

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e300
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	400MHz
Co-Processors/DSP	Communications; QUICC Engine, Security; SEC
RAM Controllers	DDR, DDR2
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (1)
SATA	-
USB	USB 1.x (1)
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	-40°C ~ 105°C (TA)
Security Features	Cryptography, Random Number Generator
Package / Case	740-LBGA
Supplier Device Package	740-TBGA (37.5x37.5)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8360eczuagdga

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Characteristic	Symbol	Recommended Value	Unit	Notes
PCI, local bus, DUART, system control and power management, I^2C , SPI, and JTAG I/O voltage	OV _{DD}	3.3 V ± 330 mV	V	_
Junction temperature	TJ	0 to 105 -40 to 105	°C	2

Table 2. Recommended Operating Conditions (continued)

Notes:

- 1. GV_{DD}, LV_{DD}, OV_{DD}, AV_{DD}, and V_{DD} must track each other and must vary in the same direction—either in the positive or negative direction.
- The operating conditions for junction temperature, T_J, on the 600/333/400 MHz and 500/333/500 MHz on rev. 2.0 silicon is 0° to 70 °C. Refer to Errata General9 in *Chip Errata for the MPC8360E, Rev. 1*.
- 3. For more information on Part Numbering, refer to Table 80.

This figure shows the undershoot and overshoot voltages at the interfaces of the device.

1. Note that $t_{\mbox{interface}}$ refers to the clock period associated with the bus clock interface.

Figure 3. Overshoot/Undershoot Voltage for $GV_{DD}/OV_{DD}/LV_{DD}$

Power Sequencing

This figure shows the undershoot and overshoot voltage of the PCI interface of the device for the 3.3-V signals, respectively.

Figure 4. Maximum AC Waveforms on PCI interface for 3.3-V Signaling

2.1.3 Output Driver Characteristics

This table provides information on the characteristics of the output driver strengths. The values are preliminary estimates.

Driver Type	Output Impedance (Ω)	Supply Voltage
Local bus interface utilities signals	42	OV _{DD} = 3.3 V
PCI signals	25	
PCI output clocks (including PCI_SYNC_OUT)	42	
DDR signal	20 36 (half-strength mode) ¹	GV _{DD} = 2.5 V
DDR2 signal	18 36 (half-strength mode) ¹	GV _{DD} = 1.8 V
10/100/1000 Ethernet signals	42	LV _{DD} = 2.5/3.3 V
DUART, system control, I ² C, SPI, JTAG	42	OV _{DD} = 3.3 V
GPIO signals	42	OV _{DD} = 3.3 V LV _{DD} = 2.5/3.3 V

Note:

1. DDR output impedance values for half strength mode are verified by design and not tested.

2.2 Power Sequencing

This section details the power sequencing considerations for the MPC8360E/58E.

Table 4. MPC8360E TBGA Core Power Dissipation ¹	(continued)
--	-------------

Core Frequency (MHz)	CSB Frequency (MHz)	QUICC Engine Frequency (MHz)	Typical	Maximum	Unit	Notes
667	333	500	6.1	6.8	W	2, 3, 5, 9

Notes:

- 1. The values do not include I/O supply power (OV_{DD}, LV_{DD}, GV_{DD}) or AV_{DD}. For I/O power values, see Table 6.
- 2. Typical power is based on a voltage of V_{DD} = 1.2 V or 1.3 V, a junction temperature of T_J = 105°C, and a Dhrystone benchmark application.
- 3. Thermal solutions need to design to a value higher than typical power on the end application, T_A target, and I/O power.
- 4. Maximum power is based on a voltage of V_{DD} = 1.2 V, WC process, a junction T_J = 105°C, and an artificial smoke test.
- Maximum power is based on a voltage of V_{DD} = 1.3 V for applications that use 667 MHz (CPU)/500 (QE) with WC process, a junction T₁ = 105° C, and an artificial smoke test.
- 6. Typical power is based on a voltage of V_{DD} = 1.3 V, a junction temperature of T_J = 70° C, and a Dhrystone benchmark application.
- Maximum power is based on a voltage of V_{DD} = 1.3 V for applications that use 667 MHz (CPU) or 500 (QE) with WC process, a junction T_J = 70° C, and an artificial smoke test.
- 8. This frequency combination is only available for rev. 2.0 silicon.
- 9. This frequency combination is not available for rev. 2.0 silicon.

Table 5. MPC8358E TBGA Core Power Dissipation¹

Core Frequency (MHz)	CSB Frequency (MHz)	QUICC Engine Frequency (MHz)	Typical	Maximum	Unit	Notes
266	266	300	4.1	4.5	W	2, 3, 4
400	266	400	4.5	5.0	W	2, 3, 4

Notes:

- 1. The values do not include I/O supply power (OV_{DD}, LV_{DD} , GV_{DD}) or AV_{DD} . For I/O power values, see Table 6.
- Typical power is based on a voltage of V_{DD} = 1.2 V, a junction temperature of T_J = 105°C, and a Dhrystone benchmark application.
- 3. Thermal solutions need to design to a value higher than typical power on the end application, T_A target, and I/O power.
- 4. Maximum power is based on a voltage of V_{DD} = 1.2 V, WC process, a junction T_J = 105°C, and an artificial smoke test.

5.2 **RESET AC Electrical Characteristics**

This section describes the AC electrical specifications for the reset initialization timing requirements of the device. This table provides the reset initialization AC timing specifications for the DDR SDRAM component(s).

Parameter/Condition	Min	Max	Unit	Notes
Required assertion time of HRESET or SRESET (input) to activate reset flow	32	_	t _{PCI_SYNC_IN}	1
Required assertion time of PORESET with stable clock applied to CLKIN when the device is in PCI host mode	32		^t CLKIN	2
Required assertion time of PORESET with stable clock applied to PCI_SYNC_IN when the device is in PCI agent mode	32	_	^t PCI_SYNC_IN	1
HRESET/SRESET assertion (output)	512	_	t _{PCI_SYNC_IN}	1
HRESET negation to SRESET negation (output)	16	-	t _{PCI_SYNC_IN}	1
Input setup time for POR config signals (CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV) with respect to negation of PORESET when the device is in PCI host mode	4	_	^t CLKIN	2
Input setup time for POR config signals (CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV) with respect to negation of PORESET when the device is in PCI agent mode	4	_	^t PCI_SYNC_IN	1
Input hold time for POR config signals with respect to negation of HRESET	0	-	ns	_
Time for the <u>device to</u> turn off POR config signals with respect to the assertion of HRESET		4	ns	3
Time for the device to turn on POR config signals with respect to the negation of HRESET	1	_	^t PCI_SYNC_IN	1, 3

Table 11. RESET Initialization Timing Specifications

Notes:

- t_{PCI_SYNC_IN} is the clock period of the input clock applied to PCI_SYNC_IN. When the device is In PCI host mode the primary clock is applied to the CLKIN input, and PCI_SYNC_IN period depends on the value of CFG_CLKIN_DIV. Refer MPC8360E PowerQUICC II Pro Integrated Communications Processor Reference Manual for more details.
- t_{CLKIN} is the clock period of the input clock applied to CLKIN. It is only valid when the device is in PCI host mode. Refer MPC8360E PowerQUICC II Pro Integrated Communications Processor Reference Manual for more details.
- 3. POR config signals consists of CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV.

This table provides the PLL and DLL lock times.

Table 12. PLL and DLL Lock Times

Parameter/Condition	Min	Мах	Unit	Notes
PLL lock times	—	100	μs	
DLL lock times	7680	122,880	csb_clk cycles	1, 2

Notes:

1. DLL lock times are a function of the ratio between the output clock and the coherency system bus clock (csb_clk). A 2:1 ratio results in the minimum and an 8:1 ratio results in the maximum.

2. The csb_clk is determined by the CLKIN and system PLL ratio. See Section 21, "Clocking," for more information.

DDR and DDR2 SDRAM AC Electrical Characteristics

This table provides the input AC timing specifications for the DDR SDRAM interface when $GV_{DD}(typ) = 2.5 \text{ V}$.

Table 19. DDR SDRAM Input AC Timing Specifications

At recommended operating conditions with GV_{DD} of 2.5 V ± 5%.

Parameter	Symbol	Min	Мах	Unit	Notes
AC input low voltage	V _{IL}	—	MV _{REF} – 0.31	V	—
AC input high voltage	V _{IH}	MV _{REF} + 0.31	_	V	_

Table 20. DDR and DDR2 SDRAM Input AC Timing Specifications Mode

At recommended operating conditions with GV_{DD} of (1.8 or 2.5 V) ± 5%.

Parameter	Symbol	Min	Мах	Unit	Notes
MDQS—MDQ/MECC input skew per byte 333 MHz 266 MHz 200 MHz	t _{DISKEW}	-750 -1125 -1250	750 1125 1250	ps	1, 2

Notes:

1. AC timing values are based on the DDR data rate, which is twice the DDR memory bus frequency.

Maximum possible skew between a data strobe (MDQS[n]) and any corresponding bit of data (MDQ[8n + {0...7}] if 0 ≤n ≤7) or ECC (MECC[{0...7}] if n = 8).

This figure shows the input timing diagram for the DDR controller.

Figure 6. DDR Input Timing Diagram

DDR and DDR2 SDRAM AC Electrical Characteristics

This figure provides the AC test load for the DDR bus.

Figure 8. DDR AC Test Load

Table 22. DDR and DDR2 SDRAM Measurement Conditions

Symbol	DDR	DDR2	Unit	Notes
V _{TH}	MV _{REF} ± 0.31 V	MV _{REF} ± 0.25 V	V	1
V _{OUT}	$0.5 \times \text{ GV}_{\text{DD}}$	$0.5 \times \text{ GV}_{\text{DD}}$	V	2

Notes:

1. Data input threshold measurement point.

2. Data output measurement point.

This figure shows the DDR SDRAM output timing diagram for source synchronous mode.

Figure 9. DDR SDRAM Output Timing Diagram for Source Synchronous Mode

This section describes the DC and AC electrical specifications for the DUART interface of the MPC8360E/58E.

7.1 DUART DC Electrical Characteristics

This table provides the DC electrical characteristics for the DUART interface of the device.

Table 23. DUART DC Electrical Characteristics

Parameter	Symbol	Min	Мах	Unit	Notes
High-level input voltage	V _{IH}	2	OV _{DD} + 0.3	V	—
Low-level input voltage OV _{DD}	V _{IL}	-0.3	0.8	V	—
High-level output voltage, I _{OH} = −100 μA	V _{OH}	OV _{DD} - 0.4	—	V	—
Low-level output voltage, I _{OL} = 100 μA	V _{OL}	—	0.2	V	—
Input current (0 V ≰⁄ _{IN} ≤OV _{DD})	I _{IN}	—	±10	μA	1

Note:

1. Note that the symbol V_{IN}, in this case, represents the OV_{IN} symbol referenced in Table 1 and Table 2.

7.2 DUART AC Electrical Specifications

This table provides the AC timing parameters for the DUART interface of the device.

Table 24.	DUART	AC T	iming	Speci	ifications
-----------	-------	------	-------	-------	------------

Parameter	Value	Unit	Notes
Minimum baud rate	256	baud	_
Maximum baud rate	>1,000,000	baud	1
Oversample rate	16	_	2

Notes:

- 1. Actual attainable baud rate is limited by the latency of interrupt processing.
- 2. The middle of a start bit is detected as the eighth sampled 0 after the 1-to-0 transition of the start bit. Subsequent bit values are sampled each sixteenth sample.

8 UCC Ethernet Controller: Three-Speed Ethernet, MII Management

This section provides the AC and DC electrical characteristics for three-speed, 10/100/1000, and MII management.

8.1 Three-Speed Ethernet Controller (10/100/1000 Mbps)— GMII/MII/RMII/TBI/RGMII/RTBI Electrical Characteristics

The electrical characteristics specified here apply to all GMII (gigabit media independent interface), MII (media independent interface), RMII (reduced media independent interface), TBI (ten-bit interface), RGMII (reduced gigabit media independent interface), and RTBI (reduced ten-bit interface) signals except MDIO (management data input/output) and MDC (management data clock). The MII, RMII, GMII, and TBI interfaces are only defined for 3.3 V, while the RGMII and RTBI interfaces are only defined for 2.5 V. The RGMII and RTBI interfaces follow the Hewlett-Packard reduced pin-count interface for Gigabit Ethernet

8.2.1.1 GMII Transmit AC Timing Specifications

This table provides the GMII transmit AC timing specifications.

Table 27. GMII Transmit AC Timing Specifications

At recommended operating conditions with LV_{DD}/OV_{DD} of 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit	Notes
GTX_CLK clock period	t _{GTX}	_	8.0		ns	_
GTX_CLK duty cycle	t _{GTXH/tGTX}	40	_	60	%	—
GTX_CLK to GMII data TXD[7:0], TX_ER, TX_EN delay	^t GTKHDX ^t GTKHDV	0.5	_	 5.0	ns	3
GTX_CLK clock rise time, (20% to 80%)	t _{GTXR}	_		1.0	ns	_
GTX_CLK clock fall time, (80% to 20%)	t _{GTXF}	_	_	1.0	ns	—
GTX_CLK125 clock period	t _{G125}	_	8.0	_	ns	2
GTX_CLK125 reference clock duty cycle measured at $LV_{DD/2}$	t _{G125H} /t _{G125}	45		55	%	2

Notes:

- 1. The symbols used for timing specifications follow the pattern t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{GTKHDV} symbolizes GMII transmit timing (GT) with respect to the t_{GTX} clock reference (K) going to the high state (H) relative to the time date input signals (D) reaching the valid state (V) to state or setup time. Also, t_{GTKHDX} symbolizes GMII transmit timing (GT) with respect to the t_{ignx} clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{GTX} represents the GMII(G) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}
- 2. This symbol is used to represent the external GTX_CLK125 signal and does not follow the original symbol naming convention.
- In rev. 2.0 silicon, due to errata, t_{GTKHDX} minimum and t_{GTKHDV} maximum are not supported when the GTX_CLK is selected. Refer to Errata QE_ENET18 in Chip Errata for the MPC8360E, Rev. 1.

This figure shows the GMII transmit AC timing diagram.

Figure 10. GMII Transmit AC Timing Diagram

Local Bus DC Electrical Characteristics

8.3.3 IEEE 1588 Timer AC Specifications

This table provides the IEEE 1588 timer AC specifications.

Table 38. IEEE 1588 Timer AC Specifications

Parameter	Symbol	Min	Мах	Unit	Notes
Timer clock frequency	t _{TMRCK}	0	70	MHz	1
Input setup to timer clock	t _{TMRCKS}	—	—	—	2, 3
Input hold from timer clock	t _{TMRCKH}	—	—	—	2, 3
Output clock to output valid	t _{GCLKNV}	0	6	ns	_
Timer alarm to output valid	t _{TMRAL}	_	_	_	2

Notes:

1. The timer can operate on rtc_clock or tmr_clock. These clocks get muxed and any one of them can be selected. The minimum and maximum requirement for both rtc_clock and tmr_clock are the same.

- 2. These are asynchronous signals.
- 3. Inputs need to be stable at least one TMR clock.

9 Local Bus

This section describes the DC and AC electrical specifications for the local bus interface of the MPC8360E/58E.

9.1 Local Bus DC Electrical Characteristics

This table provides the DC electrical characteristics for the local bus interface.

Table 39. Local Bus DC Electrical Characteristics

Parameter	Symbol	Min	Max	Unit
High-level input voltage	V _{IH}	2	OV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	-0.3	0.8	V
High-level output voltage, I _{OH} = −100 μA	V _{OH}	OV _{DD} - 0.4	—	V
Low-level output voltage, $I_{OL} = 100 \ \mu A$	V _{OL}	—	0.2	V
Input current	I _{IN}	—	±10	μA

9.2 Local Bus AC Electrical Specifications

This table describes the general timing parameters of the local bus interface of the device.

Table 40. Local Bus General Timing Parameters—DLL Enabled

Parameter	Symbol ¹	Min	Мах	Unit	Notes
Local bus cycle time	t _{LBK}	7.5	_	ns	2
Input setup to local bus clock (except LUPWAIT)	t _{LBIVKH1}	1.7	_	ns	3, 4
LUPWAIT input setup to local bus clock	t _{LBIVKH2}	1.9	_	ns	3, 4
Input hold from local bus clock (except LUPWAIT)	t _{LBIXKH1}	1.0		ns	3, 4

Parameter	Symbol ¹	Min	Max	Unit	Notes
LUPWAIT input hold from local bus clock	t _{LBIXKH2}	1.0	_	ns	3, 4
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT1}	1.5	_	ns	5
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT2}	3.0	_	ns	6
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT3}	2.5	_	ns	7
Local bus clock to LALE rise	t _{LBKHLR}	_	4.5	ns	
Local bus clock to output valid (except LAD/LDP and LALE)	t _{LBKHOV1}	_	4.5	ns	
Local bus clock to data valid for LAD/LDP	t _{LBKHOV2}	_	4.5	ns	3
Local bus clock to address valid for LAD	t _{LBKHOV3}	_	4.5	ns	3
Output hold from local bus clock (except LAD/LDP and LALE)	t _{LBKHOX1}	1.0	_	ns	3
Output hold from local bus clock for LAD/LDP	t _{LBKHOX2}	1.0	_	ns	3
Local bus clock to output high impedance for LAD/LDP	t _{LBKHOZ}		3.8	ns	8

Table 40. Local Bus General Timing Parameters—DLL Enabled (continued)

Notes:

- The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{LBIXKH1} symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t_{LBK} clock reference (K) goes high (H), in this case for clock one (1). Also, t_{LBKHOX} symbolizes local bus timing (LB) for the output (O) going invalid (X) or output hold time.
 </sub>
- 2. All timings are in reference to rising edge of LSYNC_IN.
- 3. All signals are measured from $OV_{DD}/2$ of the rising edge of LSYNC_IN to $0.4 \times OV_{DD}$ of the signal in question for 3.3-V signaling levels.
- 4. Input timings are measured at the pin.
- 5. t_{LBOTOT1} should be used when RCWH[LALE] is not set and when the load on LALE output pin is at least 10 pF less than the load on LAD output pins.
- t_{LBOTOT2} should be used when RCWH[LALE] is set and when the load on LALE output pin is at least 10 pF less than the load on LAD output pins.
- 7. t_{LBOTOT3} should be used when RCWH[LALE] is set and when the load on LALE output pin equals to the load on LAD output pins.
- 8. For purposes of active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.

This table describes the general timing parameters of the local bus interface of the device.

Table 41. Local Bus General Timing Parameters—DLL Bypass Mode⁹

Parameter	Symbol ¹	Min	Max	Unit	Notes
Local bus cycle time	t _{LBK}	15	—	ns	2
Input setup to local bus clock	t _{LBIVKH}	7	—	ns	3, 4
Input hold from local bus clock	t _{LBIXKH}	1.0	—	ns	3, 4
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT1}	1.5	—	ns	5
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT2}	3	—	ns	6
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT3}	2.5	—	ns	7

Local Bus AC Electrical Specifications

Parameter	Symbol ¹	Min	Max	Unit	Notes
Local bus clock to output valid	t _{LBKHOV}	—	3	ns	3
Local bus clock to output high impedance for LAD/LDP	t _{LBKHOZ}		4	ns	8

Table 41. Local Bus General Timing Parameters—DLL Bypass Mode⁹ (continued)

Notes:

- The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{LBIXKH1} symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t_{LBK} clock reference (K) goes high (H), in this case for clock one (1). Also, t_{LBKHOX} symbolizes local bus timing (LB) for the to the output (O) going invalid (X) or output hold time.
 </sub>
- 2. All timings are in reference to falling edge of LCLK0 (for all outputs and for LGTA and LUPWAIT inputs) or rising edge of LCLK0 (for all other inputs).
- 3. All signals are measured from OV_{DD}/2 of the rising/falling edge of LCLK0 to 0.4 × OV_{DD} of the signal in question for 3.3-V signaling levels.
- 4. Input timings are measured at the pin.
- 5. t_{LBOTOT1} should be used when RCWH[LALE] is not set and when the load on LALE output pin is at least 10 pF less than the load on LAD output pins.
- t_{LBOTOT2} should be used when RCWH[LALE] is set and when the load on LALE output pin is at least 10 pF less than the load on LAD output pins.
- 7. t_{LBOTOT3} should be used when RCWH[LALE] is set and when the load on LALE output pin equals to the load on LAD output pins.
- 8. For purposes of active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 9. DLL bypass mode is not recommended for use at frequencies above 66 MHz.

This figure provides the AC test load for the local bus.

Figure 22. Local Bus C Test Load

JTAG DC Electrical Characteristics

Figure 28. Local Bus Signals, GPCM/UPM Signals for LCRR[CLKDIV] = 4 (DLL Enabled)

10 JTAG

This section describes the DC and AC electrical specifications for the IEEE 1149.1 (JTAG) interface of the MPC8360E/58E.

10.1 JTAG DC Electrical Characteristics

This table provides the DC electrical characteristics for the IEEE 1149.1 (JTAG) interface of the device.

Characteristic	Symbol	Condition	Min	Max	Unit
Output high voltage	V _{OH}	I _{OH} = -6.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 6.0 mA	—	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	_	0.4	V
Input high voltage	V _{IH}	—	2.5	OV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	-0.3	0.8	V
Input current	I _{IN}	$0 V \leq V_{IN} \leq OV_{DD}$	_	±10	μA

IPIC AC Timing Specifications

15.2 IPIC AC Timing Specifications

This table provides the IPIC input and output AC timing specifications.

Table 54. IPIC Input AC Timing Specifications¹

Characteristic	Symbol ²	Min	Unit
IPIC inputs—minimum pulse width	t _{PIWID}	20	ns

Notes:

1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are measured at the pin.

IPIC inputs and outputs are asynchronous to any visible clock. IPIC outputs should be synchronized before use by any
external synchronous logic. IPIC inputs are required to be valid for at least t_{PIWID} ns to ensure proper operation when
working in edge triggered mode.

16 SPI

This section describes the DC and AC electrical specifications for the SPI of the MPC8360E/58E.

16.1 SPI DC Electrical Characteristics

This table provides the DC electrical characteristics for the device SPI.

Table 55. SPI DC Electrical Characteristics

Characteristic	Symbol	Condition	Min	Мах	Unit
Output high voltage	V _{OH}	I _{OH} = -6.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 6.0 mA	_	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	_	0.4	V
Input high voltage	V _{IH}	_	2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}	_	-0.3	0.8	V
Input current	I _{IN}	0 V ≤V _{IN} ≤OV _{DD}	_	±10	μA

16.2 SPI AC Timing Specifications

This table and provide the SPI input and output AC timing specifications.

Table 56. SPI AC Timing Specifications¹

Characteristic	Symbol ²	Min	Мах	Unit
SPI outputs—Master mode (internal clock) delay	t _{NIKHOX} t _{NIKHOV}	0.3	8	ns
SPI outputs—Slave mode (external clock) delay	t _{NEKHOX} t _{NEKHOV}	2	8	ns
SPI inputs—Master mode (internal clock) input setup time	t _{NIIVKH}	8	—	ns
SPI inputs—Master mode (internal clock) input hold time	t _{NIIXKH}	0	—	ns
SPI inputs—Slave mode (external clock) input setup time	t _{NEIVKH}	4	—	ns

Table 60. UTOPIA AC Timing Specifications¹ (continued)

Characteristic	Symbol ²	Min	Мах	Unit	Notes
UTOPIA inputs—Internal clock input hold time	t _{UIIXKH}	2.4	—	ns	
UTOPIA inputs—External clock input hold time	t _{UEIXKH}	1	—	ns	3

Notes:

- 1. Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are measured at the pin.
- The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{UIKHOX} symbolizes the UTOPIA outputs internal timing (UI) for the time t_{UTOPIA} memory clock reference (K) goes from the high state (H) until outputs (O) are invalid (X).
 </sub>
- In rev. 2.0 silicon, due to errata, t_{UEIVKH} minimum is 4.3 ns and t_{UEIXKH} minimum is 1.4 ns under specific conditions. Refer to Errata QE_UPC3 in *Chip Errata for the MPC8360E, Rev. 1.*

This figure provides the AC test load for the UTOPIA.

Figure 46. UTOPIA AC Test Load

These figures represent the AC timing from Table 56. Note that although the specifications generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge is the active edge.

This figure shows the UTOPIA timing with external clock.

Figure 47. UTOPIA AC Timing (External Clock) Diagram

Mechanical Dimensions of the TBGA Package

20.2 Mechanical Dimensions of the TBGA Package

This figure depicts the mechanical dimensions and bottom surface nomenclature of the device, 740-TBGA package.

Figure 53. Mechanical Dimensions and Bottom Surface Nomenclature of the TBGA Package

Table 66. MPC8360E TBGA Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
PCI_DEVSEL/CE_PF[16]	E26	I/O	OV _{DD}	5
PCI_IDSEL/CE_PF[17]	F22	I/O	OV _{DD}	
PCI_SERR/CE_PF[18]	B29	I/O	OV _{DD}	5
PCI_PERR/CE_PF[19]	A29	I/O	OV _{DD}	5
PCI_REQ[0]/CE_PF[20]	F19	I/O	LV _{DD} 2	—
PCI_REQ[1]/CPCI_HS_ES/ CE_PF[21]	A21	I/O	LV _{DD} 2	—
PCI_REQ[2]/CE_PF[22]	C21	I/O	LV _{DD} 2	
PCI_GNT[0]/CE_PF[23]	E20	I/O	LV _{DD} 2	
PCI_GNT[1]/CPCI1_HS_LED/ CE_PF[24]	B20	I/O	LV _{DD} 2	_
PCI_GNT[2]/CPCI1_HS_ENUM/ CE_PF[25]	C20	I/O	LV _{DD} 2	
PCI_MODE	D36	I	OV _{DD}	
M66EN/CE_PF[4]	B37	I/O	OV _{DD}	—
	Local Bus Controller Interface			
LAD[0:31]	N32, N33, N35, N36, P37, P32, P34, R36, R35, R34, R33, T37, T35, T34, T33, U37, T32, U36, U34, V36, V35, W37, W35, V33, V32, W34, Y36, W32, AA37, Y33, AA35, AA34	I/O	OV _{DD}	_
LDP[0]/CKSTOP_OUT	AB37	I/O	OV _{DD}	
LDP[1]/CKSTOP_IN	AB36	I/O	OV _{DD}	
LDP[2]/LCS[6]	AB35	I/O	OV _{DD}	
LDP[3]/LCS[7]	AA33	I/O	OV _{DD}	
LA[27:31]	AC37, AA32, AC36, AC34, AD36	0	OV _{DD}	
LCS[0:5]	AD33, AG37, AF34, AE33, AD32, AH37	0	OV_{DD}	
LWE[0:3]/LSDDQM[0:3]/LBS[0:3]	AG35, AG34, AH36, AE32	0	OV_{DD}	
LBCTL	AD35	0	OV_{DD}	
LALE	M37	0	OV_{DD}	
LGPL0/LSDA10/cfg_reset_source0	AB32	I/O	OV_{DD}	
LGPL1/LSDWE/cfg_reset_source1	AE37	I/O	OV_{DD}	
LGPL2/LSDRAS/LOE	AC33	0	OV_{DD}	
LGPL3/LSDCAS/cfg_reset_source2	AD34	I/O	OV_{DD}	
LGPL4/LGTA/LUPWAIT/LPBSE	AE35	I/O	OV_{DD}	
LGPL5/cfg_clkin_div	AF36	I/O	OV_{DD}	
LCKE	G36	0	OV _{DD}	_
LCLK[0]	J33	0	OV _{DD}	—
LCLK[1]/LCS[6]	J34	0	OV _{DD}	—

Pinout Listings

Table 66. MPC8360E TBGA Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes	
No Connect					
NC	AM20, AU19	—	—	—	

Notes:

- 1. This pin is an open drain signal. A weak pull-up resistor (1 kΩ) should be placed on this pin to OV_{DD}
- 2. This pin is an open drain signal. A weak pull-up resistor (2–10 kΩ) should be placed on this pin to OV_{DD}.
- 3. This output is actively driven during reset rather than being three-stated during reset.
- 4. These JTAG pins have weak internal pull-up P-FETs that are always enabled.
- 5. This pin should have a weak pull up if the chip is in PCI host mode. Follow PCI specifications recommendation.
- 6. These are On Die Termination pins, used to control DDR2 memories internal termination resistance.
- 7. This pin must always be tied to GND.
- 8. This pin must always be left not connected.
- 9. Refer to MPC8360E PowerQUICC II Pro Integrated Communications Processor Reference Manual section on "RGMII Pins," for information about the two UCC2 Ethernet interface options.
- 10.It is recommended that MDIC0 be tied to GND using an 18.2 Ω resistor and MDIC1 be tied to DDR power using an 18.2 Ω resistor for DDR2.

This table shows the pin list of the MPC8358E TBGA package.

Table 67. MPC8358E TBGA Pinout Listing

Signal	Package Pin Number	Pin Type	Power Supply	Notes
	DDR SDRAM Memory Controller Interface			
MEMC1_MDQ[0:63]	AJ34, AK33, AL33, AL35, AJ33, AK34, AK32, AM36, AN37, AN35, AR34, AT34, AP37, AP36, AR36, AT35, AP34, AR32, AP32, AM31, AN33, AM34, AM33, AM30, AP31, AM27, AR30, AT32, AN29, AP29, AN27, AR29, AN8, AN7, AM8, AM6, AP9, AN9, AT7, AP7, AU6, AP6, AR4, AR3, AT6, AT5, AR5, AT3, AP4, AM5, AP3, AN3, AN5, AL5, AN4, AM2, AL2, AH5, AK3, AJ2, AJ3, AH4, AK4, AH3	I/O	GV _{DD}	_
MEMC_MECC[0:4]/MSRCID[0:4]	AP24, AN22, AM19, AN19, AM24	I/O	GV _{DD}	—
MEMC_MECC[5]/MDVAL	AM23	I/O	GV _{DD}	—
MEMC_MECC[6:7]	AM22, AN18	I/O	GV _{DD}	—
MEMC_MDM[0:8]	AL36, AN34, AP33, AN28,AT9, AU4, AM3, AJ6,AP27	0	GV _{DD}	
MEMC_MDQS[0:8]	AK35, AP35, AN31, AM26,AT8, AU3, AL4, AJ5, AP26	I/O	GV _{DD}	—
MEMC_MBA[0:1]	AU29, AU30	0	GV _{DD}	
MEMC_MBA[2]	AT30	0	GV _{DD}	_
MEMC_MA[0:14]	AU21, AP22, AP21, AT21, AU25, AU26, AT23, AR26, AU24, AR23, AR28, AU23, AR22, AU20, AR18	0	GV _{DD}	
MEMC_MODT[0:3]	AG33, AJ36, AT1, AK2	0	GV _{DD}	6

Table 67. MPC8358E TBGA Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
	No Connect			
NC	AM16, AM17, AM20, AN13, AN16, AN17, AP10, AP11, AP13, AP15, AP18, AR11, AR13, AR14, AR15, AR16, AR17, AR20, AT11, AT12, AT13, AT14, AT16, AT17, AT18, AU10, AU11, AU12, AU13, AU15, AU19	_	_	

Notes:

- 1. This pin is an open drain signal. A weak pull-up resistor (1 k Ω) should be placed on this pin to OV_{DD}.
- 2. This pin is an open drain signal. A weak pull-up resistor (2–10 k Ω) should be placed on this pin to OV_{DD} .
- 3. This output is actively driven during reset rather than being three-stated during reset.
- 4. These JTAG pins have weak internal pull-up P-FETs that are always enabled.
- 5. This pin should have a weak pull up if the chip is in PCI host mode. Follow PCI specifications recommendation.
- 6. These are On Die Termination pins, used to control DDR2 memories internal termination resistance.
- 7. This pin must always be tied to GND.
- 8. This pin must always be left not connected.
- 9. Refer to MPC8360E PowerQUICC II Pro Integrated Communications Processor Reference Manual section on "RGMII Pins," for information about the two UCC2 Ethernet interface options.
- 10. This pin must always be tied to GV_{DD} .
- 11. It is recommended that MDIC0 be tied to GND using an 18.2 Ω resistor and MDIC1 be tied to DDR power using an 18.2 Ω resistor for DDR2.

Pinout Listings

clock. When the device is configured as a PCI agent device the CLKIN and the CFG_CLKIN_DIV signals should be tied to GND.

When the device is configured as a PCI host device (RCWH[PCIHOST] = 1) and PCI clock output is disabled (RCWH[PCICKDRV] = 0), clock distribution and balancing done externally on the board. Therefore, PCI_SYNC_IN is the primary input clock.

As shown in Figure 54 and Figure 55, the primary clock input (frequency) is multiplied by the QUICC Engine block phase-locked loop (PLL), the system PLL, and the clock unit to create the QUICC Engine clock (ce_clk), the coherent system bus clock (csb_clk), the internal DDRC1 controller clock ($ddr1_clk$), and the internal clock for the local bus interface unit and DDR2 memory controller (lb_clk).

The *csb_clk* frequency is derived from a complex set of factors that can be simplified into the following equation:

$$csb_clk = \{PCI_SYNC_IN \times (1 + CFG_CLKIN_DIV)\} \times SPMF$$

In PCI host mode, PCI_SYNC_IN \times (1 + CFG_CLKIN_DIV) is the CLKIN frequency; in PCI agent mode, CFG_CLKIN_DIV must be pulled down (low), so PCI_SYNC_IN \times (1 + CFG_CLKIN_DIV) is the PCI_CLK frequency.

The *csb_clk* serves as the clock input to the e300 core. A second PLL inside the e300 core multiplies up the *csb_clk* frequency to create the internal clock for the e300 core (*core_clk*). The system and core PLL multipliers are selected by the SPMF and COREPLL fields in the reset configuration word low (RCWL) which is loaded at power-on reset or by one of the hard-coded reset options. See Chapter 4, "Reset, Clocking, and Initialization," in the *MPC8360E PowerQUICC II Pro Integrated Communications Processor Reference Manual* for more information on the clock subsystem.

The *ce_clk* frequency is determined by the QUICC Engine PLL multiplication factor (RCWL[CEPMF) and the QUICC Engine PLL division factor (RCWL[CEPDF]) according to the following equation:

 $ce_clk = (primary clock input \times CEPMF) \div (1 + CEPDF)$

The internal *ddr1_clk* frequency is determined by the following equation:

 $ddr1_clk = csb_clk \times (1 + RCWL[DDR1CM])$

Note that the lb_clk clock frequency (for DDRC2) is determined by RCWL[LBCM]. The *internal ddr1_clk* frequency is not the external memory bus frequency; *ddr1_clk* passes through the DDRC1 clock divider (\div 2) to create the differential DDRC1 memory bus clock outputs (MEMC1_MCK and MEMC1_MCK). However, the data rate is the same frequency as *ddr1_clk*.

The internal *lb_clk* frequency is determined by the following equation:

 $lb_clk = csb_clk \times (1 + \text{RCWL[LBCM]})$

Note that *lb_clk* is not the external local bus or DDRC2 frequency; *lb_clk* passes through the a LB clock divider to create the external local bus clock outputs (LSYNC_OUT and LCLK[0:2]). The LB clock divider ratio is controlled by LCRR[CLKDIV].

Additionally, some of the internal units may be required to be shut off or operate at lower frequency than the *csb_clk* frequency. Those units have a default clock ratio that can be configured by a memory mapped register after the device comes out of reset. This table specifies which units have a configurable clock frequency.

Unit	Default Frequency	Options
Security core	csb_clk/3	Off, <i>csb_clk</i> ¹ , <i>csb_clk</i> /2, <i>csb_clk</i> /3
PCI and DMA complex	csb_clk	Off, <i>csb_clk</i>

Table 68	Configurable	Clock	Units
----------	--------------	-------	-------

¹ With limitation, only for slow csb_clk rates, up to 166 MHz.

This table provides the operating frequencies for the TBGA package under recommended operating conditions (see Table 2). All frequency combinations shown in the table below may not be available. Maximum operating frequencies depend on the part

This figure shows the PLL power supply filter circuit.

Figure 56. PLL Power Supply Filter Circuit

23.3 Decoupling Recommendations

Due to large address and data buses as well as high operating frequencies, the device can generate transient power surges and high frequency noise in its power supply, especially while driving large capacitive loads. This noise must be prevented from reaching other components in the device system, and the device itself requires a clean, tightly regulated source of power. Therefore, it is recommended that the system designer place at least one decoupling capacitor at each V_{DD} , OV_{DD} , GV_{DD} , and LV_{DD} pins of the device. These decoupling capacitors should receive their power from separate V_{DD} , OV_{DD} , GV_{DD} , and GND power planes in the PCB, utilizing short traces to minimize inductance. Capacitors may be placed directly under the device using a standard escape pattern. Others may surround the part.

These capacitors should have a value of 0.01 or 0.1 μ F. Only ceramic SMT (surface mount technology) capacitors should be used to minimize lead inductance, preferably 0402 or 0603 sizes.

Additionally, it is recommended that there be several bulk storage capacitors distributed around the PCB, feeding the V_{DD} , OV_{DD} , GV_{DD} , GV_{DD} , and LV_{DD} planes, to enable quick recharging of the smaller chip capacitors. These bulk capacitors should have a low ESR (equivalent series resistance) rating to ensure the quick response time necessary. They should also be connected to the power and ground planes through two vias to minimize inductance. Suggested bulk capacitors—100–330 μ F (AVX TPS tantalum or Sanyo OSCON).

23.4 Connection Recommendations

To ensure reliable operation, it is highly recommended to connect unused inputs to an appropriate signal level. Unused active low inputs should be tied to OV_{DD} , GV_{DD} , or LV_{DD} as required. Unused active high inputs should be connected to GND. All NC (no-connect) signals must remain unconnected.

Power and ground connections must be made to all external V_{DD}, GV_{DD}, LV_{DD}, OV_{DD}, and GND pins of the device.

23.5 Output Buffer DC Impedance

The device drivers are characterized over process, voltage, and temperature. For all buses, the driver is a push-pull single-ended driver type (open drain for I^2C).

To measure Z_0 for the single-ended drivers, an external resistor is connected from the chip pad to OV_{DD} or GND. Then, the value of each resistor is varied until the pad voltage is $OV_{DD}/2$ (see Figure 57). The output impedance is the average of two components, the resistances of the pull-up and pull-down devices. When data is held high, SW1 is closed (SW2 is open) and R_p is trimmed until the voltage at the pad equals $OV_{DD}/2$. R_p then becomes the resistance of the pull-up devices. R_p and R_N are designed to be close to each other in value. Then, $Z_0 = (R_P + R_N)/2$.