

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e300
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	533MHz
Co-Processors/DSP	Communications; QUICC Engine, Security; SEC
RAM Controllers	DDR, DDR2
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (1)
SATA	-
USB	USB 1.x (1)
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	-40°C ~ 105°C (TA)
Security Features	Cryptography, Random Number Generator
Package / Case	740-LBGA
Supplier Device Package	740-TBGA (37.5x37.5)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8360ecvvajdg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

DDR and DDR2 SDRAM AC Electrical Characteristics

This table provides the input AC timing specifications for the DDR SDRAM interface when $GV_{DD}(typ) = 2.5 \text{ V}$.

Table 19. DDR SDRAM Input AC Timing Specifications

At recommended operating conditions with GV_{DD} of 2.5 V ± 5%.

Parameter	Symbol Min		Мах	Unit	Notes
AC input low voltage	V _{IL}	—	MV _{REF} – 0.31	V	—
AC input high voltage	V _{IH}	MV _{REF} + 0.31	_	V	_

Table 20. DDR and DDR2 SDRAM Input AC Timing Specifications Mode

At recommended operating conditions with GV_{DD} of (1.8 or 2.5 V) ± 5%.

Parameter	Symbol	Min	Мах	Unit	Notes
MDQS—MDQ/MECC input skew per byte 333 MHz 266 MHz 200 MHz	t _{DISKEW}	-750 -1125 -1250	750 1125 1250	ps	1, 2

Notes:

1. AC timing values are based on the DDR data rate, which is twice the DDR memory bus frequency.

Maximum possible skew between a data strobe (MDQS[n]) and any corresponding bit of data (MDQ[8n + {0...7}] if 0 ≤n ≤7) or ECC (MECC[{0...7}] if n = 8).

This figure shows the input timing diagram for the DDR controller.

Figure 6. DDR Input Timing Diagram

GMII, MII, RMII, TBI, RGMII, and RTBI AC Timing Specifications

Physical Layer Device Specification Version 1.2a (9/22/2000). The electrical characteristics for the MDIO and MDC are specified in Section 8.3, "Ethernet Management Interface Electrical Characteristics."

8.1.1 10/100/1000 Ethernet DC Electrical Characteristics

The electrical characteristics specified here apply to media independent interface (MII), reduced gigabit media independent interface (RGMII), reduced ten-bit interface (RTBI), reduced media independent interface (RMII) signals, management data input/output (MDIO) and management data clock (MDC).

The MII and RMII interfaces are defined for 3.3 V, while the RGMII and RTBI interfaces can be operated at 2.5 V. The RGMII and RTBI interfaces follow the *Reduced Gigabit Media-Independent Interface (RGMII) Specification Version 1.3*. The RMII interface follows the *RMII Consortium RMII Specification Version 1.2*.

Table 25. RGMII/RTBI, GMII, TBI, MII, and RMII DC Electrical Characteristics (when operating at 3.3 V)

Parameter	Symbol	Conditions		Min	Мах	Unit	Notes
Supply voltage 3.3 V	LV _{DD}	—		2.97	3.63	V	1
Output high voltage	V _{OH}	I _{OH} = -4.0 mA	$LV_{DD} = Min$	2.40	LV _{DD} + 0.3	V	—
Output low voltage	V _{OL}	I _{OL} = 4.0 mA	$LV_{DD} = Min$	GND	0.50	V	—
Input high voltage	V _{IH}	—	_	2.0	LV _{DD} + 0.3	V	—
Input low voltage	V _{IL}	—	_	-0.3	0.90	V	—
Input current	I _{IN}	0 V ≤V _{IN} ≤LV _{DD}		—	±10	μA	—

Note:

1. GMII/MII pins that are not needed for RGMII, RMII, or RTBI operation are powered by the OV_{DD} supply.

Table 26. RGMII/RTBI DC Electrical Characteristics	(when o	perating	at 2.5 V)
	·······			,

Parameters	Symbol	Cond	itions	Min	Max	Unit
Supply voltage 2.5 V	LV _{DD}	-	_	2.37	2.63	V
Output high voltage	V _{OH}	I _{OH} = -1.0 mA	LV _{DD} = Min	2.00	LV _{DD} + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 1.0 mA	LV _{DD} = Min	GND – 0.3	0.40	V
Input high voltage	V _{IH}	—	LV _{DD} = Min	1.7	LV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	LV _{DD} = Min	-0.3	0.70	V
Input current	I _{IN}	0 V ≤V _{IN} ≤LV _{DD}		—	±10	μA

8.2 GMII, MII, RMII, TBI, RGMII, and RTBI AC Timing Specifications

The AC timing specifications for GMII, MII, TBI, RGMII, and RTBI are presented in this section.

8.2.1 GMII Timing Specifications

This sections describe the GMII transmit and receive AC timing specifications.

8.2.1.1 GMII Transmit AC Timing Specifications

This table provides the GMII transmit AC timing specifications.

Table 27. GMII Transmit AC Timing Specifications

At recommended operating conditions with LV_{DD}/OV_{DD} of 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit	Notes
GTX_CLK clock period	t _{GTX}	_	8.0		ns	_
GTX_CLK duty cycle	t _{GTXH/tGTX}	40	_	60	%	—
GTX_CLK to GMII data TXD[7:0], TX_ER, TX_EN delay	^t GTKHDX ^t GTKHDV	0.5	_	 5.0	ns	3
GTX_CLK clock rise time, (20% to 80%)	t _{GTXR}	_		1.0	ns	_
GTX_CLK clock fall time, (80% to 20%)	t _{GTXF}	_	_	1.0	ns	—
GTX_CLK125 clock period	t _{G125}	_	8.0	_	ns	2
GTX_CLK125 reference clock duty cycle measured at $LV_{DD/2}$	t _{G125H} /t _{G125}	45		55	%	2

Notes:

- 1. The symbols used for timing specifications follow the pattern t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{GTKHDV} symbolizes GMII transmit timing (GT) with respect to the t_{GTX} clock reference (K) going to the high state (H) relative to the time date input signals (D) reaching the valid state (V) to state or setup time. Also, t_{GTKHDX} symbolizes GMII transmit timing (GT) with respect to the t_{ignx} clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{GTX} represents the GMII(G) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}
- 2. This symbol is used to represent the external GTX_CLK125 signal and does not follow the original symbol naming convention.
- In rev. 2.0 silicon, due to errata, t_{GTKHDX} minimum and t_{GTKHDV} maximum are not supported when the GTX_CLK is selected. Refer to Errata QE_ENET18 in Chip Errata for the MPC8360E, Rev. 1.

This figure shows the GMII transmit AC timing diagram.

Figure 10. GMII Transmit AC Timing Diagram

Local Bus AC Electrical Specifications

Figure 25. Local Bus Signals, GPCM/UPM Signals for LCRR[CLKDIV] = 2 (DLL Enabled)

Figure 27. Local Bus Signals, GPCM/UPM Signals for LCRR[CLKDIV] = 4 (DLL Bypass Mode)

JTAG DC Electrical Characteristics

Figure 28. Local Bus Signals, GPCM/UPM Signals for LCRR[CLKDIV] = 4 (DLL Enabled)

10 JTAG

This section describes the DC and AC electrical specifications for the IEEE 1149.1 (JTAG) interface of the MPC8360E/58E.

10.1 JTAG DC Electrical Characteristics

This table provides the DC electrical characteristics for the IEEE 1149.1 (JTAG) interface of the device.

Characteristic	Symbol	Condition	Min	Max	Unit
Output high voltage	V _{OH}	I _{OH} = -6.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 6.0 mA	—	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	_	0.4	V
Input high voltage	V _{IH}	—	2.5	OV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	-0.3	0.8	V
Input current	I _{IN}	$0 V \leq V_{IN} \leq OV_{DD}$	_	±10	μA

10.2 JTAG AC Electrical Characteristics

This section describes the AC electrical specifications for the IEEE 1149.1 (JTAG) interface of the device.

This table provides the JTAG AC timing specifications as defined in Figure 30 through Figure 33.

Table 43. JTAG AC Timing Specifications (Independent of CLKIN)¹

At recommended operating conditions (see Table 2).

Parameter	Symbol ²	Min	Max	Unit	Notes
JTAG external clock frequency of operation	f _{JTG}	0	33.3	MHz	—
JTAG external clock cycle time	t _{JTG}	30	—	ns	_
JTAG external clock duty cycle	t _{JTKHKL} /t _{JTG}	45	55	%	_
JTAG external clock rise and fall times	t _{JTGR} & t _{JTGF}	0	2	ns	_
TRST assert time	t _{TRST}	25	—	ns	3
Input setup times: Boundary-scan data TMS, TDI	t _{JTDVKH} t _{JTIVKH}	4 4	_	ns	4
Input hold times: Boundary-scan data TMS, TDI	t _{JTDXKH} t _{JTIXKH}	10 10	_	ns	4
Valid times: Boundary-scan data TDO	t _{JTKLDV} t _{JTKLOV}	2 2	11 11	ns	5
Output hold times: Boundary-scan data TDO	t _{jtkldx} t _{jtklox}	2 2	_	ns	5
JTAG external clock to output high impedance: Boundary-scan data TDO	t _{JTKLDZ} t _{JTKLOZ}	2 2	19 9	ns	5, 6

Notes:

- 2. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{JTDVKH} symbolizes JTAG device timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the t_{JTG} clock reference (K) going to the high (H) state or setup time. Also, t_{JTDXKH} symbolizes JTAG timing (JT) with respect to the time data input signals (D) went invalid (X) relative to the t_{JTG} clock reference (K) going to the high (H) state. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
- 3. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.
- 4. Non-JTAG signal input timing with respect to t_{TCLK}.
- 5. Non-JTAG signal output timing with respect to t_{TCLK}.
- 6. Guaranteed by design and characterization.

All outputs are measured from the midpoint voltage of the falling/rising edge of t_{TCLK} to the midpoint of the signal in question. The output timings are measured at the pins. All output timings assume a purely resistive 50-Ω load (see Figure 22). Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.

JTAG AC Electrical Characteristics

This figure provides the AC test load for TDO and the boundary-scan outputs of the device.

Figure 29. AC Test Load for the JTAG Interface

This figure provides the JTAG clock input timing diagram.

VM = Midpoint Voltage (OV_{DD}/2)

Figure 30. JTAG Clock Input Timing Diagram

This figure provides the $\overline{\text{TRST}}$ timing diagram.

This figure provides the boundary-scan timing diagram.

VM = Midpoint Voltage (OV_{DD}/2)

I2C AC Electrical Specifications

11.2 I²C AC Electrical Specifications

This table provides the AC timing parameters for the I²C interface of the device.

Table 45. I²C AC Electrical Specifications

All values refer to V_{IH} (min) and V_{IL} (max) levels (see Table 44).

Parameter	Symbol ¹	Min	Max	Unit	Note
SCL clock frequency	f _{I2C}	0	400	kHz	2
Low period of the SCL clock	t _{I2CL}	1.3	_	μs	—
High period of the SCL clock	t _{I2CH}	0.6	_	μs	—
Setup time for a repeated START condition	t _{I2SVKH}	0.6	_	μs	—
Hold time (repeated) START condition (after this period, the first clock pulse is generated)	t _{I2SXKL}	0.6	_	μs	_
Data setup time	t _{I2DVKH}	100	_	ns	3
Data hold time: CBUS compatible masters I ² C bus devices	t _{I2DXKL}	$\frac{1}{0^2}$	 0.9 ³	μs	—
Rise time of both SDA and SCL signals	t _{I2CR}	20 + 0.1 C _b ⁴	300	ns	—
Fall time of both SDA and SCL signals	t _{I2CF}	20 + 0.1 C _b ⁴	300	ns	—
Set-up time for STOP condition	t _{l2PVKH}	0.6	_	μs	—
Bus free time between a STOP and START condition	t _{I2KHDX}	1.3	_	μs	—
Noise margin at the LOW level for each connected device (including hysteresis)	V _{NL}	$0.1 \times \text{OV}_{\text{DD}}$	_	V	_
Noise margin at the HIGH level for each connected device (including hysteresis)	V _{NH}	$0.2 \times \text{OV}_{\text{DD}}$	_	V	_

Notes:

1. The symbols used for timing specifications follow the pattern of t_{(first two letters of functional}

block)(signal)(state)(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{I2DVKH} symbolizes I²C timing (I2) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{I2C} clock reference (K) going to the high (H) state or setup time. Also, t_{I2SXKL} symbolizes I²C timing (I2) for the time that the data with respect to the start condition (S) went invalid (X) relative to the t_{I2C} clock reference (K) going to the low (L) state or hold time. Also, t_{I2PVKH} symbolizes I²C timing (I2) for the time that the data with respect to the start condition (S) went invalid (X) relative to the t_{I2C} clock reference (K) going to the low (L) state or hold time. Also, t_{I2PVKH} symbolizes I²C timing (I2) for the time that the data with respect to the stop condition (P) reaching the valid state (V) relative to the t_{I2C} clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

 The device provides a hold time of at least 300 ns for the SDA signal (referred to the V_{IH} min of the SCL signal) to bridge the undefined region of the falling edge of SCL.

3. The maximum t_{12DVKH} has only to be met if the device does not stretch the LOW period (t_{12CL}) of the SCL signal.

4. C_B = capacitance of one bus line in pF.

This figure provides the AC test load for the I^2C .

Figure 34. I²C AC Test Load

This figure shows the AC timing diagram for the I^2C bus.

12 PCI

This section describes the DC and AC electrical specifications for the PCI bus of the MPC8360E/58E.

12.1 PCI DC Electrical Characteristics

This table provides the DC electrical characteristics for the PCI interface of the device.

Table 46. PCI DC Electrical Characteristics

Parameter	Symbol	Test Condition	Min	Мах	Unit
High-level input voltage	V _{IH}	$V_{OUT} \ge V_{OH}$ (min) or	$0.5\times\text{OV}_\text{DD}$	OV _{DD} + 0.5	V
Low-level input voltage	V _{IL}	V _{OUT} ≤V _{OL} (max)	-0.5	$0.3 imes OV_{DD}$	V
High-level output voltage	V _{OH}	I _{OH} = -500 μA	$0.9 imes OV_{DD}$	—	V
Low-level output voltage	V _{OL}	l _{OL} = 1500 μA	—	$0.1 imes OV_{DD}$	V
Input current	I _{IN}	0 V ≤V _{IN} ¹ ≤OV _{DD}	—	±10	μA

12.2 PCI AC Electrical Specifications

This section describes the general AC timing parameters of the PCI bus of the device. Note that the PCI_CLK or PCI_SYNC_IN signal is used as the PCI input clock depending on whether the device is configured as a host or agent device. This table provides the PCI AC timing specifications at 66 MHz.

Parameter	Symbol ¹	Min	Мах	Unit	Notes
Clock to output valid	t _{PCKHOV}	_	6.0	ns	2, 5
Output hold from clock	t _{PCKHOX}	1	—	ns	2

Table 47. PCI AC Timing Specifications at 66 MHz

This figure shows the TDM/SI timing with external clock.

Note: The clock edge is selectable on TDM/SI

17.3 UTOPIA/POS

This section describes the DC and AC electrical specifications for the UTOPIA/POS of the MPC8360E/58E.

17.4 UTOPIA/POS DC Electrical Characteristics

This table provides the DC electrical characteristics for the device UTOPIA.

 Table 59. UTOPIA DC Electrical Characteristics

Characteristic	Symbol	Condition	Min	Мах	Unit
Output high voltage	V _{OH}	I _{OH} = -8.0 mA	2.4	_	V
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	—	0.5	V
Input high voltage	V _{IH}	—	2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	-0.3	0.8	V
Input current	I _{IN}	$0 V \leq V_{IN} \leq OV_{DD}$	—	±10	μA

17.5 UTOPIA/POS AC Timing Specifications

This table provides the UTOPIA input and output AC timing specifications.

Table 60. UTOPIA AC Timing Specifications¹

Characteristic	Symbol ²	Min	Мах	Unit	Notes
UTOPIA outputs—Internal clock delay	t _{UIKHOV}	0	11.5	ns	_
UTOPIA outputs—External clock delay	t _{UEKHOV}	1	11.6	ns	_
UTOPIA outputs—Internal clock high impedance	t _{UIKHOX}	0	8.0	ns	—
UTOPIA outputs—External clock high impedance	t _{UEKHOX}	1	10.0	ns	_
UTOPIA inputs—Internal clock input setup time	t _{UIIVKH}	6	—	ns	—
UTOPIA inputs—External clock input setup time	t _{UEIVKH}	4	—	ns	3

HDLC, BISYNC, Transparent, and Synchronous UART AC Timing Specifications

Characteristic	Symbol ²	Min	Мах	Unit
Outputs—Internal clock high impedance	t _{нікнох}	-0.5	5.5	ns
Outputs—External clock high impedance	t _{НЕКНОХ}	1	8	ns
Inputs—Internal clock input setup time	t _{HIIVKH}	8.5	_	ns
Inputs—External clock input setup time	t _{HEIVKH}	4	-	ns
Inputs—Internal clock input hold time	t _{HIIXKH}	1.4	_	ns
Inputs—External clock input hold time	t _{HEIXKH}	1	_	ns

Table 62. HDLC, BISYNC, and Transparent AC Timing Specifications¹ (continued)

Notes:

- 1. Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are measured at the pin.
- The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{HIKHOX} symbolizes the outputs internal timing (HI) for the time t_{serial} memory clock reference (K) goes from the high state (H) until outputs (O) are invalid (X).
 </sub>

Characteristic	Symbol ²	Min	Мах	Unit
Outputs—Internal clock delay	t _{UAIKHOV}	0	11.3	ns
Outputs—External clock delay	t _{UAEKHOV}	1	14	ns
Outputs—Internal clock high impedance	t _{UAIKHOX}	0	11	ns
Outputs—External clock high impedance	t _{UAEKHOX}	1	14	ns
Inputs—Internal clock input setup time	t _{UAIIVKH}	6	—	ns
Inputs—External clock input setup time	t _{UAEIVKH}	8	—	ns
Inputs—Internal clock input hold time	t _{UAIIXKH}	1	—	ns
Inputs—External clock input hold time	t _{UAEIXKH}	1	—	ns

Notes:

- 1. Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are measured at the pin.
- The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{HIKHOX} symbolizes the outputs internal timing (HI) for the time t_{serial} memory clock reference (K) goes from the high state (H) until outputs (O) are invalid (X).
 </sub></sub>

This figure provides the AC test load.

Figure 49. AC Test Load

20 Package and Pin Listings

This section details package parameters, pin assignments, and dimensions. The MPC8360E/58E is available in a tape ball grid array (TBGA), see Section 20.1, "Package Parameters for the TBGA Package," and Section 20.2, "Mechanical Dimensions of the TBGA Package," for information on the package.

20.1 Package Parameters for the TBGA Package

The package parameters for rev. 2.0 silicon are as provided in the following list. The package type is $37.5 \text{ mm} \times 37.5 \text{ mm}$, 740 tape ball grid array (TBGA).

Package outline	$37.5 \text{ mm} \times 37.5 \text{ mm}$
Interconnects	740
Pitch	1.00 mm
Module height (typical)	1.46 mm
Solder Balls	62 Sn/36 Pb/2 Ag (ZU package)
	95.5 Sn/0.5 Cu/4Ag (VV package)
Ball diameter (typical)	0.64 mm

Mechanical Dimensions of the TBGA Package

20.2 Mechanical Dimensions of the TBGA Package

This figure depicts the mechanical dimensions and bottom surface nomenclature of the device, 740-TBGA package.

Figure 53. Mechanical Dimensions and Bottom Surface Nomenclature of the TBGA Package

Pinout Listings

Signal	Package Pin Number	Pin Type	Power Supply	Notes
LV _{DD} 1	C17, D16	Power for UCC2 Ethernet interface option 1 (2.5 V, 3.3 V)	LV _{DD} 1	9
LV _{DD} 2	B18, E21	Power for UCC2 Ethernet interface option 2 (2.5 V, 3.3 V)	LV _{DD} 2	9
V _{DD}	C36, D29, D35, E16, F9, F12, F15, F17, F18, F20, F21, F23, F25, F26, F29, F31, F32, F33, G6, J6, K32, M32, N6, P33, R6, R32, U32, V6, Y5, Y32, AB6, AB33, AD6, AF32, AK6, AL6, AM7, AM9, AM10, AM11, AM12, AM13, AM14, AM15, AM18, AM21, AM25, AM28, AM32, AN15, AN21, AN26, AU9, AU17	Power for core (1.2 V)	V _{DD}	_
OV _{DD}	A10, B9, B15, B32, C1, C12, C22, C29, D24, E3, E10, E27, G4, H35, J1, J35, K2, M4, N3, N34, R2, R37, T36, U2, U33, V4, V34, W3, Y35, Y37, AA1, AA36, AB2, AB34	PCI, 10/100 Ethernet, and other standard (3.3 V)	OV _{DD}	
MVREF1	AN20	I	DDR reference voltage	_
MVREF2	AU32	I	DDR reference voltage	
			Г	
SPARE1	B11	I/O	OV _{DD}	8
SPARE3	AH32		GV _{DD}	8
SPARE4	AU18	—	GV _{DD}	7
SPARE5	AP1	—	GV _{DD}	8

Table 67. MPC8358E TBGA Pinout Listing (continued)

System PLL Configuration

			Input Clock Frequency (MHz) ²		Input Clock Frequer		Input Clock Frequency) ²
CFG_CLKIN_DIV at Reset ¹	SPMF	<i>csb_clk</i> : Input Clock Ratio ²	16.67	25	33.33	66.67			
				csb_clk Freq	uency (MHz)				
Low	0110	6:1	100	150	200				
Low	0111	7:1	116	175	233				
Low	1000	8:1	133	200	266				
Low	1001	9:1	150	225	300				
Low	1010	10:1	166	250	333				
Low	1011	11:1	183	275					
Low	1100	12:1	200	300					
Low	1101	13:1	216	325					
Low	1110	14:1	233		2				
Low	1111	15:1	250	1					
Low	0000	16:1	266	1					
High	0010	2:1		4		133			
High	0011	3:1			100	200			
High	0100	4:1			133	266			
High	0101	5:1			166	333			
High	0110	6:1			200				
High	0111	7:1			233				
High	1000	8:1							
High	1001	9:1							
High	1010	10:1							
High	1011	11:1							
High	1100	12:1							
High	1101	13:1							
High	1110	14:1							
High	1111	15:1							
High	0000	16:1							

Table 72. CSB Frequency Options (continued)

¹ CFG_CLKIN_DIV is only used for host mode; CLKIN must be tied low and CFG_CLKIN_DIV must be pulled down (low) in agent mode.

 $^2\,$ CLKIN is the input clock in host mode; PCI_CLK is the input clock in agent mode.

21.3 QUICC Engine Block PLL Configuration

The QUICC Engine block PLL is controlled by the RCWL[CEPMF], RCWL[CEPDF], and RCWL[CEVCOD] parameters. This table shows the multiplication factor encodings for the QUICC Engine block PLL.

RCWL[CEPMF]	RCWL[CEPDF]	QUICC Engine PLL Multiplication Factor = RCWL[CEPMF]/ (1 + RCWL[CEPDF])
00000	0	× 16
00001	0	Reserved
00010	0	× 2
00011	0	× 3
00100	0	× 4
00101	0	× 5
00110	0	× 6
00111	0	× 7
01000	0	× 8
01001	0	× 9
01010	0	× 10
01011	0	× 11
01100	0	× 12
01101	0	× 13
01110	0	× 14
01111	0	× 15
10000	0	× 16
10001	0	× 17
10010	0	× 18
10011	0	× 19
10100	0	× 20
10101	0	× 21
10110	0	× 22
10111	0	× 23
11000	0	× 24
11001	0	× 25
11010	0	× 26
11011	0	× 27
11100	0	× 28

Table 74. QUICC Engine Block PLL Multiplication Factors

where:

 T_I = junction temperature (° C)

 $T_I = T_B + (R_{\theta IB} \times P_D)$

 T_B = board temperature at the package perimeter (° C)

 $R_{\theta JA}$ = junction to board thermal resistance (° C/W) per JESD51-8

 P_D = power dissipation in the package (W)

When the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made. The application board should be similar to the thermal test condition: the component is soldered to a board with internal planes.

22.2.3 Experimental Determination of Junction Temperature

To determine the junction temperature of the device in the application after prototypes are available, the Thermal Characterization Parameter (Ψ_{JT}) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using the following equation:

$$T_J = T_T + (\Psi_{JT} \times P_D)$$

where:

 T_J = junction temperature (° C)

 T_T = thermocouple temperature on top of package (° C)

 Ψ_{IT} = junction-to-ambient thermal resistance (° C/W)

 P_D = power dissipation in the package (W)

The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

22.2.4 Heat Sinks and Junction-to-Ambient Thermal Resistance

In some application environments, a heat sink is required to provide the necessary thermal management of the device. When a heat sink is used, the thermal resistance is expressed as the sum of a junction to case thermal resistance and a case to ambient thermal resistance:

 $R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$

where:

 $R_{\theta JA}$ = junction-to-ambient thermal resistance (° C/W)

 $R_{\theta JC}$ = junction-to-case thermal resistance (° C/W)

 $R_{\theta CA}$ = case-to-ambient thermal resistance (° C/W)

 $R_{\theta JC}$ is device related and cannot be influenced by the user. The user controls the thermal environment to change the case-to-ambient thermal resistance, $R_{\theta CA}$. For instance, the user can change the size of the heat sink, the airflow around the device, the interface material, the mounting arrangement on printed-circuit board, or change the thermal dissipation on the printed-circuit board surrounding the device.

To illustrate the thermal performance of the devices with heat sinks, the thermal performance has been simulated with a few commercially available heat sinks. The heat sink choice is determined by the application environment (temperature, airflow, adjacent component power dissipation) and the physical space available. Because there is not a standard application environment, a standard heat sink is not required.

Thermal Management Information

This table shows heat sinks and junction-to-ambient thermal resistance for TBGA package.

Table 78. Heat Sinks and Junction-to-Ambien	t Thermal Resistance of TBGA Package
---	--------------------------------------

		35 imes 35 mm TBGA
Heat Sink Assuming Thermal Grease	Airflow	Junction-to-Ambient Thermal Resistance
AAVID 30 × 30 × 9.4 mm pin fin	Natural convention	10.7
AAVID 30 × 30 × 9.4 mm pin fin	1 m/s	6.2
AAVID 30 × 30 × 9.4 mm pin fin	2 m/s	5.3
AAVID 31 × 35 × 23 mm pin fin	Natural convention	8.1
AAVID 31 × 35 × 23 mm pin fin	1 m/s	4.4
AAVID 31 × 35 × 23 mm pin fin	2 m/s	3.7
Wakefield, 53 × 53 × 25 mm pin fin	Natural convention	5.4
Wakefield, 53 × 53 × 25 mm pin fin	1 m/s	3.2
Wakefield, 53 × 53 × 25 mm pin fin	2 m/s	2.4
MEI, 75 × 85 × 12 no adjacent board, extrusion	Natural convention	6.4
MEI, 75 × 85 × 12 no adjacent board, extrusion	1 m/s	3.8
MEI, 75 × 85 × 12 no adjacent board, extrusion	2 m/s	2.5
MEI, 75 × 85 × 12 mm, adjacent board, 40 mm side bypass	1 m/s	2.8

Accurate thermal design requires thermal modeling of the application environment using computational fluid dynamics software which can model both the conduction cooling and the convection cooling of the air moving through the application. Simplified thermal models of the packages can be assembled using the junction-to-case and junction-to-board thermal resistances listed in the thermal resistance table. More detailed thermal models can be made available on request.

Heat sink vendors include the following:

Aavid Thermalloy 80 Commercial St.	603-224-9988
Concord, NH 03301	
Internet: www.aavidthermalloy.com	
Alpha Novatech	408-749-7601
473 Sapena Ct. #15	
Santa Clara, CA 95054	
Internet: www.alphanovatech.com	
International Electronic Research Corporation (IERC)	818-842-7277
413 North Moss St.	
Burbank, CA 91502	
Internet: www.ctscorp.com	

23.7 Pull-Up Resistor Requirements

The device requires high resistance pull-up resistors (10 k Ω is recommended) on open drain type pins including I²C pins, Ethernet Management MDIO pin, and EPIC interrupt pins.

For more information on required pull-up resistors and the connections required for the JTAG interface, see *MPC8360E/MPC8358E PowerQUICC Design Checklist* (AN3097).

24 Ordering Information

24.1 Part Numbers Fully Addressed by this Document

This table provides the Freescale part numbering nomenclature for the MPC8360E/58E. Note that the individual part numbers correspond to a maximum processor core frequency. For available frequencies, contact your local Freescale sales office. Additionally to the processor frequency, the part numbering scheme also includes an application modifier, which may specify special application conditions. Each part number also contains a revision code that refers to the die mask revision number.

MPC	nnnn	е	t	рр	aa	а	а	Α	
Product Code	Part Identifier	Encryption Acceleration	Temperature Range	Package ²	Processor Frequency ³	Platform Frequency	QUICC Engine Frequency	Die Revision	
MPC	8358	Blank = not included E = included	$Blank = 0^{\circ} C$ $T_{A} to 105^{\circ} C$ T_{J} $C = -40^{\circ} C T_{A}$ $to 105^{\circ} C T_{J}$	Blank = 0° C T_A to 105° C T_J (no lead)	ZU = TBGA VV = TBGA (no lead)	e300 core speed AD = 266 MHz AG = 400 MHz	D = 266 MHz	E = 300 MHz G = 400 MHz	A = rev. 2.1 silicon
-	8360				e300 core speed AG = 400 MHz AJ = 533 MHz AL = 667 MHz	D = 266 MHz F = 333 MHz	G = 400 MHz H = 500 MHz	A = rev. 2.1 silicon	
MPC (rev. 2.0 silicon only)	8360	Blank = not included E = included	0° C T _A to 70° C T _J	ZU = TBGA VV = TBGA (no lead)	e300 core speed AH = 500 MHz AL = 667 MHz	F = 333 MHz	G = 400 MHz H = 500 MHz	_	

Table 80. Part Numbering Nomenclature¹

Notes:

1. Not all processor, platform, and QUICC Engine block frequency combinations are supported. For available frequency combinations, contact your local Freescale sales office or authorized distributor.

2. See Section 20, "Package and Pin Listings," for more information on available package types.

Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this
specification support all core frequencies. Additionally, parts addressed by part number specifications may support other
maximum core frequencies.

This table shows the SVR settings by device and package type.

Table 81.	SVR	Settings
-----------	-----	----------

Device	Package	SVR (Rev. 2.0)	SVR (Rev. 2.1)
MPC8360E	TBGA	0x8048_0020	0x8048_0021
MPC8360	TBGA	0x8049_0020	0x8049_0021