = 1.8 V

Notes:

1. GV_{DD} is expected to be within 50 mV of the DRAM GV_{DD} at all times.

 MV_{REF} is expected to equal 0.5 × GV_{DD}, and to track GV_{DD} DC variations as measured at the receiver. Peak-to-peak noise on MV_{REF} cannot exceed ±2% of the DC value.

 V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to equal MV_{REF}. This rail should track variations in the DC level of MV_{REF}.

4. Output leakage is measured with all outputs disabled, 0 V \leq V_{OUT} \leq GV_{DD}.

This table provides the DDR2 capacitance when $GV_{DD}(typ) = 1.8$ V.

Table 15. DDR2 SDRAM Capacitance for GV_{DD}(typ)=1.8 V

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
Input/output capacitance: DQ, DQS, DQS	C _{IO}	6	8	pF	1
Delta input/output capacitance: DQ, DQS, DQS	C _{DIO}	—	0.5	pF	1

Note:

1. This parameter is sampled. $GV_{DD} = 1.8 \text{ V} \pm 0.090 \text{ V}$, f = 1 MHz, T_A = 25°C, $V_{OUT} = GV_{DD}/2$, V_{OUT} (peak-to-peak) = 0.2 V.

This table provides the recommended operating conditions for the DDR SDRAM component(s) of the device when $GV_{DD}(typ) = 2.5 \text{ V}.$

Table 16. DDR SDRAM DC Electrical Characteristics for GV_{DD}(typ) = 2.5 V

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
I/O supply voltage	GV _{DD}	2.375	2.625	V	1
I/O reference voltage	MV _{REF}	$0.49 imes GV_{DD}$	$0.51 imes GV_{DD}$	V	2
I/O termination voltage	V _{TT}	MV _{REF} - 0.04	MV _{REF} + 0.04	V	3

This section describes the DC and AC electrical specifications for the DUART interface of the MPC8360E/58E.

7.1 DUART DC Electrical Characteristics

This table provides the DC electrical characteristics for the DUART interface of the device.

Table 23. DUART DC Electrical Characteristics

Parameter	Symbol	Min	Мах	Unit	Notes
High-level input voltage	V _{IH}	2	OV _{DD} + 0.3	V	—
Low-level input voltage OV _{DD}	V _{IL}	-0.3	0.8	V	—
High-level output voltage, I _{OH} = −100 μA	V _{OH}	OV _{DD} - 0.4	—	V	—
Low-level output voltage, I _{OL} = 100 μA	V _{OL}	—	0.2	V	—
Input current (0 V ≰⁄ _{IN} ≤OV _{DD})	I _{IN}	—	±10	μA	1

Note:

1. Note that the symbol V_{IN}, in this case, represents the OV_{IN} symbol referenced in Table 1 and Table 2.

7.2 DUART AC Electrical Specifications

This table provides the AC timing parameters for the DUART interface of the device.

Table 24.	DUART	AC T	iming	Speci	ifications
-----------	-------	------	-------	-------	------------

Parameter	Value	Unit	Notes
Minimum baud rate	256	baud	_
Maximum baud rate	>1,000,000	baud	1
Oversample rate	16	_	2

Notes:

- 1. Actual attainable baud rate is limited by the latency of interrupt processing.
- 2. The middle of a start bit is detected as the eighth sampled 0 after the 1-to-0 transition of the start bit. Subsequent bit values are sampled each sixteenth sample.

8 UCC Ethernet Controller: Three-Speed Ethernet, MII Management

This section provides the AC and DC electrical characteristics for three-speed, 10/100/1000, and MII management.

8.1 Three-Speed Ethernet Controller (10/100/1000 Mbps)— GMII/MII/RMII/TBI/RGMII/RTBI Electrical Characteristics

The electrical characteristics specified here apply to all GMII (gigabit media independent interface), MII (media independent interface), RMII (reduced media independent interface), TBI (ten-bit interface), RGMII (reduced gigabit media independent interface), and RTBI (reduced ten-bit interface) signals except MDIO (management data input/output) and MDC (management data clock). The MII, RMII, GMII, and TBI interfaces are only defined for 3.3 V, while the RGMII and RTBI interfaces are only defined for 2.5 V. The RGMII and RTBI interfaces follow the Hewlett-Packard reduced pin-count interface for Gigabit Ethernet

GMII, MII, RMII, TBI, RGMII, and RTBI AC Timing Specifications

8.2.2.2 MII Receive AC Timing Specifications

This table provides the MII receive AC timing specifications.

Table 30. MII Receive AC Timing Specifications

At recommended operating conditions with LV_{DD}/OV_{DD} of 3.3 V \pm 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
RX_CLK clock period 10 Mbps	t _{MRX}	—	400	—	ns
RX_CLK clock period 100 Mbps	t _{MRX}	—	40	—	ns
RX_CLK duty cycle	t _{MRXH} /t _{MRX}	35	—	65	%
RXD[3:0], RX_DV, RX_ER setup time to RX_CLK	t _{MRDVKH}	10.0	—	—	ns
RXD[3:0], RX_DV, RX_ER hold time to RX_CLK	t _{MRDXKH}	10.0	—	—	ns
RX_CLK clock rise time, (20% to 80%)	t _{MRXR}	1.0	—	4.0	ns
RX_CLK clock fall time, (80% to 20%)	t _{MRXF}	1.0	—	4.0	ns

Note:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{MRDVKH} symbolizes MII receive timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MRX} clock reference (K) going to the high (H) state or setup time. Also, t_{MRDXKL} symbolizes MII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t_{MRX} clock reference (K) going to the low (L) state or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{MRX} represents the MII (M) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
</sub>

This figure provides the AC test load.

This figure shows the MII receive AC timing diagram.

Figure 14. MII Receive AC Timing Diagram

8.2.5 RGMII and RTBI AC Timing Specifications

This table presents the RGMII and RTBI AC timing specifications.

Table 35. RGMII and RTBI AC Timing Specifications

At recommended operating conditions with LV_{DD} of 2.5 V ± 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit	Notes
Data to clock output skew (at transmitter)	t _{SKRGTKHDX} t _{SKRGTKHDV}	-0.5 		— 0.5	ns	7
Data to clock input skew (at receiver)	t _{SKRGDXKH} t _{SKRGDVKH}	1.0		 2.6	ns	2
Clock cycle duration	t _{RGT}	7.2	8.0	8.8	ns	3
Duty cycle for 1000Base-T	t _{RGTH} /t _{RGT}	45	50	55	%	4, 5
Duty cycle for 10BASE-T and 100BASE-TX	t _{RGTH} /t _{RGT}	40	50	60	%	3, 5
Rise time (20–80%)	t _{RGTR}	—		0.75	ns	
Fall time (20–80%)	t _{RGTF}	—	_	0.75	ns	
GTX_CLK125 reference clock period	t _{G125}	—	8.0	_	ns	6
GTX_CLK125 reference clock duty cycle	t _{G125H} /t _{G125}	47		53	%	

Notes:

- Note that, in general, the clock reference symbol representation for this section is based on the symbols RGT to represent RGMII and RTBI timing. For example, the subscript of t_{RGT} represents the TBI (T) receive (Rx) clock. Note also that the notation for rise (R) and fall (F) times follows the clock symbol that is being represented. For symbols representing skews, the subscript is skew (SK) followed by the clock that is being skewed (RGT).
- 2. This implies that PC board design requires clocks to be routed such that an additional trace delay of greater than 1.5 ns can be added to the associated clock signal.
- 3. For 10 and 100 Mbps, t_{RGT} scales to 400 ns ± 40 ns and 40 ns ± 4 ns, respectively.
- 4. Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domains as long as the minimum duty cycle is not violated and stretching occurs for no more than three t_{RGT} of the lowest speed transitioned between.
- 5. Duty cycle reference is LV_{DD}/2.
- 6. This symbol is used to represent the external GTX_CLK125 and does not follow the original symbol naming convention.
- 7. In rev. 2.0 silicon, due to errata, t_{SKRGTKHDX} minimum is –2.3 ns and t_{SKRGTKHDV} maximum is 1 ns for UCC1, 1.2 ns for UCC2 option 1, and 1.8 ns for UCC2 option 2. In rev. 2.1 silicon, due to errata, t_{SKRGTKHDX} minimum is –0.65 ns for UCC2 option 1 and –0.9 for UCC2 option 2, and t_{SKRGTKHDV} maximum is 0.75 ns for UCC1 and UCC2 option 1 and 0.85 for UCC2 option 2. Refer to Errata QE_ENET10 in *Chip Errata for the MPC8360E, Rev. 1*. UCC1 does meet t_{SKRGTKHDX} minimum for rev. 2.1 silicon.

Ethernet Management Interface Electrical Characteristics

This figure shows the RGMII and RTBI AC timing and multiplexing diagrams.

Figure 20. RGMII and RTBI AC Timing and Multiplexing Diagrams

8.3 Ethernet Management Interface Electrical Characteristics

The electrical characteristics specified here apply to MII management interface signals MDIO (management data input/output) and MDC (management data clock). The electrical characteristics for GMII, RGMII, TBI, and RTBI are specified in Section 8.1, "Three-Speed Ethernet Controller (10/100/1000 Mbps)— GMII/MII/RMII/TBI/RGMII/RTBI Electrical Characteristics."

8.3.1 MII Management DC Electrical Characteristics

The MDC and MDIO are defined to operate at a supply voltage of 3.3 V. The DC electrical characteristics for MDIO and MDC are provided in this table.

Parameter	Symbol	Conditions		Min	Мах	Unit
Supply voltage (3.3 V)	OV _{DD}	—		2.97	3.63	V
Output high voltage	V _{OH}	$I_{OH} = -1.0 \text{ mA}$	$OV_{DD} = Min$	2.10	OV _{DD} + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 1.0 mA	$OV_{DD} = Min$	GND	0.50	V
Input high voltage	V _{IH}	—		2.00	—	V
Input low voltage	V _{IL}	—		—	0.80	V
Input current	I _{IN}	0 V ≤V _{IN}	₁≤OV _{DD}	—	±10	μA

Table 36. MII Management DC Electrica	I Characteristics When Powered at 3.3 V
---------------------------------------	---

Local Bus AC Electrical Specifications

Parameter	Symbol ¹	Min	Max	Unit	Notes
Local bus clock to output valid	t _{LBKHOV}	—	3	ns	3
Local bus clock to output high impedance for LAD/LDP	t _{LBKHOZ}		4	ns	8

Table 41. Local Bus General Timing Parameters—DLL Bypass Mode⁹ (continued)

Notes:

- The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{LBIXKH1} symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t_{LBK} clock reference (K) goes high (H), in this case for clock one (1). Also, t_{LBKHOX} symbolizes local bus timing (LB) for the to the output (O) going invalid (X) or output hold time.
 </sub>
- 2. All timings are in reference to falling edge of LCLK0 (for all outputs and for LGTA and LUPWAIT inputs) or rising edge of LCLK0 (for all other inputs).
- 3. All signals are measured from OV_{DD}/2 of the rising/falling edge of LCLK0 to 0.4 × OV_{DD} of the signal in question for 3.3-V signaling levels.
- 4. Input timings are measured at the pin.
- 5. t_{LBOTOT1} should be used when RCWH[LALE] is not set and when the load on LALE output pin is at least 10 pF less than the load on LAD output pins.
- t_{LBOTOT2} should be used when RCWH[LALE] is set and when the load on LALE output pin is at least 10 pF less than the load on LAD output pins.
- 7. t_{LBOTOT3} should be used when RCWH[LALE] is set and when the load on LALE output pin equals to the load on LAD output pins.
- 8. For purposes of active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 9. DLL bypass mode is not recommended for use at frequencies above 66 MHz.

This figure provides the AC test load for the local bus.

Figure 22. Local Bus C Test Load

TDM/SI DC Electrical Characteristics

17 TDM/SI

This section describes the DC and AC electrical specifications for the time-division-multiplexed and serial interface of the MPC8360E/58E.

17.1 TDM/SI DC Electrical Characteristics

This table provides the DC electrical characteristics for the device TDM/SI.

Table 57. TDM/SI DC Electrical Characteristics

Characteristic	Symbol	Condition	Min	Мах	Unit
Output high voltage	V _{OH}	I _{OH} = -2.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	—	0.5	V
Input high voltage	V _{IH}	—	2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	-0.3	0.8	V
Input current	I _{IN}	0 V ≤V _{IN} ≤OV _{DD}	—	±10	μA

17.2 TDM/SI AC Timing Specifications

This table provides the TDM/SI input and output AC timing specifications.

Table 58.	TDM/SI	AC	Timina	Sp	pecification	s1
						-

Characteristic	Symbol ²	Min	Max ³	Unit
TDM/SI outputs—External clock delay	t _{SEKHOV}	2	10	ns
TDM/SI outputs—External clock high impedance	t _{SEKHOX}	2	10	ns
TDM/SI inputs—External clock input setup time	t _{SEIVKH}	5	_	ns
TDM/SI inputs—External clock input hold time	t _{SEIXKH}	2	_	ns

Notes:

- 1. Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are measured at the pin.
- The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{SEKHOX} symbolizes the TDM/SI outputs external timing (SE) for the time t_{TDM/SI} memory clock reference (K) goes from the high state (H) until outputs (O) are invalid (X).
 </sub>
- 3. Timings are measured from the positive or negative edge of the clock, according to SIxMR [CE] and SITXCEI[TXCEIx]. Refer *MPC8360E Integrated Communications Processor Reference Manual* for more details.

This figure provides the AC test load for the TDM/SI.

Figure 44. TDM/SI AC Test Load

Figure 45 represents the AC timing from Table 56. Note that although the specifications generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge is the active edge.

20 Package and Pin Listings

This section details package parameters, pin assignments, and dimensions. The MPC8360E/58E is available in a tape ball grid array (TBGA), see Section 20.1, "Package Parameters for the TBGA Package," and Section 20.2, "Mechanical Dimensions of the TBGA Package," for information on the package.

20.1 Package Parameters for the TBGA Package

The package parameters for rev. 2.0 silicon are as provided in the following list. The package type is $37.5 \text{ mm} \times 37.5 \text{ mm}$, 740 tape ball grid array (TBGA).

Package outline	$37.5 \text{ mm} \times 37.5 \text{ mm}$
Interconnects	740
Pitch	1.00 mm
Module height (typical)	1.46 mm
Solder Balls	62 Sn/36 Pb/2 Ag (ZU package)
	95.5 Sn/0.5 Cu/4Ag (VV package)
Ball diameter (typical)	0.64 mm

Mechanical Dimensions of the TBGA Package

20.2 Mechanical Dimensions of the TBGA Package

This figure depicts the mechanical dimensions and bottom surface nomenclature of the device, 740-TBGA package.

Figure 53. Mechanical Dimensions and Bottom Surface Nomenclature of the TBGA Package

NP

20.3 Pinout Listings

Refer to AN3097, "MPC8360/MPC8358E PowerQUICC Design Checklist," for proper pin termination and usage.

This table shows the pin list of the MPC8360E TBGA package.

Signal	Package Pin Number	Pin Type	Power Supply	Notes
Pri	mary DDR SDRAM Memory Controller Interface			
MEMC1_MDQ[0:31]	AJ34, AK33, AL33, AL35, AJ33, AK34, AK32, AM36, AN37, AN35, AR34, AT34, AP37, AP36, AR36, AT35, AP34, AR32, AP32, AM31, AN33, AM34, AM33, AM30, AP31, AM27, AR30, AT32, AN29, AP29, AN27, AR29	I/O	GV _{DD}	_
MEMC1_MDQ[32:63]/ MEMC2_MDQ[0:31]	AN8, AN7, AM8, AM6, AP9, AN9, AT7, AP7, AU6, AP6, AR4, AR3, AT6, AT5, AR5, AT3, AP4, AM5, AP3, AN3, AN5, AL5, AN4, AM2, AL2, AH5, AK3, AJ2, AJ3, AH4, AK4, AH3	I/O	GV _{DD}	_
MEMC1_MECC[0:4]/ MSRCID[0:4]	AP24, AN22, AM19, AN19, AM24	I/O	GV _{DD}	—
MEMC1_MECC[5]/ MDVAL	AM23	I/O	GV _{DD}	—
MEMC1_MECC[6:7]	AM22, AN18	I/O	GV _{DD}	—
MEMC1_MDM[0:3]	AL36, AN34, AP33, AN28	0	GV _{DD}	—
MEMC1_MDM[4:7]/ MEMC2_MDM[0:3]	AT9, AU4, AM3, AJ6	0	GV _{DD}	—
MEMC1_MDM[8]	AP27	0	GV _{DD}	—
MEMC1_MDQS[0:3]	AK35, AP35, AN31, AM26	I/O	GV _{DD}	—
MEMC1_MDQS[4:7]/ MEMC2_MDQS[0:3]	AT8, AU3, AL4, AJ5	I/O	GV _{DD}	_
MEMC1_MDQS[8]	AP26	I/O	GV _{DD}	—
MEMC1_MBA[0:1]	AU29, AU30	0	GV _{DD}	—
MEMC1_MBA[2]	AT30	0	GV_DD	—
MEMC1_MA[0:14]	AU21, AP22, AP21, AT21, AU25, AU26, AT23, AR26, AU24, AR23, AR28, AU23, AR22, AU20, AR18	0	GV _{DD}	_
MEMC1_MODT[0:1]	AG33, AJ36	0	GV _{DD}	6
MEMC1_MODT[2:3]/ MEMC2_MODT[0:1]	AT1, AK2	0	GV _{DD}	6
MEMC1_MWE	AT26	0	GV _{DD}	—
MEMC1_MRAS	AT29	0	GV _{DD}	_
MEMC1_MCAS	AT24	0	GV _{DD}	_
MEMC1_MCS[0:1]	AU27, AT27	0	GV _{DD}	—
MEMC1_MCS[2:3]/ MEMC2_MCS[0:1]	AU8, AU7	0	GV _{DD}	_

Table 66. MPC8360E TBGA Pinout Listing

able 66. MPC8360E TBGA	Pinout Listing	(continued)
------------------------	----------------	-------------

-

Signal	Package Pin Number	Pin Type	Power Supply	Notes
CE_PA[22]	AF3	I/O	OV _{DD}	—
CE_PA[23:26]	C18, D18, E18, A18	I/O	LV _{DD} 1	—
CE_PA[27:28]	AF2, AE6	I/O	OV _{DD}	—
CE_PA[29]	B19	I/O	LV _{DD} 1	—
CE_PA[30]	AE5	I/O	OV _{DD}	—
CE_PA[31]	F16	I/O	LV _{DD} 1	—
CE_PB[0:27]	AE2, AE1, AD5, AD3, AD2, AC6, AC5, AC4, AC2, AC1, AB5, AB4, AB3, AB1, AA6, AA4, AA2, Y6, Y4, Y3, Y2, Y1, W6, W5, W2, V5, V3, V2	I/O	OV _{DD}	_
CE_PC[0:1]	V1, U6	I/O	OV _{DD}	—
CE_PC[2:3]	C16, A15	I/O	LV _{DD} 1	—
CE_PC[4:6]	U4, U3, T6	I/O	OV _{DD}	—
CE_PC[7]	C19	I/O	LV _{DD} 2	_
CE_PC[8:9]	A4, C5	I/O	LV _{DD} 0	_
CE_PC[10:30]	T5, T4, T2, T1, R5, R3, R1, C11, D12, F13, B10, C10, E12, A9, B8, D10, A14, E15, B14, D15, AH2	I/O	OV _{DD}	
CE_PD[0:27]	E11, D9, C8, F11, A7, E9, C7, A6, F10, B6, D7, E8, B5, A5, C2, E4, F5, B1, D2, G5, D1, E2, H6, F3, E1, F2, G3, H4	I/O	OV _{DD}	_
CE_PE[0:31]	K3, J2, F1, G2, J5, H3, G1, H2, K6, J3, K5, K4, L6, P6, P4, P3, P1, N4, N5, N2, N1, M2, M3, M5, M6, L1, L2, L4, E14, C13, C14, B13	I/O	OV _{DD}	_
CE_PF[0:3]	F14, D13, A12, A11	I/O	OV _{DD}	—
	Clocks			
PCI_CLK_OUT[0]/CE_PF[26]	B22	I/O	LV _{DD} 2	
PCI_CLK_OUT[1:2]/CE_PF[27:28]	D22, A23	I/O	OV _{DD}	
CLKIN	E37	I	OV _{DD}	
PCI_CLOCK/PCI_SYNC_IN	M36	I	OV _{DD}	_
PCI_SYNC_OUT/CE_PF[29]	D37	I/O	OV _{DD}	3
	JTAG			
тск	K33	I	OV _{DD}	_
TDI	K34	I	OV _{DD}	4
TDO	H37	0	OV _{DD}	3
TMS	J36	I	OV _{DD}	4
TRST	L32	I	OV _{DD}	4
	Test		1	
TEST	L35	I	OV _{DD}	7
TEST_SEL	AU34	I	GV _{DD}	7

Pinout Listings

Table 66. MPC8360E TBGA Pinout Listing (continued)

Signal Package Pin Number		Pin Type	Power Supply	Notes				
	PMC							
QUIESCE	B36	0	OV _{DD}	_				
	System Control							
PORESET	L37	I	OV _{DD}	—				
HRESET	L36	I/O	OV _{DD}	1				
SRESET	M33	I/O	OV _{DD}	2				
	Thermal Management							
THERM0	AP19	Ι	GV _{DD}	—				
THERM1	AT31	I	GV _{DD}	—				
	Power and Ground Signals							
AV _{DD} 1	K35	Power for LBIU DLL (1.2 V)	AV _{DD} 1	_				
AV _{DD} 2	_{PD} 2 K36		AV _{DD} 2	_				
AV _{DD} 5	AM29	Power for e300 PLL (1.2 V)	AV _{DD} 5	_				
AV _{DD} 6 K37		Power for system PLL (1.2 V)	AV _{DD} 6	_				
GND	A2, A8, A13, A19, A22, A25, A31, A33, A36, B7, B12, B24, B27, B30, C4, C6, C9, C15, C26, C32, D3, D8, D11, D14, D17, D19, D23, D27, E7, E13, E25, E30, E36, F4, F37, G34, H1, H5, H32, H33, J4, J32, J37, K1, L3, L5, L33, L34, M1, M34, M35, N37, P2, P5, P35, P36, R4, T3, U1, U5, U35, V37, W1, W4, W33, W36, Y34, AA3, AA5, AC3, AC32, AC35, AD1, AD37, AE4, AE34, AE36, AF33, AG4, AG6, AG32, AH35, AJ1, AJ4, AJ32, AJ35, AJ37, AK36, AL3, AL34, AM4, AN6, AN23, AN30, AP8, AP12, AP14, AP16, AP17, AP20, AP25, AR6, AR8, AR9, AR19, AR24, AR31, AR35, AR37, AT4, AT10, AT19, AT20, AT25, AU14, AU22, AU28, AU35	_	_	_				
AT20, AT25, AU14, AU22, AU28, AU35 GV _{DD} AD4, AE3, AF1, AF5, AF35, AF37, AG2, AG36, AH33, AH34, AK5, AM1, AM35, AM37, AN2, AN10, AN11, AN12, AN14, AN32, AN36, AP5, AP23, AP28, AR1, AR7, AR10, AR12, AR21, AR25, AR27, AR33, AT15, AT22, AT28, AT33, AU2, AU5, AU16, AU31, AU36		Power for DDR DRAM I/O voltage (2.5 or 1.8 V)	GV _{DD}					

Pinout Listings

Table 66. MPC8360E TBGA Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes		
No Connect						
NC	AM20, AU19	—	—	—		

Notes:

- 1. This pin is an open drain signal. A weak pull-up resistor (1 kΩ) should be placed on this pin to OV_{DD}
- 2. This pin is an open drain signal. A weak pull-up resistor (2–10 kΩ) should be placed on this pin to OV_{DD}.
- 3. This output is actively driven during reset rather than being three-stated during reset.
- 4. These JTAG pins have weak internal pull-up P-FETs that are always enabled.
- 5. This pin should have a weak pull up if the chip is in PCI host mode. Follow PCI specifications recommendation.
- 6. These are On Die Termination pins, used to control DDR2 memories internal termination resistance.
- 7. This pin must always be tied to GND.
- 8. This pin must always be left not connected.
- 9. Refer to MPC8360E PowerQUICC II Pro Integrated Communications Processor Reference Manual section on "RGMII Pins," for information about the two UCC2 Ethernet interface options.
- 10.It is recommended that MDIC0 be tied to GND using an 18.2 Ω resistor and MDIC1 be tied to DDR power using an 18.2 Ω resistor for DDR2.

This table shows the pin list of the MPC8358E TBGA package.

Table 67. MPC8358E TBGA Pinout Listing

Signal	Package Pin Number	Pin Type	Power Supply	Notes
	DDR SDRAM Memory Controller Interface			
MEMC1_MDQ[0:63]	AJ34, AK33, AL33, AL35, AJ33, AK34, AK32, AM36, AN37, AN35, AR34, AT34, AP37, AP36, AR36, AT35, AP34, AR32, AP32, AM31, AN33, AM34, AM33, AM30, AP31, AM27, AR30, AT32, AN29, AP29, AN27, AR29, AN8, AN7, AM8, AM6, AP9, AN9, AT7, AP7, AU6, AP6, AR4, AR3, AT6, AT5, AR5, AT3, AP4, AM5, AP3, AN3, AN5, AL5, AN4, AM2, AL2, AH5, AK3, AJ2, AJ3, AH4, AK4, AH3	I/O	GV _{DD}	
MEMC_MECC[0:4]/MSRCID[0:4]	AP24, AN22, AM19, AN19, AM24	I/O	GV _{DD}	—
MEMC_MECC[5]/MDVAL	AM23	I/O	GV _{DD}	—
MEMC_MECC[6:7]	AM22, AN18	I/O	GV _{DD}	—
MEMC_MDM[0:8]	AL36, AN34, AP33, AN28,AT9, AU4, AM3, AJ6,AP27	0	GV _{DD}	Ι
MEMC_MDQS[0:8]	AK35, AP35, AN31, AM26,AT8, AU3, AL4, AJ5, AP26	I/O	GV _{DD}	Ι
MEMC_MBA[0:1]	AU29, AU30	0	GV _{DD}	
MEMC_MBA[2]	AT30	0	GV _{DD}	_
MEMC_MA[0:14]	AU21, AP22, AP21, AT21, AU25, AU26, AT23, AR26, AU24, AR23, AR28, AU23, AR22, AU20, AR18	0	GV _{DD}	
MEMC_MODT[0:3]	AG33, AJ36, AT1, AK2	0	GV _{DD}	6

Pinout Listings

Signal	Package Pin Number	Pin Type	Power Supply	Notes
LV _{DD} 1	C17, D16	Power for UCC2 Ethernet interface option 1 (2.5 V, 3.3 V)	LV _{DD} 1	9
LV _{DD} 2	B18, E21	Power for UCC2 Ethernet interface option 2 (2.5 V, 3.3 V)	LV _{DD} 2	9
V _{DD}	C36, D29, D35, E16, F9, F12, F15, F17, F18, F20, F21, F23, F25, F26, F29, F31, F32, F33, G6, J6, K32, M32, N6, P33, R6, R32, U32, V6, Y5, Y32, AB6, AB33, AD6, AF32, AK6, AL6, AM7, AM9, AM10, AM11, AM12, AM13, AM14, AM15, AM18, AM21, AM25, AM28, AM32, AN15, AN21, AN26, AU9, AU17	Power for core (1.2 V)	V _{DD}	_
OV _{DD}	A10, B9, B15, B32, C1, C12, C22, C29, D24, E3, E10, E27, G4, H35, J1, J35, K2, M4, N3, N34, R2, R37, T36, U2, U33, V4, V34, W3, Y35, Y37, AA1, AA36, AB2, AB34	PCI, 10/100 Ethernet, and other standard (3.3 V)	OV _{DD}	
MVREF1	AN20	I	DDR reference voltage	_
MVREF2	AU32	I	DDR reference voltage	
			Г	
SPARE1	B11	I/O	OV _{DD}	8
SPARE3	AH32		GV _{DD}	8
SPARE4	AU18	—	GV _{DD}	7
SPARE5	AP1	—	GV _{DD}	8

Table 67. MPC8358E TBGA Pinout Listing (continued)

System PLL Configuration

RCWL[SPMF]	System PLL Multiplication Factor
1100	× 12
1101	× 13
1110	× 14
1111	× 15

The RCWL[SVCOD] denotes the system PLL VCO internal frequency as shown in this table.

VCO Divider
4
8
2
Reserved

Table 71. System PLL VCO Divider

NOTE

The VCO divider must be set properly so that the system VCO frequency is in the range of 600-1400 MHz.

The system VCO frequency is derived from the following equations:

- $csb_clk = \{PCI_SYNC_IN \times (1 + CFG_CLKIN_DIV)\} \times SPMF$
- System VCO Frequency = *csb_clk* × VCO divider (if both RCWL[DDRCM] and RCWL[LBCM] are cleared) OR
- System VCO frequency = $2 \times csb_clk \times$ VCO divider (if either RCWL[DDRCM] or RCWL[LBCM] are set).

As described in Section 21, "Clocking," the LBCM, DDRCM, and SPMF parameters in the reset configuration word low and the CFG_CLKIN_DIV configuration input signal select the ratio between the primary clock input (CLKIN or PCI_CLK) and the internal coherent system bus clock (*csb_clk*). This table shows the expected frequency values for the CSB frequency for select *csb_clk* to CLKIN/PCI_SYNC_IN ratios.

			Input Clock Frequency (MHz) ²			
CFG_CLKIN_DIV at Reset ¹	SPMF	<i>csb_clk</i> : Input Clock Ratio ²	16.67	25	33.33	66.67
			csb_clk Frequency (MHz)			
Low	0010	2:1				133
Low	0011	3:1			100	200
Low	0100	4:1		100	133	266
Low	0101	5:1		125	166	333

Table 72. CSB Frequency Options

This figure shows the PLL power supply filter circuit.

Figure 56. PLL Power Supply Filter Circuit

23.3 Decoupling Recommendations

Due to large address and data buses as well as high operating frequencies, the device can generate transient power surges and high frequency noise in its power supply, especially while driving large capacitive loads. This noise must be prevented from reaching other components in the device system, and the device itself requires a clean, tightly regulated source of power. Therefore, it is recommended that the system designer place at least one decoupling capacitor at each V_{DD} , OV_{DD} , GV_{DD} , and LV_{DD} pins of the device. These decoupling capacitors should receive their power from separate V_{DD} , OV_{DD} , GV_{DD} , and GND power planes in the PCB, utilizing short traces to minimize inductance. Capacitors may be placed directly under the device using a standard escape pattern. Others may surround the part.

These capacitors should have a value of 0.01 or 0.1 μ F. Only ceramic SMT (surface mount technology) capacitors should be used to minimize lead inductance, preferably 0402 or 0603 sizes.

Additionally, it is recommended that there be several bulk storage capacitors distributed around the PCB, feeding the V_{DD} , OV_{DD} , GV_{DD} , GV_{DD} , and LV_{DD} planes, to enable quick recharging of the smaller chip capacitors. These bulk capacitors should have a low ESR (equivalent series resistance) rating to ensure the quick response time necessary. They should also be connected to the power and ground planes through two vias to minimize inductance. Suggested bulk capacitors—100–330 μ F (AVX TPS tantalum or Sanyo OSCON).

23.4 Connection Recommendations

To ensure reliable operation, it is highly recommended to connect unused inputs to an appropriate signal level. Unused active low inputs should be tied to OV_{DD} , GV_{DD} , or LV_{DD} as required. Unused active high inputs should be connected to GND. All NC (no-connect) signals must remain unconnected.

Power and ground connections must be made to all external V_{DD}, GV_{DD}, LV_{DD}, OV_{DD}, and GND pins of the device.

23.5 Output Buffer DC Impedance

The device drivers are characterized over process, voltage, and temperature. For all buses, the driver is a push-pull single-ended driver type (open drain for I^2C).

To measure Z_0 for the single-ended drivers, an external resistor is connected from the chip pad to OV_{DD} or GND. Then, the value of each resistor is varied until the pad voltage is $OV_{DD}/2$ (see Figure 57). The output impedance is the average of two components, the resistances of the pull-up and pull-down devices. When data is held high, SW1 is closed (SW2 is open) and R_p is trimmed until the voltage at the pad equals $OV_{DD}/2$. R_p then becomes the resistance of the pull-up devices. R_p and R_N are designed to be close to each other in value. Then, $Z_0 = (R_P + R_N)/2$.

23.7 Pull-Up Resistor Requirements

The device requires high resistance pull-up resistors (10 k Ω is recommended) on open drain type pins including I²C pins, Ethernet Management MDIO pin, and EPIC interrupt pins.

For more information on required pull-up resistors and the connections required for the JTAG interface, see *MPC8360E/MPC8358E PowerQUICC Design Checklist* (AN3097).

24 Ordering Information

24.1 Part Numbers Fully Addressed by this Document

This table provides the Freescale part numbering nomenclature for the MPC8360E/58E. Note that the individual part numbers correspond to a maximum processor core frequency. For available frequencies, contact your local Freescale sales office. Additionally to the processor frequency, the part numbering scheme also includes an application modifier, which may specify special application conditions. Each part number also contains a revision code that refers to the die mask revision number.

MPC	nnnn	е	t	рр	aa	а	а	Α
Product Code	Part Identifier	Encryption Acceleration	Temperature Range	Package ²	Processor Frequency ³	Platform Frequency	QUICC Engine Frequency	Die Revision
MPC	8358	Blank = not included E = included	Blank = 0° C T _A to 105° C T _J	ZU = TBGA VV = TBGA (no lead)	e300 core speed AD = 266 MHz AG = 400 MHz	D = 266 MHz	E = 300 MHz G = 400 MHz	A = rev. 2.1 silicon
	8360		to 105° C T _J		e300 core speed AG = 400 MHz AJ = 533 MHz AL = 667 MHz	D = 266 MHz F = 333 MHz	G = 400 MHz H = 500 MHz	A = rev. 2.1 silicon
MPC (rev. 2.0 silicon only)	8360	Blank = not included E = included	0° C T _A to 70° C T _J	ZU = TBGA VV = TBGA (no lead)	e300 core speed AH = 500 MHz AL = 667 MHz	F = 333 MHz	G = 400 MHz H = 500 MHz	_

Table 80. Part Numbering Nomenclature¹

Notes:

1. Not all processor, platform, and QUICC Engine block frequency combinations are supported. For available frequency combinations, contact your local Freescale sales office or authorized distributor.

2. See Section 20, "Package and Pin Listings," for more information on available package types.

Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this
specification support all core frequencies. Additionally, parts addressed by part number specifications may support other
maximum core frequencies.

This table shows the SVR settings by device and package type.

Table 81.	SVR	Settings
-----------	-----	----------

Device	Package	SVR (Rev. 2.0)	SVR (Rev. 2.1)
MPC8360E	TBGA	0x8048_0020	0x8048_0021
MPC8360	TBGA	0x8049_0020	0x8049_0021

Table 82.	Revision	History	(continued)
-----------	----------	---------	-------------

Rev. Number	Date	Substantive Change(s)
3	03/2010	 Changed references to RCWH[PCICKEN] to RCWH[PCICKDRV]. In Table 2, added extended temperature characteristics. Added Figure 6, "DDR Input Timing Diagram." In Figure 53, "Mechanical Dimensions and Bottom Surface Nomenclature of the TBGA Package," removed watermark. Updated the title of Table 19,"DDR SDRAM Input AC Timing Specifications." In Table 20, "DDR and DDR2 SDRAM Input AC Timing Specifications Mode," changed table subtitle. In Table 20, "DDR and DDR2 SDRAM Input AC Timing Specifications Mode," changed table subtitle. In Table 27–Table 30, and Table 33—Table 34, changed the rise and fall time specifications to reference 20–80% and 80–20% of the voltage supply, respectively. In Table 38, "IEEE 1588 Timer AC Specifications," changed units to "ns" for t_{I2DVKH}. In Table 45, "I2C AC Electrical Specifications," changed units to "ns" for t_{I2DVKH}. In Table 66, "MPC8360E TBGA Pinout Listing," and Table 67 "MPC8358E TBGA Pinout Listing, added note 7: "This pin must always be tied to GND" to the TEST pin and added a note to SPARE1 stating: "This pin must always be left not connected." In Section 4, "Clock Input Timing," added note regarding rise/fall time on QUICC Engine block input pins. Added Section 4.1, "injol/100/1000 Ethernet DC Electrical Characteristics." In Section 2.1, "Pinout Listing," added sentence stating "Refer to AN3097, 'MPC8360/MPC8358E PowerQUICC Design Checklist,' for proper pin termination and usage." In Section 21, "Clocking," removed statement: "The OCCR[PCICDn] parameters select whether CLKIN or CLKIN/2 is driven out on the PCI_CLK_OUTn signals." In Section 21.1, "System PLL Configuration," updated the system VCO frequency conditions. In Table 80, added extended temperature characteristics.
2	12/2007	Initial release.

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center 1-800 441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale, the Freescale logo, and PowerQUICC are trademarks of Freescale Semiconductor, Inc. Reg. U.S. Pat. & Tm. Off. QUICC Engine is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. © 2011 Freescale Semiconductor, Inc.

Document Number: MPC8360EEC Rev. 5 09/2011

