

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e300
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	667MHz
Co-Processors/DSP	Communications; QUICC Engine, Security; SEC
RAM Controllers	DDR, DDR2
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (1)
SATA	-
USB	USB 1.x (1)
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	Cryptography, Random Number Generator
Package / Case	740-LBGA
Supplier Device Package	740-TBGA (37.5x37.5)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8360evvalfha

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Programmable highest priority request
- Four groups of interrupts with programmable priority
- External and internal interrupts directed to communication processor
- Redirects interrupts to external INTA pin when in core disable mode
- Unique vector number for each interrupt source
- Dual industry-standard I²C interfaces
 - Two-wire interface
 - Multiple master support
 - Master or slave I²C mode support
 - On-chip digital filtering rejects spikes on the bus
 - System initialization data is optionally loaded from I²C-1 EPROM by boot sequencer embedded hardware
- DMA controller
 - Four independent virtual channels
 - Concurrent execution across multiple channels with programmable bandwidth control
 - All channels accessible by local core and remote PCI masters
 - Misaligned transfer capability
 - Data chaining and direct mode
 - Interrupt on completed segment and chain
 - DMA external handshake signals: DMA_DREQ[0:3]/DMA_DACK[0:3]/DMA_DONE[0:3]. There is one set for each DMA channel. The pins are multiplexed to the parallel IO pins with other QE functions.
- DUART
 - Two 4-wire interfaces (RxD, TxD, RTS, CTS)
 - Programming model compatible with the original 16450 UART and the PC16550D
- System timers
 - Periodic interrupt timer
 - Real-time clock
 - Software watchdog timer
 - Eight general-purpose timers
- IEEE Std. 1149.1[™]-compliant, JTAG boundary scan
- Integrated PCI bus and SDRAM clock generation

2 Electrical Characteristics

This section provides the AC and DC electrical specifications and thermal characteristics for the MPC8360E/58E. The device is currently targeted to these specifications. Some of these specifications are independent of the I/O cell, but are included for a more complete reference. These are not purely I/O buffer design specifications.

Overall DC Electrical Characteristics

2.1 **Overall DC Electrical Characteristics**

This section covers the ratings, conditions, and other characteristics.

2.1.1 Absolute Maximum Ratings

This table provides the absolute maximum ratings.

Table 1. Absolute Maximum Ratings¹

	Characteristic	Symbol	Max Value	Unit	Notes
Core and PLL supply	voltage for	V _{DD} & AV _{DD}	-0.3 to 1.32	V	—
	t Number with label of AD=266MHz and AG=400MHz & ency label of E=300MHz & G=400MHz				
	t Number with label of AG=400MHz and AJ=533MHz & ency label of G=400MHz				
Core and PLL supply	voltage for	V _{DD} & AV _{DD}	-0.3 to 1.37	V	—
MPC8360 device Part Processor Frequency Frequency label of H=	label of AL=667MHz and QUICC Engine				
DDR and DDR2 DRA	M I/O voltage DDR DDR2	GV _{DD}	-0.3 to 2.75 -0.3 to 1.89	V	—
Three-speed Ethernet	I/O, MII management voltage	LV _{DD}	-0.3 to 3.63	V	—
PCI, local bus, DUAR ⁻ I ² C, SPI, and JTAG I/	Γ, system control and power management,) voltage	OV _{DD}	-0.3 to 3.63	V	—
Input voltage	DDR DRAM signals	MV _{IN}	-0.3 to (GV _{DD} + 0.3)	V	2, 5
	DDR DRAM reference	MV _{REF}	-0.3 to (GV _{DD} + 0.3)	V	2, 5
	Three-speed Ethernet signals	LV _{IN}	-0.3 to (LV _{DD} + 0.3)	V	4, 5
	Local bus, DUART, CLKIN, system control and power management, I ² C, SPI, and JTAG signals	OV _{IN}	-0.3 to (OV _{DD} + 0.3)	V	3, 5
	PCI	OV _{IN}	-0.3 to (OV _{DD} + 0.3)	V	6

Power Sequencing

2.2.1 Power-Up Sequencing

MPC8360E/58E does not require the core supply voltage (V_{DD} and AV_{DD}) and I/O supply voltages (GV_{DD} , LV_{DD} , and OV_{DD}) to be applied in any particular order. During the power ramp up, before the power supplies are stable and if the I/O voltages are supplied before the core voltage, there may be a period of time that all input and output pins are actively be driven and cause contention and excessive current from 3A to 5A. In order to avoid actively driving the I/O pins and to eliminate excessive current draw, apply the core voltage (V_{DD}) before the I/O voltage (GV_{DD} , LV_{DD} , and OV_{DD}) and assert PORESET before the power supplies fully ramp up. In the case where the core voltage is applied first, the core voltage supply must rise to 90% of its nominal value before the I/O supplies reach 0.7 V, see this figure.

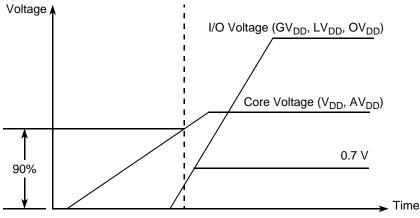


Figure 5. Power Sequencing Example

I/O voltage supplies (GV_{DD}, LV_{DD}, and OV_{DD}) do not have any ordering requirements with respect to one another.

2.2.2 Power-Down Sequencing

The MPC8360E/58E does not require the core supply voltage and I/O supply voltages to be powered down in any particular order.

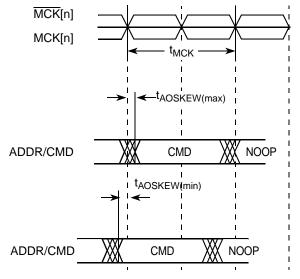
3 Power Characteristics

The estimated typical power dissipation values are shown in these tables.

Table 4. MPC8360E TBG/	Core Power Dissipation ¹
------------------------	-------------------------------------

Core Frequency (MHz)	CSB Frequency (MHz)	QUICC Engine Frequency (MHz)	Typical	Maximum	Unit	Notes
266	266	500	5.0	5.6	W	2, 3, 5
400	266	400	4.5	5.0	W	2, 3, 4
533	266	400	4.8	5.3	W	2, 3, 4
667	333	400	5.8	6.3	W	3, 6, 7, 8
500	333	500	5.9	6.4	W	3, 6, 7, 8

Table 21. DDR and DDR2 SDRAM Output AC Timing Specifications for Source Synchronous Mode (continued)


At recommended operating conditions with GV_{DD} of (1.8 V or 2.5 V) ± 5%.

Parameter ⁸	Symbol ¹	Min	Мах	Unit	Notes
MDQS epilogue end	t _{DDKHME}	-0.6	0.9	ns	7

Notes:

- The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. Output hold time can be read as DDR timing (DD) from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (AX or DX). For example, t_{DDKHAS} symbolizes DDR timing (DD) for the time t_{MCK} memory clock reference (K) goes from the high (H) state until outputs (A) are setup (S) or output valid time. Also, t_{DDKLDX} symbolizes DDR timing (DD) for the time t_{MCK} memory clock reference (K) goes low (L) until data outputs (D) are invalid (X) or data output hold time.
 </sub>
- 2. All MCK/ \overline{MCK} referenced measurements are made from the crossing of the two signals ±0.1 V.
- In the source synchronous mode, MCK/MCK can be shifted in ¼ applied cycle increments through the clock control register. For the skew measurements referenced for t_{AOSKEW} it is assumed that the clock adjustment is set to align the address/command valid with the rising edge of MCK.
- ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK, MCS, and MDQ/MECC/MDM/MDQS. For the ADDR/CMD setup and hold specifications, it is assumed that the clock control register is set to adjust the memory clocks by ½ applied cycle.
- 5. Note that t_{DDKHMH} follows the symbol conventions described in note 1. For example, t_{DDKHMH} describes the DDR timing (DD) from the rising edge of the MCK(n) clock (KH) until the MDQS signal is valid (MH). t_{DDKHMH} can be modified through control of the DQSS override bits in the TIMING_CFG_2 register. In source synchronous mode, this is typically set to the same delay as the clock adjust in the CLK_CNTL register. The timing parameters listed in the table assume that these two parameters have been set to the same adjustment value. Refer MPC8360E PowerQUICC II Pro Integrated Communications Processor Reference Manual for a description and understanding of the timing modifications enabled by use of these bits.
- Determined by maximum possible skew between a data strobe (MDQS) and any corresponding bit of data (MDQ), ECC (MECC), or data mask (MDM). The data strobe should be centered inside of the data eye at the pins of the device.
- All outputs are referenced to the rising edge of MCK(n) at the pins of the device. Note that t_{DDKHMP} follows the symbol conventions described in note 1.
- 8. AC timing values are based on the DDR data rate, which is twice the DDR memory bus frequency.
- In rev. 2.0 silicon, t_{DDKHMH} maximum meets the specification of 0.6 ns. In rev. 2.0 silicon, due to errata, t_{DDKHMH} minimum is –0.9 ns. Refer to Errata DDR18 in *Chip Errata for the MPC8360E, Rev. 1*.

This figure shows the DDR SDRAM output timing for address skew with respect to any MCK.

8.2.4.1 TBI Transmit AC Timing Specifications

This table provides the TBI transmit AC timing specifications.

Table 33. TBI Transmit AC Timing Specifications

At recommended operating conditions with LV_{DD}/OV_{DD} of 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit	Notes
GTX_CLK clock period	t _{TTX}		8.0	—	ns	—
GTX_CLK duty cycle	t _{TTXH} /t _{TTX}	40	—	60	%	—
GTX_CLK to TBI data TCG[9:0] delay	^t тткнdx ^t тткнdv	1.0	—	 5.0	ns	3
GTX_CLK clock rise time, (20% to 80%)	t _{TTXR}	_	—	1.0	ns	—
GTX_CLK clock fall time, (80% to 20%)	t _{TTXF}	_	—	1.0	ns	—
GTX_CLK125 reference clock period	t _{G125}	_	8.0	_	ns	2
GTX_CLK125 reference clock duty cycle	t _{G125H} /t _{G125}	45	—	55	ns	—

Notes:

- The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{TTKHDV} symbolizes the TBI transmit timing (TT) with respect to the time from t_{TTX} (K) going high (H) until the referenced data signals (D) reach the valid state (V) or setup time. Also, t_{TTKHDX} symbolizes the TBI transmit timing (TT) with respect to the time from t_{TTX} (K) going high (H) until the referenced data signals (D) reach the valid state (V) or setup time. Also, t_{TTKHDX} symbolizes the TBI transmit timing (TT) with respect to the time from t_{TTX} (K) going high (H) until the referenced data signals (D) reach the invalid state (X) or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{TTX} represents the TBI (T) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
- 2. This symbol is used to represent the external GTX_CLK125 and does not follow the original symbol naming convention.
- 3. In rev. 2.0 silicon, due to errata, t_{TTKHDX} minimum is 0.7 ns for UCC1. Refer to Errata QE_ENET19 in Chip Errata for the MPC8360E, Rev. 1.

This figure shows the TBI transmit AC timing diagram.

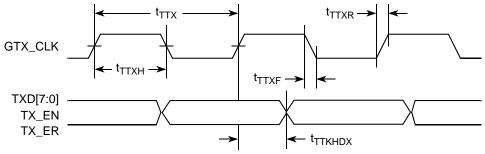


Figure 18. TBI Transmit AC Timing Diagram

GMII, MII, RMII, TBI, RGMII, and RTBI AC Timing Specifications

8.2.4.2 TBI Receive AC Timing Specifications

This table provides the TBI receive AC timing specifications.

Table 34. TBI Receive AC Timing Specifications

At recommended operating conditions with LV_{DD}/OV_{DD} of 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit	Notes
PMA_RX_CLK clock period	t _{TRX}	_	16.0	_	ns	—
PMA_RX_CLK skew	t _{SKTRX}	7.5	—	8.5	ns	—
RX_CLK duty cycle	t _{TRXH} /t _{TRX}	40	—	60	%	—
RCG[9:0] setup time to rising PMA_RX_CLK	t _{TRDVKH}	2.5	—	_	ns	2
RCG[9:0] hold time to rising PMA_RX_CLK	t _{TRDXKH}	1.0	—	_	ns	2
RX_CLK clock rise time, $V_{IL}(min)$ to $V_{IH}(max)$	t _{TRXR}	0.7	—	2.4	ns	—
RX_CLK clock fall time, $V_{IH}(max)$ to $V_{IL}(min)$	t _{TRXF}	0.7	—	2.4	ns	_

Notes:

- 1. The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{TRDVKH} symbolizes TBI receive timing (TR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{TRX} clock reference (K) going to the high (H) state or setup time. Also, t_{TRDXKH} symbolizes TBI receive timing (TR) with respect to the time data input signals (D) went invalid (X) relative to the t_{TRX} clock reference (K) going to the high (H) state. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{TRX} represents the TBI (T) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall). For symbols representing skews, the subscript is skew (SK) followed by the clock that is being skewed (TRX).}
- 2. Setup and hold time of even numbered RCG are measured from riding edge of PMA_RX_CLK1. Setup and hold time of odd numbered RCG are measured from riding edge of PMA_RX_CLK0.

This figure shows the TBI receive AC timing diagram.

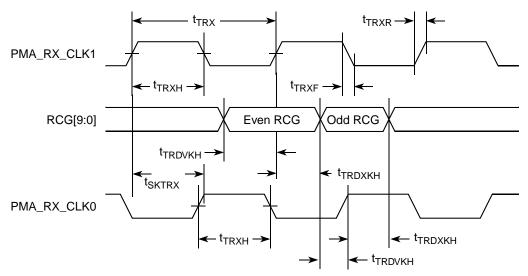


Figure 19. TBI Receive AC Timing Diagram

Ethernet Management Interface Electrical Characteristics

This figure shows the RGMII and RTBI AC timing and multiplexing diagrams.

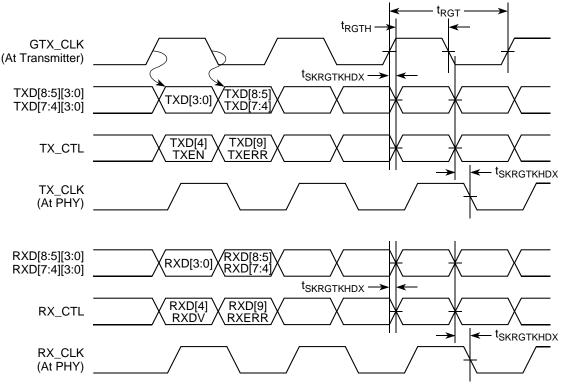


Figure 20. RGMII and RTBI AC Timing and Multiplexing Diagrams

8.3 Ethernet Management Interface Electrical Characteristics

The electrical characteristics specified here apply to MII management interface signals MDIO (management data input/output) and MDC (management data clock). The electrical characteristics for GMII, RGMII, TBI, and RTBI are specified in Section 8.1, "Three-Speed Ethernet Controller (10/100/1000 Mbps)— GMII/MII/RMII/TBI/RGMII/RTBI Electrical Characteristics."

8.3.1 MII Management DC Electrical Characteristics

The MDC and MDIO are defined to operate at a supply voltage of 3.3 V. The DC electrical characteristics for MDIO and MDC are provided in this table.

Parameter	Symbol	Conditions		Min	Мах	Unit				
Supply voltage (3.3 V)	OV _{DD}	—		_		_		2.97	3.63	V
Output high voltage	V _{OH}	I _{OH} = -1.0 mA	$OV_{DD} = Min$	2.10	OV _{DD} + 0.3	V				
Output low voltage	V _{OL}	I _{OL} = 1.0 mA	OV _{DD} = Min	GND	0.50	V				
Input high voltage	V _{IH}	-	—		_	V				
Input low voltage	V _{IL}	—		—		_	0.80	V		
Input current	I _{IN}	0 V ≤V _{IN} ≤OV _{DD}		_	±10	μA				

able 36. MII Management DC Electrical Characteristics When Powered at 3.3 V

Local Bus AC Electrical Specifications

Parameter	Symbol ¹	Min	Max	Unit	Notes
Local bus clock to output valid	t _{LBKHOV}	—	3	ns	3
Local bus clock to output high impedance for LAD/LDP	t _{LBKHOZ}	—	4	ns	8

Table 41. Local Bus General Timing Parameters—DLL Bypass Mode⁹ (continued)

Notes:

- The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{LBIXKH1} symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t_{LBK} clock reference (K) goes high (H), in this case for clock one (1). Also, t_{LBKHOX} symbolizes local bus timing (LB) for the to the output (O) going invalid (X) or output hold time.
 </sub>
- 2. All timings are in reference to falling edge of LCLK0 (for all outputs and for LGTA and LUPWAIT inputs) or rising edge of LCLK0 (for all other inputs).
- 3. All signals are measured from OV_{DD}/2 of the rising/falling edge of LCLK0 to 0.4 × OV_{DD} of the signal in question for 3.3-V signaling levels.
- 4. Input timings are measured at the pin.
- 5. t_{LBOTOT1} should be used when RCWH[LALE] is not set and when the load on LALE output pin is at least 10 pF less than the load on LAD output pins.
- t_{LBOTOT2} should be used when RCWH[LALE] is set and when the load on LALE output pin is at least 10 pF less than the load on LAD output pins.
- 7. t_{LBOTOT3} should be used when RCWH[LALE] is set and when the load on LALE output pin equals to the load on LAD output pins.
- 8. For purposes of active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 9. DLL bypass mode is not recommended for use at frequencies above 66 MHz.

This figure provides the AC test load for the local bus.

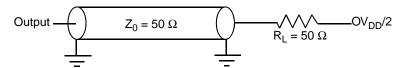


Figure 22. Local Bus C Test Load

PCI AC Electrical Specifications

Table 47. PCI AC Timing Specifications at 66 MHz (continued)

Parameter	Symbol ¹	Min	Мах	Unit	Notes
Clock to output high impedance	t _{PCKHOZ}	—	14	ns	2, 3
Input setup to clock	t _{PCIVKH}	3.0	_	ns	2, 4
Input hold from clock	t _{PCIXKH}	0.3	_	ns	2, 4, 6

Notes:

- The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{PCIVKH} symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, t_{SYS}, reference (K) going to the high (H) state or setup time. Also, t_{PCRHFV} symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.
 </sub>
- 2. See the timing measurement conditions in the PCI 2.2 Local Bus Specifications.
- 3. For purposes of active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 4. Input timings are measured at the pin.
- 5. In rev. 2.0 silicon, due to errata, t_{PCIHOV} maximum is 6.6 ns. Refer to Errata PCI21 in Chip Errata for the MPC8360E, Rev. 1.
- 6. In rev. 2.0 silicon, due to errata, t_{PCIXKH} minimum is 1 ns. Refer to Errata PCI17 in Chip Errata for the MPC8360E, Rev. 1.

Table 48. PCI AC Timing Specifications at 33 MHz

Parameter	Symbol ¹	Min	Max	Unit	Notes
Clock to output valid	t _{PCKHOV}	_	11	ns	2
Output hold from clock	t _{PCKHOX}	2	_	ns	2
Clock to output high impedance	t _{PCKHOZ}	_	14	ns	2, 3
Input setup to clock	t _{PCIVKH}	7.0	_	ns	2, 2
Input hold from clock	t _{PCIXKH}	0.3		ns	2, 4, 5

Notes:

- The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state)} for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{PCIVKH} symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, t_{SYS}, reference (K) going to the high (H) state or setup time. Also, t_{PCRHFV} symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.
- 2. See the timing measurement conditions in the PCI 2.2 Local Bus Specifications.
- 3. For purposes of active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 4. Input timings are measured at the pin.
- 5. In rev. 2.0 silicon, due to errata, t_{PCIXKH} minimum is 1 ns. Refer to Errata PCI17 in Chip Errata for the MPC8360E, Rev. 1.

This figure provides the AC test load for PCI.

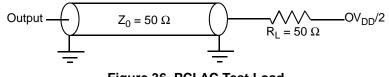


Figure 36. PCI AC Test Load

This figure shows the PCI input AC timing conditions.

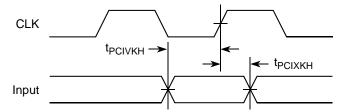
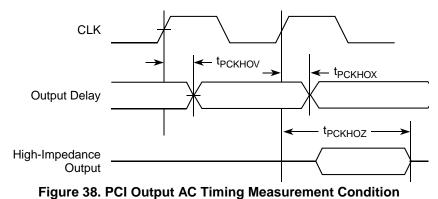



Figure 37. PCI Input AC Timing Measurement Conditions

This figure shows the PCI output AC timing conditions.

13 Timers

This section describes the DC and AC electrical specifications for the timers of the MPC8360E/58E.

13.1 Timers DC Electrical Characteristics

This table provides the DC electrical characteristics for the device timer pins, including TIN, TOUT, TGATE, and RTC_CLK.

Table 49. Timers DC Electrical Characteristics

Characteristic	Symbol	Condition	Min	Max	Unit
Output high voltage	V _{OH}	I _{OH} = -6.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 6.0 mA	_	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	_	0.4	V
Input high voltage	V _{IH}	—	2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	-0.3	0.8	V
Input current	I _{IN}	$0 V \leq V_{IN} \leq OV_{DD}$	_	±10	μA

Timers AC Timing Specifications

13.2 Timers AC Timing Specifications

This table provides the timer input and output AC timing specifications.

Table 50. Timers Input AC Timing Specifications¹

Characteristic	Symbol ²	Тур	Unit
Timers inputs—minimum pulse width	t _{TIWID}	20	ns

Notes:

- 1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are measured at the pin.
- 2. Timers inputs and outputs are asynchronous to any visible clock. Timers outputs should be synchronized before use by any external synchronous logic. Timers inputs are required to be valid for at least t_{TIWID} ns to ensure proper operation.

This figure provides the AC test load for the timers.

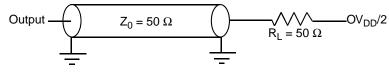


Figure 39. Timers AC Test Load

14 GPIO

This section describes the DC and AC electrical specifications for the GPIO of the MPC8360E/58E.

14.1 GPIO DC Electrical Characteristics

This table provides the DC electrical characteristics for the device GPIO.

Table 51.	GPIO DC	Electrical	Characteristics
-----------	----------------	------------	-----------------

Characteristic	Symbol	Condition	Min	Max	Unit	Notes
Output high voltage	V _{OH}	I _{OH} = -6.0 mA	2.4	_	V	1
Output low voltage	V _{OL}	I _{OL} = 6.0 mA	_	0.5	V	1
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	_	0.4	V	1
Input high voltage	V _{IH}	—	2.0	OV _{DD} + 0.3	V	1
Input low voltage	V _{IL}	—	-0.3	0.8	V	—
Input current	I _{IN}	$0 V \leq V_{IN} \leq OV_{DD}$	_	±10	μΑ	—

Note:

1. This specification applies when operating from 3.3-V supply.

Mechanical Dimensions of the TBGA Package

20.2 Mechanical Dimensions of the TBGA Package

This figure depicts the mechanical dimensions and bottom surface nomenclature of the device, 740-TBGA package.

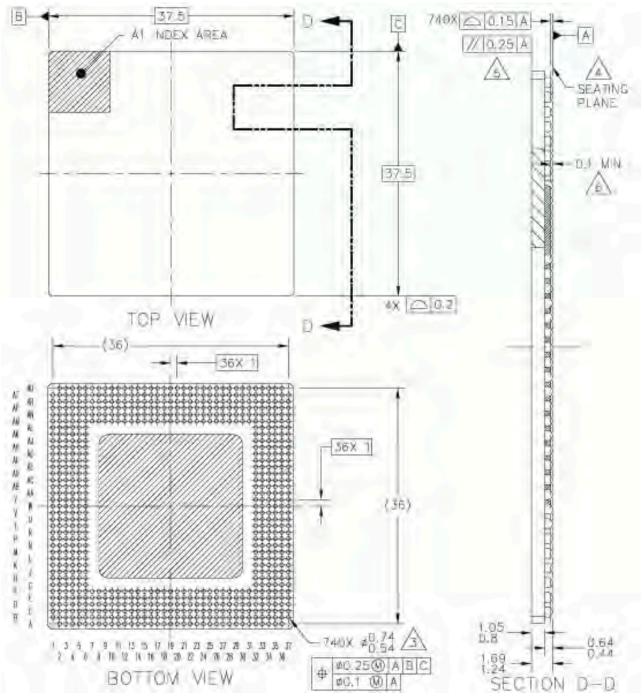


Figure 53. Mechanical Dimensions and Bottom Surface Nomenclature of the TBGA Package

Table 66. MPC8360E TBGA Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
PCI_DEVSEL/CE_PF[16]	E26	I/O	OV _{DD}	5
PCI_IDSEL/CE_PF[17]	F22	I/O	OV _{DD}	—
PCI_SERR/CE_PF[18]	B29	I/O	OV _{DD}	5
PCI_PERR/CE_PF[19]	A29	I/O	OV _{DD}	5
PCI_REQ[0]/CE_PF[20]	F19	I/O	LV _{DD} 2	—
PCI_REQ[1]/CPCI_HS_ES/ CE_PF[21]	A21	I/O	LV _{DD} 2	—
PCI_REQ[2]/CE_PF[22]	C21	I/O	LV _{DD} 2	—
PCI_GNT[0]/CE_PF[23]	E20	I/O	LV _{DD} 2	—
PCI_GNT[1]/CPCI1_HS_LED/ CE_PF[24]	B20	I/O	LV _{DD} 2	
PCI_GNT[2]/CPCI1_HS_ENUM/ CE_PF[25]	C20	I/O	LV _{DD} 2	_
PCI_MODE	D36	I	OV _{DD}	—
M66EN/CE_PF[4]	B37	I/O	OV _{DD}	—
	Local Bus Controller Interface			
LAD[0:31]	N32, N33, N35, N36, P37, P32, P34, R36, R35, R34, R33, T37, T35, T34, T33, U37, T32, U36, U34, V36, V35, W37, W35, V33, V32, W34, Y36, W32, AA37, Y33, AA35, AA34	I/O	OV _{DD}	—
LDP[0]/CKSTOP_OUT	AB37	I/O	OV _{DD}	—
LDP[1]/CKSTOP_IN	AB36	I/O	OV _{DD}	- I
LDP[2]/LCS[6]	AB35	I/O	OV _{DD}	—
LDP[3]/LCS[7]	AA33	I/O	OV _{DD}	—
LA[27:31]	AC37, AA32, AC36, AC34, AD36	0	OV _{DD}	—
LCS[0:5]	AD33, AG37, AF34, AE33, AD32, AH37	0	OV _{DD}	—
LWE[0:3]/LSDDQM[0:3]/LBS[0:3]	AG35, AG34, AH36, AE32	0	OV _{DD}	—
LBCTL	AD35	0	OV _{DD}	—
LALE	M37	0	OV _{DD}	—
LGPL0/LSDA10/cfg_reset_source0	AB32	I/O	OV _{DD}	—
LGPL1/LSDWE/cfg_reset_source1	AE37	I/O	OV _{DD}	—
LGPL2/LSDRAS/LOE	AC33	0	OV _{DD}	—
LGPL3/LSDCAS/cfg_reset_source2	AD34	I/O	OV _{DD}	—
LGPL4/LGTA/LUPWAIT/LPBSE	AE35	I/O	OV _{DD}	-
LGPL5/cfg_clkin_div	AF36	I/O	OV _{DD}	—
LCKE	G36	0	OV _{DD}	—
LCLK[0]	J33	0	OV _{DD}	—
LCLK[1]/LCS[6]	J34	0	OV _{DD}	—

Table 67. MPC8358E TBGA Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
MEMC_MWE	AT26	0	GV _{DD}	_
MEMC_MRAS	AT29	0	GV _{DD}	—
MEMC_MCAS	AT24	0	GV _{DD}	—
MEMC_MCS[0:3]	AU27, AT27, AU8, AU7	0	GV _{DD}	—
MEMC_MCKE[0:1]	AL32, AU33	0	GV _{DD}	3
MEMC_MCK[0:5]	AK37, AT37, AN1, AR2, AN25, AK1	0	GV _{DD}	—
MEMC_MCK[0:5]	AL37, AT36, AP2, AT2, AN24, AL1	0	GV _{DD}	—
MDIC[0:1]	AH6, AP30	I/O	GV _{DD}	11
	PCI			•
PCI_INTA/IRQ_OUT/CE_PF[5]	A20	I/O	LV _{DD} 2	2
PCI_RESET_OUT/CE_PF[6]	E19	I/O	LV _{DD} 2	_
PCI_AD[31:30]/CE_PG[31:30]	D20, D21	I/O	LV _{DD} 2	—
PCI_AD[29:25]/CE_PG[29:25]	A24, B23, C23, E23, A26	I/O	OV _{DD}	—
PCI_AD[24]/CE_PG[24]	B21	I/O	LV _{DD} 2	—
PCI_AD[23:0]/CE_PG[23:0]	C24, C25, D25, B25, E24, F24, A27, A28, F27, A30, C30, D30, E29, B31, C31, D31, D32, A32, C33, B33, F30, E31, A34, D33	I/O	OV _{DD}	_
PCI_C/BE[3:0]/CE_PF[10:7]	E22, B26, E28, F28	I/O	OV _{DD}	—
PCI_PAR/CE_PF[11]	D28	I/O	OV _{DD}	—
PCI_FRAME/CE_PF[12]	D26	I/O	OV _{DD}	5
PCI_TRDY/CE_PF[13]	C27	I/O	OV _{DD}	5
PCI_IRDY/CE_PF[14]	C28	I/O	OV _{DD}	5
PCI_STOP/CE_PF[15]	B28	I/O	OV _{DD}	5
PCI_DEVSEL/CE_PF[16]	E26	I/O	OV _{DD}	5
PCI_IDSEL/CE_PF[17]	F22	I/O	OV _{DD}	_
PCI_SERR/CE_PF[18]	B29	I/O	OV _{DD}	5
PCI_PERR/CE_PF[19]	A29	I/O	OV _{DD}	5
PCI_REQ[0]/CE_PF[20]	F19	I/O	LV _{DD} 2	_
PCI_REQ[1]/CPCI_HS_ES/ CE_PF[21]	A21	I/O	LV _{DD} 2	—
PCI_REQ[2]/CE_PF[22]	C21	I/O	LV _{DD} 2	—
PCI_GNT[0]/CE_PF[23]	E20	I/O	LV _{DD} 2	—
PCI_GNT[1]/CPCI1_HS_LED/ CE_PF[24]	B20	I/O	LV _{DD} 2	—
PCI_GNT[2]/CPCI1_HS_ENUM/ CE_PF[25]	C20	I/O	LV _{DD} 2	—

Table 67. MPC8358E TBGA Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
PCI_MODE	D36	I	OV _{DD}	-
M66EN/CE_PF[4]	B37	I/O	OV _{DD}	—
	Local Bus Controller Interface			
LAD[0:31]	N32, N33, N35, N36, P37, P32, P34, R36, R35, R34, R33, T37, T35, T34, T33, U37, T32, U36, U34, V36, V35, W37, W35, V33, V32, W34, Y36, W32, AA37, Y33, AA35, AA34	I/O	OV _{DD}	-
LDP[0]/CKSTOP_OUT	AB37	I/O	OV _{DD}	—
LDP[1]/CKSTOP_IN	AB36	I/O	OV _{DD}	—
LDP[2]/LCS[6]	AB35	I/O	OV _{DD}	—
LDP[3]/LCS[7]	AA33	I/O	OV _{DD}	—
LA[27:31]	AC37, AA32, AC36, AC34, AD36	0	OV _{DD}	—
LCS[0:5]	AD33, AG37, AF34, AE33, AD32, AH37	0	OV _{DD}	—
LWE[0:3]/LSDDQM[0:3]/LBS[0:3]	AG35, AG34, AH36, AE32	0	OV _{DD}	—
LBCTL	AD35	0	OV _{DD}	—
LALE	M37	0	OV _{DD}	—
LGPL0/LSDA10/cfg_reset_source0	AB32	I/O	OV _{DD}	—
LGPL1/LSDWE/cfg_reset_source1	AE37	I/O	OV _{DD}	—
LGPL2/LSDRAS/LOE	AC33	0	OV _{DD}	—
LGPL3/LSDCAS/cfg_reset_source2	AD34	I/O	OV _{DD}	—
LGPL4/LGTA/LUPWAIT/LPBSE	AE35	I/O	OV _{DD}	—
LGPL5/cfg_clkin_div	AF36	I/O	OV _{DD}	—
LCKE	G36	0	OV _{DD}	—
LCLK[0]	J33	0	OV _{DD}	—
LCLK[1]/LCS[6]	J34	0	OV _{DD}	—
LCLK[2]/LCS[7]	G37	0	OV _{DD}	—
LSYNC_OUT	F34	0	OV _{DD}	—
LSYNC_IN	G35	I	OV _{DD}	—
	Programmable Interrupt Controller		1	
MCP_OUT	E34	0	OV _{DD}	2
IRQ0/MCP_IN	C37	I	OV _{DD}	<u> </u>
IRQ[1]/M1SRCID[4]/M2SRCID[4]/ LSRCID[4]	F35	I/O	OV _{DD}	-
IRQ[2]/M1DVAL/M2DVAL/LDVAL	F36	I/O	OV _{DD}	-
IRQ[3]/CORE_SRESET	H34	I/O	OV _{DD}	—

Pinout Listings

Signal	Package Pin Number	Pin Type	Power Supply	Notes	
CE_PB[0:27]	AE2, AE1, AD5, AD3, AD2, AC6, AC5, AC4, AC2, AC1, AB5, AB4, AB3, AB1, AA6, AA4, AA2, Y6, Y4, Y3, Y2, Y1, W6, W5, W2, V5, V3, V2	I/O	OV _{DD}	-	
CE_PC[0:1]	V1, U6	I/O	OV _{DD}		
CE_PC[2:3]	C16, A15	I/O	LV _{DD} 1	—	
CE_PC[4:6]	U4, U3, T6	I/O	OV _{DD}	—	
CE_PC[7]	C19	I/O	LV _{DD} 2	—	
CE_PC[8:9]	A4, C5	I/O	LV _{DD} 0	-	
CE_PC[10:30]	T5, T4, T2, T1, R5, R3, R1, C11, D12, F13, B10, C10, E12, A9, B8, D10, A14, E15, B14, D15, AH2	I/O	OV _{DD}	_	
CE_PD[0:27]					
CE_PE[0:31]	I/O	OV _{DD}	-		
CE_PF[0:3]	F14, D13, A12, A11	I/O	OV _{DD}	_	
	Clocks			•	
PCI_CLK_OUT[0]/CE_PF[26]	B22	I/O	LV _{DD} 2	_	
PCI_CLK_OUT[1:2]/CE_PF[27:28]	D22, A23	I/O	OV _{DD}	_	
CLKIN	E37	I	OV _{DD}	_	
PCI_CLOCK/PCI_SYNC_IN	M36	I	OV _{DD}	_	
PCI_SYNC_OUT/CE_PF[29]	D37	I/O	OV _{DD}	3	
	JTAG	•		1	
тск	К33	I	OV _{DD}	_	
TDI	K34	I	OV _{DD}	4	
TDO	H37	0	OV _{DD}	3	
TMS	J36	I	OV _{DD}	4	
TRST	L32	I	OV _{DD}	4	
	Test			<u>ı</u>	
TEST	L35	I	OV _{DD}	7	
TEST_SEL	AU34	I	GV _{DD}	10	
	РМС	1		1	
QUIESCE	B36	0	OV _{DD}	_	
	System Control			1	

Table 67. MPC8358E TBGA Pinout Listing (continued)

System PLL Configuration

			li	nput Clock Fre	equency (MHz) ²	
CFG_CLKIN_DIV at Reset ¹	SPMF	SPMF csb_clk: Input Clock Ratio ²		25	33.33	66.67	
				csb_clk Fred	<i>csb_clk</i> Frequency (MHz)		
Low	0110	6:1	100	150	200		
Low	0111	7:1	116	175	233		
Low	1000	8:1	133	200	266		
Low	1001	9:1	150	225	300		
Low	1010	10:1	166	250	333		
Low	1011	11:1	183	275			
Low	1100	12:1	200	300			
Low	1101	13:1	216	325			
Low	1110	14:1	233		J		
Low	1111	15:1	250	1			
Low	0000	16:1	266	1			
High	0010	2:1				133	
High	0011	3:1			100	200	
High	0100	4:1			133	266	
High	0101	5:1			166	333	
High	0110	6:1			200		
High	0111	7:1			233		
High	1000	8:1					
High	1001	9:1					
High	1010	10:1					
High	1011	11:1					
High	1100	12:1					
High	1101	13:1					
High	1110	14:1					
High	1111	15:1					
High	0000	16:1					

Table 72. CSB Frequency Options (continued)

¹ CFG_CLKIN_DIV is only used for host mode; CLKIN must be tied low and CFG_CLKIN_DIV must be pulled down (low) in agent mode.

 $^2\,$ CLKIN is the input clock in host mode; PCI_CLK is the input clock in agent mode.

The QUICC Engine block VCO frequency is derived from the following equations:

 $ce_clk = (primary clock input \times CEPMF) \div (1 + CEPDF)$

QE VCO Frequency = $ce_clk \times VCO$ divider $\times (1 + CEPDF)$

21.4 Suggested PLL Configurations

To simplify the PLL configurations, the device might be separated into two clock domains. The first domain contains the CSB PLL and the core PLL. The core PLL is connected serially to the CSB PLL, and has the csb_clk as its input clock. The second clock domain has the QUICC Engine block PLL. The clock domains are independent, and each of their PLLs are configured separately. Both of the domains has one common input clock. This table shows suggested PLL configurations for 33 and 66 MHz input clocks and illustrates each of the clock domains separately. Any combination of clock domains setting with same input clock are valid. Refer to Section 21, "Clocking," for the appropriate operating frequencies for your device.

Conf No. ¹	SPMF	CORE PLL	CEPMF	CEPDF	Input Clock Freq (MHz)	CSB Freq (MHz)	Core Freq (MHz)	QUICC Engine Freq (MHz)	400 (MHz)	533 (MHz)	667 (MHz)
	33 MHz CLKIN/PCI_SYNC_IN Options										
s1	0100	0000100	æ	æ	33	133	266	—	8	8	8
s2	0100	0000101	æ	æ	33	133	333	_	8	∞	8
s3	0101	0000100	æ	æ	33	166	333	_	8	∞	8
s4	0101	0000101	æ	æ	33	166	416	_		8	8
s5	0110	0000100	æ	æ	33	200	400	_	8	8	8
s6	0110	0000110	æ	æ	33	200	600	_	_	—	8
s7	0111	0000011	æ	æ	33	233	350	_	8	8	8
s8	0111	0000100	æ	æ	33	233	466	_		8	8
s9	0111	0000101	æ	æ	33	233	583	_		—	8
s10	1000	0000011	æ	æ	33	266	400	_	8	8	8
s11	1000	0000100	æ	æ	33	266	533	_	_	∞	8
s12	1000	0000101	æ	æ	33	266	667	_	_	—	8
s13	1001	0000010	æ	æ	33	300	300	_	8	∞	8
s14	1001	0000011	æ	æ	33	300	450	_		8	8
s15	1001	0000100	æ	æ	33	300	600	_		—	8
s16	1010	0000010	æ	æ	33	333	333	_	8	8	8
s17	1010	0000011	æ	æ	33	333	500	_	_	8	8
s18	1010	0000100	æ	æ	33	333	667			—	8
c1	æ	æ	01001	0	33	—	—	300	~	∞	∞
c2	æ	æ	01100	0	33	—	—	400	8	∞	8
c3	æ	æ	01110	0	33	—	—	466	_	∞	8
c4	æ	æ	01111	0	33	—	—	500	_	8	8

Table 76. Suggested PLL Configurations

Suggested PLL Configurations

Conf No. ¹	SPMF	CORE PLL	CEPMF	CEPDF	Input Clock Freq (MHz)	CSB Freq (MHz)	Core Freq (MHz)	QUICC Engine Freq (MHz)	400 (MHz)	533 (MHz)	667 (MHz)	
c5	æ	æ	10000	0	33	—	—	533	_	8	8	
c6	æ	æ	10001	0	33	—	—	566	_	—	8	
	66 MHz CLKIN/PCI_SYNC_IN Options											
s1h	0011	0000110	æ	æ	66	200	400	—	~	8	8	
s2h	0011	0000101	æ	æ	66	200	500	_	_	8	8	
s3h	0011	0000110	æ	æ	66	200	600	_	_	—	8	
s4h	0100	0000011	æ	æ	66	266	400	_	8	∞	8	
s5h	0100	0000100	æ	æ	66	266	533	_	_	∞	8	
s6h	0100	0000101	æ	æ	66	266	667	_	_	—	8	
s7h	0101	0000010	æ	æ	66	333	333	_	8	∞	8	
s8h	0101	0000011	æ	æ	66	333	500	_	_	∞	8	
s9h	0101	0000100	8	æ	66	333	667			_	8	
c1h	æ	æ	00101	0	66	—	—	333	8	8	8	
c2h	æ	æ	00110	0	66	—	_	400	8	8	8	
c3h	æ	æ	00111	0	66	—	_	466		8	8	
c4h	æ	æ	01000	0	66	—	_	533	_	8	8	
c5h	æ	æ	01001	0	66			600	_		8	

Table 76. Suggested PLL Configurations (continued)

Note:

1. The Conf No. consist of prefix, an index and a postfix. The prefix "s" and "c" stands for "syset" and "ce" respectively. The postfix "h" stands for "high input clock." The index is a serial number.

The following steps describe how to use above table. See Example 1.

- 2. Choose the up or down sections in the table according to input clock rate 33 MHz or 66 MHz.
- 3. Select a suitable CSB and core clock rates from Table 76. Copy the SPMF and CORE PLL configuration bits.
- 4. Select a suitable QUICC Engine block clock rate from Table 76. Copy the CEPMF and CEPDF configuration bits.
- 5. Insert the chosen SPMF, COREPLL, CEPMF and CEPDF to the RCWL fields, respectively.

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center 1-800 441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale, the Freescale logo, and PowerQUICC are trademarks of Freescale Semiconductor, Inc. Reg. U.S. Pat. & Tm. Off. QUICC Engine is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. © 2011 Freescale Semiconductor, Inc.

Document Number: MPC8360EEC Rev. 5 09/2011

