
NXP USA Inc. - <u>MPC8360EVVAJDG Datasheet</u>

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e300
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	533MHz
Co-Processors/DSP	Communications; QUICC Engine, Security; SEC
RAM Controllers	DDR, DDR2
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (1)
SATA	-
USB	USB 1.x (1)
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	Cryptography, Random Number Generator
Package / Case	740-LBGA
Supplier Device Package	740-TBGA (37.5x37.5)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8360evvajdg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Eight TDM interfaces on the MPC8360E and four TDM interfaces on the MPC8358E with 1-bit mode for E3/T3 rates in clear channel
- Sixteen independent baud rate generators and 30 input clock pins for supplying clocks to UCC and MCC serial channels (MCC is only available on the MPC8360E)
- Four independent 16-bit timers that can be interconnected as four 32-bit timers
- Interworking functionality:
 - Layer 2 10/100-Base T Ethernet switch
 - ATM-to-ATM switching (AAL0, 2, 5)
 - Ethernet-to-ATM switching with L3/L4 support
 - PPP interworking
- Security engine is optimized to handle all the algorithms associated with IPSec, SSL/TLS, SRTP, 802.11i®, iSCSI, and IKE processing. The security engine contains four crypto-channels, a controller, and a set of crypto execution units (EUs).
 - Public key execution unit (PKEU) supporting the following:
 - RSA and Diffie-Hellman
 - Programmable field size up to 2048 bits
 - Elliptic curve cryptography
 - F2m and F(p) modes
 - Programmable field size up to 511 bits
 - Data encryption standard execution unit (DEU)
 - DES, 3DES
 - Two key (K1, K2) or three key (K1, K2, K3)
 - ECB and CBC modes for both DES and 3DES
 - Advanced encryption standard unit (AESU)
 - Implements the Rinjdael symmetric key cipher
 - Key lengths of 128, 192, and 256 bits, two key
 - ECB, CBC, CCM, and counter modes
 - ARC four execution unit (AFEU)
 - Implements a stream cipher compatible with the RC4 algorithm
 - 40- to 128-bit programmable key
 - Message digest execution unit (MDEU)
 - SHA with 160-, 224-, or 256-bit message digest
 - MD5 with 128-bit message digest
 - HMAC with either SHA or MD5 algorithm
 - Random number generator (RNG)
 - Four crypto-channels, each supporting multi-command descriptor chains
 - Static and/or dynamic assignment of crypto-execution units via an integrated controller
 - Buffer size of 256 bytes for each execution unit, with flow control for large data sizes
 - Storage/NAS XOR parity generation accelerator for RAID applications
- Dual DDR SDRAM memory controllers on the MPC8360E and a single DDR SDRAM memory controller on the MPC8358E
 - Programmable timing supporting both DDR1 and DDR2 SDRAM
 - On the MPC8360E, the DDR buses can be configured as two 32-bit buses or one 64-bit bus; on the MPC8358E, the DDR bus can be configured as a 32- or 64-bit bus
 - 32- or 64-bit data interface, up to 333 MHz (for the MPC8360E) and 266 MHz (for the MPC8358E) data rate
 - Four banks of memory, each up to 1 Gbyte

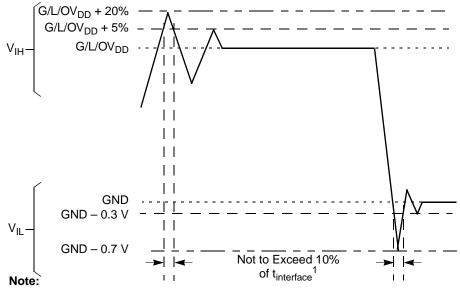

Characteristic	Symbol	Recommended Value	Unit	Notes
PCI, local bus, DUART, system control and power management, I ² C, SPI, and JTAG I/O voltage	OV _{DD}	3.3 V ± 330 mV	V	Ι
Junction temperature	TJ	0 to 105 -40 to 105	°C	2

Table 2. Recommended Operating Conditions (continued)

Notes:

- 1. GV_{DD}, LV_{DD}, OV_{DD}, AV_{DD}, and V_{DD} must track each other and must vary in the same direction—either in the positive or negative direction.
- The operating conditions for junction temperature, T_J, on the 600/333/400 MHz and 500/333/500 MHz on rev. 2.0 silicon is 0° to 70 °C. Refer to Errata General9 in *Chip Errata for the MPC8360E, Rev. 1*.
- 3. For more information on Part Numbering, refer to Table 80.

This figure shows the undershoot and overshoot voltages at the interfaces of the device.

1. Note that $t_{\mbox{interface}}$ refers to the clock period associated with the bus clock interface.

Figure 3. Overshoot/Undershoot Voltage for $GV_{DD}/OV_{DD}/LV_{DD}$

RESET DC Electrical Characteristics

Table 9. GTX_CLK125 AC Timing Specifications

At recommended operating conditions with LV_{DD} = 2.5 ± 0.125 mV/ 3.3 V ± 165 mV (continued)

Parameter/Condition	Symbol	Min	Typical	Мах	Unit	Notes
GTX_CLK rise and fall time $LV_{DD} = 2.5 V \\ LV_{DD} = 3.3 V$	t _{G125R} /t _{G125F}			0.75 1.0	ns	1
GTX_CLK125 duty cycle GMII & TBI 1000Base-T for RGMII & RTBI		45 47	_	55 53	%	2
GTX_CLK125 jitter	—	—	_	±150	ps	2

Notes:

- 1. Rise and fall times for GTX_CLK125 are measured from 0.5 and 2.0 V for LV_{DD} = 2.5 V and from 0.6 and 2.7 V for LV_{DD} = 3.3 V.
- GTX_CLK125 is used to generate the GTX clock for the UCC Ethernet transmitter with 2% degradation. The GTX_CLK125 duty cycle can be loosened from 47%/53% as long as the PHY device can tolerate the duty cycle generated by GTX_CLK. See Section 8.2.2, "MII AC Timing Specifications," Section 8.2.3, "RMII AC Timing Specifications," and Section 8.2.5, "RGMII and RTBI AC Timing Specifications" for the duty cycle for 10Base-T and 100Base-T reference clock.

5 **RESET Initialization**

This section describes the DC and AC electrical specifications for the reset initialization timing and electrical requirements of the MPC8360E/58E.

5.1 **RESET DC Electrical Characteristics**

This table provides the DC electrical characteristics for the RESET pins of the device.

Characteristic	Symbol	Condition	Min	Мах	Unit
Input high voltage	V _{IH}	_	2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	-0.3	0.8	V
Input current	I _{IN}	—	_	±10	μA
Output high voltage	V _{OH} ²	I _{OH} = -8.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	_	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	_	0.4	V

Table 10. RESET Pins DC Electrical Characteristics ¹

Notes:

1. This table applies for pins PORESET, HRESET, SRESET, and QUIESCE.

2. HRESET and SRESET are open drain pins, thus V_{OH} is not relevant for those pins.

This section describes the DC and AC electrical specifications for the DUART interface of the MPC8360E/58E.

7.1 DUART DC Electrical Characteristics

This table provides the DC electrical characteristics for the DUART interface of the device.

Table 23. DUART DC Electrical Characteristics

Parameter	Symbol	Min	Max	Unit	Notes
High-level input voltage	V _{IH}	2	OV _{DD} + 0.3	V	—
Low-level input voltage OV _{DD}	V _{IL}	-0.3	0.8	V	_
High-level output voltage, I _{OH} = −100 μA	V _{OH}	OV _{DD} - 0.4	_	V	—
Low-level output voltage, I _{OL} = 100 μA	V _{OL}	—	0.2	V	—
Input current (0 V ≰⁄ _{IN} ≤OV _{DD})	I _{IN}	—	±10	μA	1

Note:

1. Note that the symbol V_{IN}, in this case, represents the OV_{IN} symbol referenced in Table 1 and Table 2.

7.2 DUART AC Electrical Specifications

This table provides the AC timing parameters for the DUART interface of the device.

Parameter	Value	Unit	Notes
Minimum baud rate	256	baud	—
Maximum baud rate	>1,000,000	baud	1
Oversample rate	16		2

Notes:

- 1. Actual attainable baud rate is limited by the latency of interrupt processing.
- 2. The middle of a start bit is detected as the eighth sampled 0 after the 1-to-0 transition of the start bit. Subsequent bit values are sampled each sixteenth sample.

8 UCC Ethernet Controller: Three-Speed Ethernet, MII Management

This section provides the AC and DC electrical characteristics for three-speed, 10/100/1000, and MII management.

8.1 Three-Speed Ethernet Controller (10/100/1000 Mbps)— GMII/MII/RMII/TBI/RGMII/RTBI Electrical Characteristics

The electrical characteristics specified here apply to all GMII (gigabit media independent interface), MII (media independent interface), RMII (reduced media independent interface), TBI (ten-bit interface), RGMII (reduced gigabit media independent interface), and RTBI (reduced ten-bit interface) signals except MDIO (management data input/output) and MDC (management data clock). The MII, RMII, GMII, and TBI interfaces are only defined for 3.3 V, while the RGMII and RTBI interfaces are only defined for 2.5 V. The RGMII and RTBI interfaces follow the Hewlett-Packard reduced pin-count interface for Gigabit Ethernet

GMII, MII, RMII, TBI, RGMII, and RTBI AC Timing Specifications

Physical Layer Device Specification Version 1.2a (9/22/2000). The electrical characteristics for the MDIO and MDC are specified in Section 8.3, "Ethernet Management Interface Electrical Characteristics."

8.1.1 10/100/1000 Ethernet DC Electrical Characteristics

The electrical characteristics specified here apply to media independent interface (MII), reduced gigabit media independent interface (RGMII), reduced ten-bit interface (RTBI), reduced media independent interface (RMII) signals, management data input/output (MDIO) and management data clock (MDC).

The MII and RMII interfaces are defined for 3.3 V, while the RGMII and RTBI interfaces can be operated at 2.5 V. The RGMII and RTBI interfaces follow the *Reduced Gigabit Media-Independent Interface (RGMII) Specification Version 1.3*. The RMII interface follows the *RMII Consortium RMII Specification Version 1.2*.

Table 25. RGMII/RTBI, GMII, TBI, MII, and RMII DC Electrical Characteristics (when operating at 3.3 V)

Parameter	Symbol	Conditions		Min	Max	Unit	Notes
Supply voltage 3.3 V	LV _{DD}	_		2.97	3.63	V	1
Output high voltage	V _{OH}	I _{OH} = -4.0 mA	LV _{DD} = Min	2.40	LV _{DD} + 0.3	V	_
Output low voltage	V _{OL}	I _{OL} = 4.0 mA	LV _{DD} = Min	GND	0.50	V	_
Input high voltage	V _{IH}	_	—	2.0	LV _{DD} + 0.3	V	_
Input low voltage	V _{IL}	_	—	-0.3	0.90	V	_
Input current	I _{IN}	0 V ≤V _{II}	N ≤LV _{DD}	—	±10	μA	_

Note:

1. GMII/MII pins that are not needed for RGMII, RMII, or RTBI operation are powered by the OV_{DD} supply.

Table 26. RGMII/RTBI DC Electrical Characteristics	(when operating at 2.5 V)
--	---------------------------

Parameters	Symbol	Conditions		Min	Max	Unit
Supply voltage 2.5 V	LV _{DD}	—		2.37	2.63	V
Output high voltage	V _{OH}	I _{OH} = -1.0 mA	$LV_{DD} = Min$	2.00	LV _{DD} + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 1.0 mA	$LV_{DD} = Min$	GND – 0.3	0.40	V
Input high voltage	V _{IH}	—	$LV_{DD} = Min$	1.7	LV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	$LV_{DD} = Min$	-0.3	0.70	V
Input current	I _{IN}	0 V ≤V _{II}	_N ≤LV _{DD}	—	±10	μA

8.2 GMII, MII, RMII, TBI, RGMII, and RTBI AC Timing Specifications

The AC timing specifications for GMII, MII, TBI, RGMII, and RTBI are presented in this section.

8.2.1 GMII Timing Specifications

This sections describe the GMII transmit and receive AC timing specifications.

8.2.3 RMII AC Timing Specifications

This section describes the RMII transmit and receive AC timing specifications.

8.2.3.1 RMII Transmit AC Timing Specifications

This table provides the RMII transmit AC timing specifications.

Table 31. RMII Transmit AC Timing Specifications

At recommended operating conditions with LV_{DD}/OV_{DD} of 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
REF_CLK clock	t _{RMX}	_	20	—	ns
REF_CLK duty cycle	t _{RMXH} /t _{RMX}	35	—	65	%
REF_CLK to RMII data TXD[1:0], TX_EN delay	t _{RMTKHDX} t _{RMTKHDV}	2	—	 10	ns
REF_CLK data clock rise time	t _{RMXR}	1.0	—	4.0	ns
REF_CLK data clock fall time	t _{RMXF}	1.0		4.0	ns

Note:

The symbols used for timing specifications follow the pattern of t<sub>(first three letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{RMTKHDX} symbolizes RMII transmit timing (RMT) for the time t_{RMX} clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in general, the clock reference symbol representation is based on two to three letters representing the clock of a particular functional. For example, the subscript of t_{RMX} represents the RMII(RM) reference (X) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
</sub>

This figure shows the RMII transmit AC timing diagram.

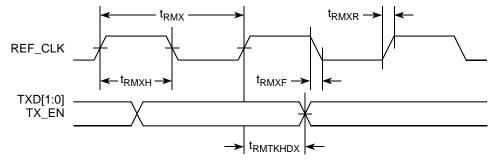


Figure 15. RMII Transmit AC Timing Diagram

8.2.3.2 RMII Receive AC Timing Specifications

This table provides the RMII receive AC timing specifications.

Table 32. RMII Receive AC Timing Specifications

At recommended operating conditions with LV_{DD}/OV_{DD} of 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
REF_CLK clock period	t _{RMX}	_	20	_	ns
REF_CLK duty cycle	t _{RMXH} /t _{RMX}	35	_	65	%

GMII, MII, RMII, TBI, RGMII, and RTBI AC Timing Specifications

Table 32. RMII Receive AC Timing Specifications (continued)

At recommended operating conditions with $\text{LV}_{\text{DD}}/\text{OV}_{\text{DD}}$ of 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
RXD[1:0], CRS_DV, RX_ER setup time to REF_CLK	t _{RMRDVKH}	4.0	_	—	ns
RXD[1:0], CRS_DV, RX_ER hold time to REF_CLK	t _{RMRDXKH}	2.0	_	—	ns
REF_CLK clock rise time	t _{RMXR}	1.0	_	4.0	ns
REF_CLK clock fall time	t _{RMXF}	1.0	_	4.0	ns

Note:

1. The symbols used for timing specifications follow the pattern of t_{(first three letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{RMRDVKH} symbolizes RMII receive timing (RMR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{RMX} clock reference (K) going to the high (H) state or setup time. Also, t_{RMRDXKL} symbolizes RMII receive timing (RMR) with respect to the time data input signals (D) relative to the t_{RMX} clock reference (K) going to the low (L) state or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{RMX} represents the RMII (RM) reference (X) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}}

This figure provides the AC test load.

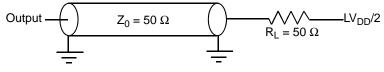


Figure 16. AC Test Load

This figure shows the RMII receive AC timing diagram.

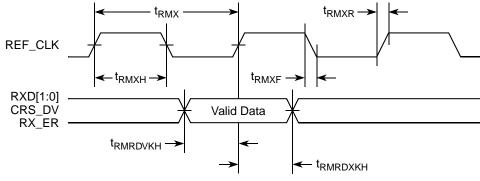


Figure 17. RMII Receive AC Timing Diagram

8.2.4 TBI AC Timing Specifications

This section describes the TBI transmit and receive AC timing specifications.

Ethernet Management Interface Electrical Characteristics

This figure shows the RGMII and RTBI AC timing and multiplexing diagrams.

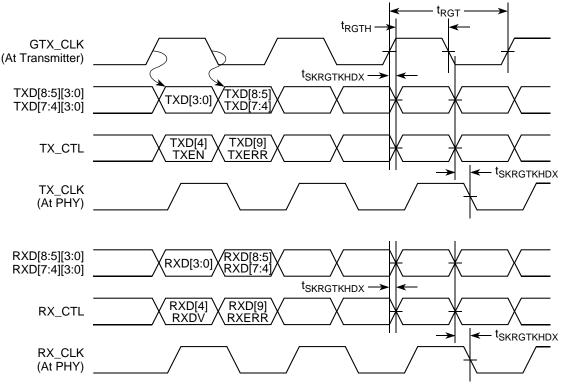


Figure 20. RGMII and RTBI AC Timing and Multiplexing Diagrams

8.3 Ethernet Management Interface Electrical Characteristics

The electrical characteristics specified here apply to MII management interface signals MDIO (management data input/output) and MDC (management data clock). The electrical characteristics for GMII, RGMII, TBI, and RTBI are specified in Section 8.1, "Three-Speed Ethernet Controller (10/100/1000 Mbps)— GMII/MII/RMII/TBI/RGMII/RTBI Electrical Characteristics."

8.3.1 MII Management DC Electrical Characteristics

The MDC and MDIO are defined to operate at a supply voltage of 3.3 V. The DC electrical characteristics for MDIO and MDC are provided in this table.

Parameter	Symbol	Conditions		Min	Мах	Unit
Supply voltage (3.3 V)	OV _{DD}	—		2.97	3.63	V
Output high voltage	V _{OH}	I _{OH} = -1.0 mA	$OV_{DD} = Min$	2.10	OV _{DD} + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 1.0 mA	OV _{DD} = Min	GND	0.50	V
Input high voltage	V _{IH}	-	—		_	V
Input low voltage	V _{IL}	—		_	0.80	V
Input current	I _{IN}	0 V ≤V _{IN} ≤OV _{DD}		_	±10	μA

able 36. MII Management DC Electrical Characteristics When Powered at 3.3 V

Local Bus AC Electrical Specifications

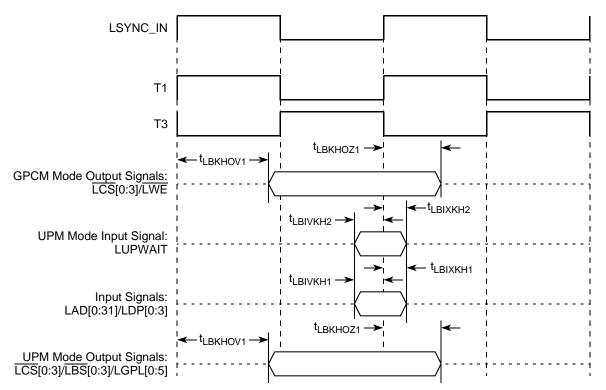
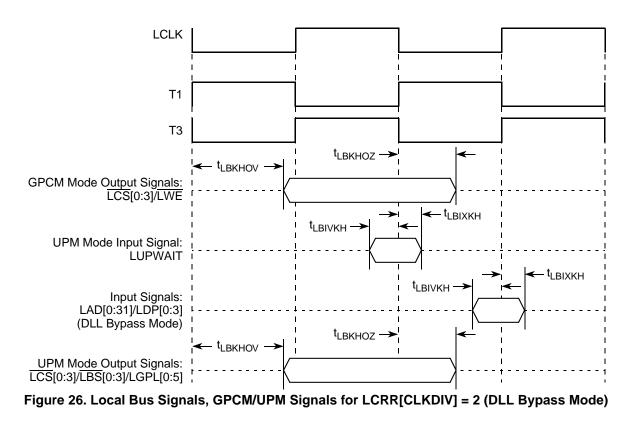



Figure 25. Local Bus Signals, GPCM/UPM Signals for LCRR[CLKDIV] = 2 (DLL Enabled)

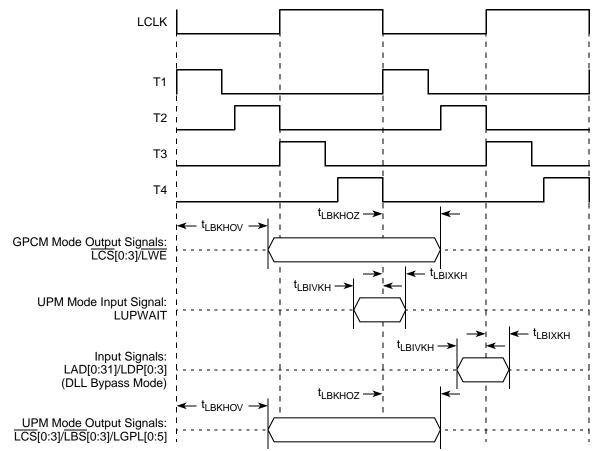
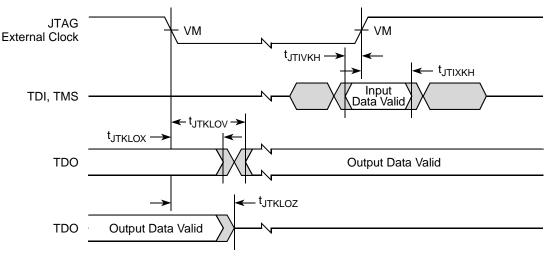



Figure 27. Local Bus Signals, GPCM/UPM Signals for LCRR[CLKDIV] = 4 (DLL Bypass Mode)

This figure provides the test access port timing diagram.

VM = Midpoint Voltage (OV_{DD}/2)

Figure 33. Test Access Port Timing Diagram

11 I²C

This section describes the DC and AC electrical characteristics for the I^2C interface of the MPC8360E/58E.

11.1 I²C DC Electrical Characteristics

This table provides the DC electrical characteristics for the I^2C interface of the device.

Table 44. I²C DC Electrical Characteristics

At recommended operating conditions with OV_{DD} of 3.3 V ± 10%.

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage level	V _{IH}	$0.7 imes OV_{DD}$	OV _{DD} + 0.3	V	—
Input low voltage level	V _{IL}	-0.3	$0.3 imes OV_{DD}$	V	—
Low level output voltage	V _{OL}	0	0.4	V	1
Output fall time from $V_{IH}(min)$ to $V_{IL}(max)$ with a bus capacitance from 10 to 400 pF	t _{I2KLKV}	$20 + 0.1 \times C_B$	250	ns	2
Pulse width of spikes which must be suppressed by the input filter	t _{i2KHKL}	0	50	ns	3
Capacitance for each I/O pin	CI	—	10	pF	—
Input current (0 V ≤V _{IN} ≤OV _{DD})	I _{IN}	—	±10	μA	4

Notes:

1. Output voltage (open drain or open collector) condition = 3 mA sink current.

- 2. C_B = capacitance of one bus line in pF.
- 3. Refer to the MPC8360E Integrated Communications Processor Reference Manual for information on the digital filter used.
- 4. I/O pins obstruct the SDA and SCL lines if OV_{DD} is switched off.

This figure provides the AC test load for the I^2C .

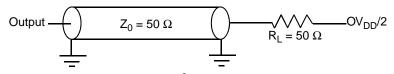
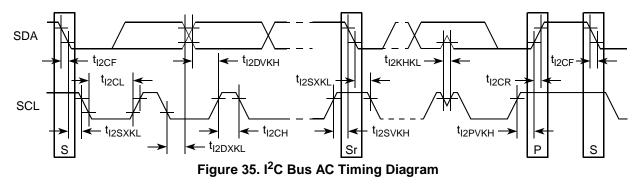



Figure 34. I²C AC Test Load

This figure shows the AC timing diagram for the I^2C bus.

12 PCI

This section describes the DC and AC electrical specifications for the PCI bus of the MPC8360E/58E.

12.1 PCI DC Electrical Characteristics

This table provides the DC electrical characteristics for the PCI interface of the device.

Table 46. PCI DC Electrical Characteristics

Parameter	Symbol	Test Condition	Min	Мах	Unit
High-level input voltage	V _{IH}	$V_{OUT} \ge V_{OH}$ (min) or	$0.5 imes OV_{DD}$	OV _{DD} + 0.5	V
Low-level input voltage	V _{IL}	V _{OUT} ⊴V _{OL} (max)	-0.5	$0.3 imes OV_{DD}$	V
High-level output voltage	V _{OH}	I _{OH} = -500 μA	$0.9 imes OV_{DD}$	—	V
Low-level output voltage	V _{OL}	I _{OL} = 1500 μA	—	$0.1 imes OV_{DD}$	V
Input current	I _{IN}	0 V ≤V _{IN} ¹ ≤OV _{DD}	—	±10	μA

12.2 PCI AC Electrical Specifications

This section describes the general AC timing parameters of the PCI bus of the device. Note that the PCI_CLK or PCI_SYNC_IN signal is used as the PCI input clock depending on whether the device is configured as a host or agent device. This table provides the PCI AC timing specifications at 66 MHz.

Parameter	Symbol ¹	Min	Мах	Unit	Notes
Clock to output valid	t _{PCKHOV}	—	6.0	ns	2, 5
Output hold from clock	t _{PCKHOX}	1	_	ns	2

Table 47. PCI AC Timing Specifications at 66 MHz

This figure shows the PCI input AC timing conditions.

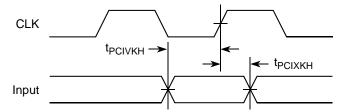
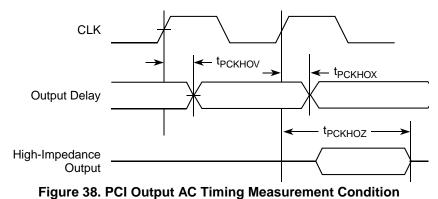



Figure 37. PCI Input AC Timing Measurement Conditions

This figure shows the PCI output AC timing conditions.

13 Timers

This section describes the DC and AC electrical specifications for the timers of the MPC8360E/58E.

13.1 Timers DC Electrical Characteristics

This table provides the DC electrical characteristics for the device timer pins, including TIN, TOUT, TGATE, and RTC_CLK.

Table 49. Timers DC Electrical Characteristics

Characteristic	Symbol	Condition	Min	Max	Unit
Output high voltage	V _{OH}	I _{OH} = -6.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 6.0 mA	_	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	_	0.4	V
Input high voltage	V _{IH}	—	2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	-0.3	0.8	V
Input current	I _{IN}	0 V ≤V _{IN} ≤OV _{DD}	_	±10	μΑ

USB DC Electrical Characteristics

19 USB

This section provides the AC and DC electrical specifications for the USB interface of the MPC8360E/58E.

19.1 USB DC Electrical Characteristics

This table provides the DC electrical characteristics for the USB interface.

Table 64. USB DC Electrical Characteristics

Parameter	Symbol	Min	Мах	Unit
High-level input voltage	V _{IH}	2	OV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	-0.3	0.8	V
High-level output voltage, I _{OH} = −100 μA	V _{OH}	OV _{DD} - 0.4	_	V
Low-level output voltage, I _{OL} = 100 μA	V _{OL}	—	0.2	V
Input current	I _{IN}	—	±10	μA

19.2 USB AC Electrical Specifications

This table describes the general timing parameters of the USB interface of the device.

Table 65. USB General Timing Parameters

Parameter	Symbol ¹	Min	Max	Unit	Notes	Note
USB clock cycle time	t _{USCK}	20.83	—	ns	Full speed 48 MHz	—
USB clock cycle time	t _{USCK}	166.67	—	ns	Low speed 6 MHz	_
Skew between TXP and TXN	t _{USTSPN}	—	5	ns	—	2
Skew among RXP, RXN, and RXD	t _{USRSPND}	—	10	ns	Full speed transitions	2
Skew among RXP, RXN, and RXD	t _{USRPND}	—	100	ns	Low speed transitions	2

Notes:

The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(state)(signal)} for receive signals and t_{(first two letters of functional block)(state)(signal)} for transmit signals. For example, t_{USRSPND} symbolizes USB timing (US) for the USB receive signals skew (RS) among RXP, RXN, and RXD (PND). Also, t_{USTSPN} symbolizes USB timing (US) for the USB transmit signals skew (TS) between TXP and TXN (PN).

2. Skew measurements are done at $OV_{DD}/2$ of the rising or falling edge of the signals.

This figure provide the AC test load for the USB.

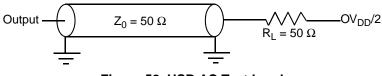


Figure 52. USB AC Test Load

Table 67. MPC8358E TBGA Pinout Listing (continued)

Signal	Package Pin Number		Power Supply	Notes
MEMC_MWE	AT26	0	GV _{DD}	—
MEMC_MRAS	AT29	0	GV _{DD}	—
MEMC_MCAS	AT24	0	GV _{DD}	—
MEMC_MCS[0:3]	AU27, AT27, AU8, AU7	0	GV _{DD}	—
MEMC_MCKE[0:1]	AL32, AU33	0	GV _{DD}	3
MEMC_MCK[0:5]	AK37, AT37, AN1, AR2, AN25, AK1	0	GV _{DD}	—
MEMC_MCK[0:5]	AL37, AT36, AP2, AT2, AN24, AL1	0	GV _{DD}	—
MDIC[0:1]	AH6, AP30	I/O	GV _{DD}	11
	PCI			•
PCI_INTA/IRQ_OUT/CE_PF[5]	A20	I/O	LV _{DD} 2	2
PCI_RESET_OUT/CE_PF[6]	E19	I/O	LV _{DD} 2	_
PCI_AD[31:30]/CE_PG[31:30]	D20, D21	I/O	LV _{DD} 2	—
PCI_AD[29:25]/CE_PG[29:25]	A24, B23, C23, E23, A26	I/O	OV _{DD}	_
PCI_AD[24]/CE_PG[24]	B21	I/O	LV _{DD} 2	—
PCI_AD[23:0]/CE_PG[23:0]	C24, C25, D25, B25, E24, F24, A27, A28, F27, A30, C30, D30, E29, B31, C31, D31, D32, A32, C33, B33, F30, E31, A34, D33	I/O	OV _{DD}	_
PCI_C/BE[3:0]/CE_PF[10:7]	E22, B26, E28, F28	I/O	OV _{DD}	—
PCI_PAR/CE_PF[11]	D28	I/O	OV _{DD}	—
PCI_FRAME/CE_PF[12]	D26	I/O	OV _{DD}	5
PCI_TRDY/CE_PF[13]	C27	I/O	OV _{DD}	5
PCI_IRDY/CE_PF[14]	C28	I/O	OV _{DD}	5
PCI_STOP/CE_PF[15]	B28	I/O	OV _{DD}	5
PCI_DEVSEL/CE_PF[16]	E26	I/O	OV _{DD}	5
PCI_IDSEL/CE_PF[17]	F22	I/O	OV _{DD}	_
PCI_SERR/CE_PF[18]	B29	I/O	OV _{DD}	5
PCI_PERR/CE_PF[19]	A29	I/O	OV _{DD}	5
PCI_REQ[0]/CE_PF[20]	F19	I/O	LV _{DD} 2	-
PCI_REQ[1]/CPCI_HS_ES/ CE_PF[21]	A21	I/O	LV _{DD} 2	
PCI_REQ[2]/CE_PF[22]	C21	I/O	LV _{DD} 2	—
PCI_GNT[0]/CE_PF[23]	E20	I/O	LV _{DD} 2	-
PCI_GNT[1]/CPCI1_HS_LED/ CE_PF[24]	B20	I/O	LV _{DD} 2	_
PCI_GNT[2]/CPCI1_HS_ENUM/ CE_PF[25]	C20	I/O	LV _{DD} 2	

Table 67. MPC8358E TBGA Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes			
IRQ[4:5]	G33, G32	I/O	OV _{DD}	—			
IRQ[6]/LCS[6]/CKSTOP_OUT	E35	I/O	OV _{DD}	_			
IRQ[7]/LCS[7]/CKSTOP_IN	H36	I/O	OV _{DD}	—			
	DUART						
UART1_SOUT/M1SRCID[0]/ M2SRCID[0]/LSRCID[0]	E32	0	OV _{DD}	-			
UART1_SIN/M1SRCID[1]/ M2SRCID[1]/LSRCID[1]	B34	I/O	OV _{DD}	—			
UART1_CTS/M1SRCID[2]/ M2SRCID[2]/LSRCID[2]	C34	I/O	OV _{DD}	—			
UART1_RTS/M1SRCID[3]/ M2SRCID[3]/LSRCID[3]	A35	0	OV _{DD}	—			
	I ² C Interface						
IIC1_SDA	D34	I/O	OV _{DD}	2			
IIC1_SCL	B35	I/O	OV _{DD}	2			
IIC2_SDA	E33	I/O	OV _{DD}	2			
IIC2_SCL	C35	I/O	OV _{DD}	2			
	QUICC Engine						
CE_PA[0]	F8	I/O	LV _{DD0}	_			
CE_PA[1:2]	AH1, AG5	I/O	OV _{DD}	_			
CE_PA[3:7]	F6, D4, C3, E5, A3	I/O	LV _{DD} 0	—			
CE_PA[8]	AG3	I/O	OV _{DD}	_			
CE_PA[9:12]	F7, B3, E6, B4	I/O	LV _{DD} 0				
CE_PA[13:14]	AG1, AF6	I/O	OV _{DD}	—			
CE_PA[15]	B2	I/O	LV _{DD} 0				
CE_PA[16]	AF4	I/O	OV _{DD}	_			
CE_PA[17:21]	B16, A16, E17, A17, B17	I/O	LV _{DD} 1				
CE_PA[22]	AF3	I/O	OV _{DD}	_			
CE_PA[23:26]	C18, D18, E18, A18	I/O	LV _{DD} 1	—			
CE_PA[27:28]	AF2, AE6	I/O	OV _{DD}	—			
CE_PA[29]	B19	I/O	LV _{DD} 1	_			
CE_PA[30]	AE5	I/O	OV _{DD}	—			
CE_PA[31]	F16	I/O	LV _{DD} 1	—			

Pinout Listings

21 Clocking

This figure shows the internal distribution of clocks within the MPC8360E.

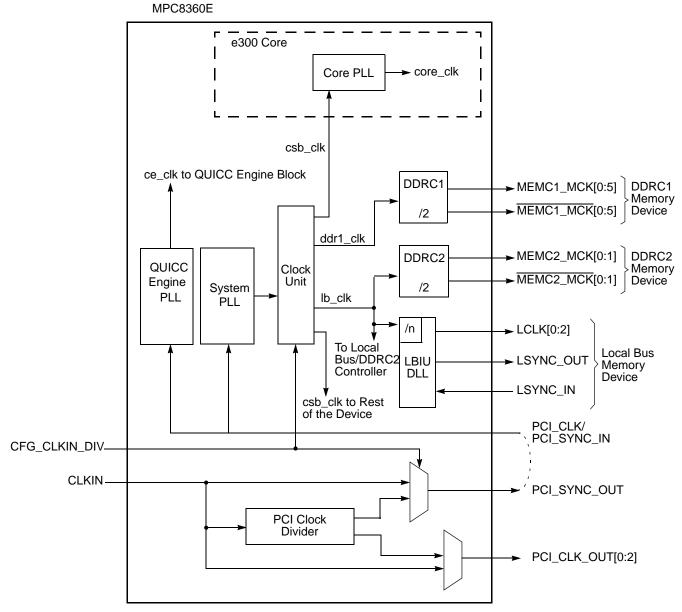
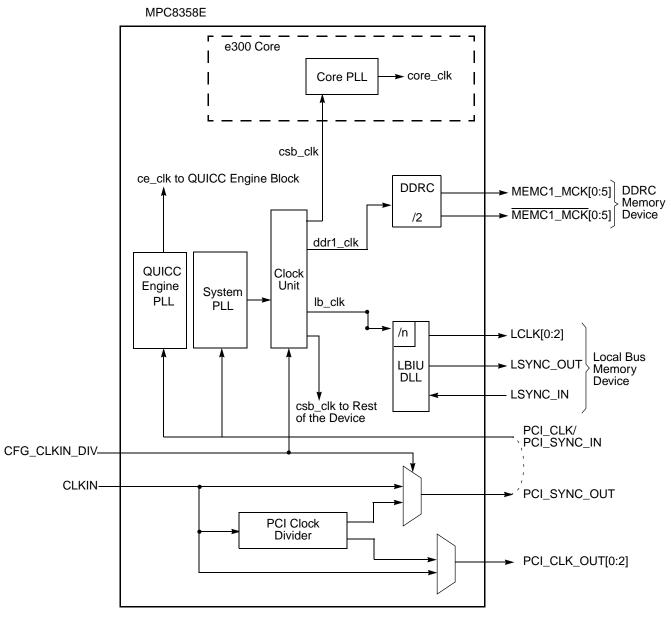



Figure 54. MPC8360E Clock Subsystem

This figure shows the internal distribution of clocks within the MPC8358E.

The primary clock source for the device can be one of two inputs, CLKIN or PCI_CLK, depending on whether the device is configured in PCI host or PCI agent mode. Note that in PCI host mode, the primary clock input also depends on whether PCI clock outputs are selected with RCWH[PCICKDRV]. When the device is configured as a PCI host device (RCWH[PCIHOST] = 1) and PCI clock output is selected (RCWH[PCICKDRV] = 1), CLKIN is its primary input clock. CLKIN feeds the PCI clock divider (\div 2) and the multiplexors for PCI_SYNC_OUT and PCI_CLK_OUT. The CFG_CLKIN_DIV configuration input selects whether CLKIN or CLKIN/2 is driven out on the PCI_SYNC_OUT signal. The OCCR[PCIOEN*n*] parameters enable the PCI_CLK_OUT*n*, respectively.

PCI_SYNC_OUT is connected externally to PCI_SYNC_IN to allow the internal clock subsystem to synchronize to the system PCI clocks. PCI_SYNC_OUT must be connected properly to PCI_SYNC_IN, with equal delay to all PCI agent devices in the system, to allow the device to function. When the device is configured as a PCI agent device, PCI_CLK is the primary input

Pinout Listings

clock. When the device is configured as a PCI agent device the CLKIN and the CFG_CLKIN_DIV signals should be tied to GND.

When the device is configured as a PCI host device (RCWH[PCIHOST] = 1) and PCI clock output is disabled (RCWH[PCICKDRV] = 0), clock distribution and balancing done externally on the board. Therefore, PCI_SYNC_IN is the primary input clock.

As shown in Figure 54 and Figure 55, the primary clock input (frequency) is multiplied by the QUICC Engine block phase-locked loop (PLL), the system PLL, and the clock unit to create the QUICC Engine clock (ce_clk), the coherent system bus clock (csb_clk), the internal DDRC1 controller clock ($ddr1_clk$), and the internal clock for the local bus interface unit and DDR2 memory controller (lb_clk).

The *csb_clk* frequency is derived from a complex set of factors that can be simplified into the following equation:

$$csb_clk = \{PCI_SYNC_IN \times (1 + CFG_CLKIN_DIV)\} \times SPMF$$

In PCI host mode, PCI_SYNC_IN \times (1 + CFG_CLKIN_DIV) is the CLKIN frequency; in PCI agent mode, CFG_CLKIN_DIV must be pulled down (low), so PCI_SYNC_IN \times (1 + CFG_CLKIN_DIV) is the PCI_CLK frequency.

The *csb_clk* serves as the clock input to the e300 core. A second PLL inside the e300 core multiplies up the *csb_clk* frequency to create the internal clock for the e300 core (*core_clk*). The system and core PLL multipliers are selected by the SPMF and COREPLL fields in the reset configuration word low (RCWL) which is loaded at power-on reset or by one of the hard-coded reset options. See Chapter 4, "Reset, Clocking, and Initialization," in the *MPC8360E PowerQUICC II Pro Integrated Communications Processor Reference Manual* for more information on the clock subsystem.

The *ce_clk* frequency is determined by the QUICC Engine PLL multiplication factor (RCWL[CEPMF) and the QUICC Engine PLL division factor (RCWL[CEPDF]) according to the following equation:

 $ce_clk = (primary clock input \times CEPMF) \div (1 + CEPDF)$

The internal *ddr1_clk* frequency is determined by the following equation:

 $ddr1_clk = csb_clk \times (1 + RCWL[DDR1CM])$

Note that the lb_clk clock frequency (for DDRC2) is determined by RCWL[LBCM]. The *internal ddr1_clk* frequency is not the external memory bus frequency; *ddr1_clk* passes through the DDRC1 clock divider (\div 2) to create the differential DDRC1 memory bus clock outputs (MEMC1_MCK and MEMC1_MCK). However, the data rate is the same frequency as *ddr1_clk*.

The internal *lb_clk* frequency is determined by the following equation:

 $lb_clk = csb_clk \times (1 + \text{RCWL[LBCM]})$

Note that *lb_clk* is not the external local bus or DDRC2 frequency; *lb_clk* passes through the a LB clock divider to create the external local bus clock outputs (LSYNC_OUT and LCLK[0:2]). The LB clock divider ratio is controlled by LCRR[CLKDIV].

Additionally, some of the internal units may be required to be shut off or operate at lower frequency than the *csb_clk* frequency. Those units have a default clock ratio that can be configured by a memory mapped register after the device comes out of reset. This table specifies which units have a configurable clock frequency.

Unit	Default Frequency	Options
Security core	csb_clk/3	Off, csb_clk ¹ , csb_clk/2, csb_clk/3
PCI and DMA complex	csb_clk	Off, <i>csb_clk</i>

Table 68	Configurable	Clock Units
----------	--------------	--------------------

¹ With limitation, only for slow csb_clk rates, up to 166 MHz.

This table provides the operating frequencies for the TBGA package under recommended operating conditions (see Table 2). All frequency combinations shown in the table below may not be available. Maximum operating frequencies depend on the part

Heat Sink Attachment

Loroco 671 Ea San Jo	nium Electronics (MEI) o Sites ast Brokaw Road se, CA 95112 et: www.mei-millennium.com	408-436-8770
Chip C P.O. B Harris	Electronics Coolers TM ox 3668 burg, PA 17105-3668 et: www.chipcoolers.com	800-522-6752
33 Bri Pelhar	ield Engineering dge St. n, NH 03076 et: www.wakefield.com	603-635-5102
Chome 77 Dra Wobu	al vendors include the following: erics, Inc. agon Ct. rn, MA 01888-4014 et: www.chomerics.com	781-935-4850
Dow-0 2200 V Midlar	Corning Corporation Corning Electronic Materials W. Salzburg Rd. nd, MI 48686-0997 et: www.dowcorning.com	800-248-2481
10028 Phoen	Etsu MicroSi, Inc. S. 51st St. ix, AZ 85044 et: www.microsi.com	888-642-7674
18930 Chanh	ergquist Company West 78th St. assen, MN 55317 et: www.bergquistcompany.com	800-347-4572

22.3 Heat Sink Attachment

When attaching heat sinks to these devices, an interface material is required. The best method is to use thermal grease and a spring clip. The spring clip should connect to the printed-circuit board, either to the board itself, to hooks soldered to the board, or to a plastic stiffener. Avoid attachment forces which would lift the edge of the package or peel the package from the board. Such peeling forces reduce the solder joint lifetime of the package. Recommended maximum force on the top of the package is 10 lb force (4.5 kg force). If an adhesive attachment is planned, the adhesive should be intended for attachment to painted or plastic surfaces and its performance verified under the application requirements.