

NXP USA Inc. - MPC8360VVAGDG Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e300
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	400MHz
Co-Processors/DSP	Communications; QUICC Engine
RAM Controllers	DDR, DDR2
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (1)
SATA	-
USB	USB 1.x (1)
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	740-LBGA
Supplier Device Package	740-TBGA (37.5x37.5)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8360vvagdg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

wide range of protocols including ATM, Ethernet, HDLC, and POS. The QUICC Engine module's enhanced interworking eases the transition and reduces investment costs from ATM to IP based systems. The other major features include a dual DDR SDRAM memory controller for the MPC8360E, which allows equipment providers to partition system parameters and data in an extremely efficient way, such as using one 32-bit DDR memory controller for control plane processing and the other for data plane processing. The MPC8358E has a single DDR SDRAM memory controller. The MPC8360E/58E also offers a 32-bit PCI controller, a flexible local bus, and a dedicated security engine.

This figure shows the MPC8360Eblock diagram.

Figure 1. MPC8360E Block Diagram

Characteristic	Symbol	Recommended Value	Unit	Notes
PCI, local bus, DUART, system control and power management, I^2C , SPI, and JTAG I/O voltage	OV _{DD}	3.3 V ± 330 mV	V	_
Junction temperature	TJ	0 to 105 -40 to 105	°C	2

Table 2. Recommended Operating Conditions (continued)

Notes:

- 1. GV_{DD}, LV_{DD}, OV_{DD}, AV_{DD}, and V_{DD} must track each other and must vary in the same direction—either in the positive or negative direction.
- The operating conditions for junction temperature, T_J, on the 600/333/400 MHz and 500/333/500 MHz on rev. 2.0 silicon is 0° to 70 °C. Refer to Errata General9 in *Chip Errata for the MPC8360E, Rev. 1*.
- 3. For more information on Part Numbering, refer to Table 80.

This figure shows the undershoot and overshoot voltages at the interfaces of the device.

1. Note that $t_{\mbox{interface}}$ refers to the clock period associated with the bus clock interface.

Figure 3. Overshoot/Undershoot Voltage for $GV_{DD}/OV_{DD}/LV_{DD}$

DC Electrical Characteristics

4.1 DC Electrical Characteristics

This table provides the clock input (CLKIN/PCI_SYNC_IN) DC timing specifications for the device.

|--|

Parameter	Condition	Symbol	Min	Мах	Unit
Input high voltage	—	V _{IH}	2.7	OV _{DD} + 0.3	V
Input low voltage	—	V _{IL}	-0.3	0.4	V
CLKIN input current	0 V ≤V _{IN} ≤OV _{DD}	I _{IN}	—	±10	μA
PCI_SYNC_IN input current	0 V ≤V _{IN} ≤0.5V or OV _{DD} – 0.5V ≤V _{IN} ≤OV _{DD}	I _{IN}	_	±10	μΑ
PCI_SYNC_IN input current	0.5 V ≤V _{IN} ≤OV _{DD} – 0.5 V	I _{IN}	—	±100	μA

4.2 AC Electrical Characteristics

The primary clock source for the device can be one of two inputs, CLKIN or PCI_CLK, depending on whether the device is configured in PCI host or PCI agent mode. This table provides the clock input (CLKIN/PCI_CLK) AC timing specifications for the device.

Table 8.	CLKIN	AC	Timing	Specifications
----------	-------	----	--------	-----------------------

Parameter/Condition	Symbol	Min	Typical	Мах	Unit	Notes
CLKIN/PCI_CLK frequency	f _{CLKIN}	—	—	66.67	MHz	1
CLKIN/PCI_CLK cycle time	t _{CLKIN}	15	—	_	ns	—
CLKIN/PCI_CLK rise and fall time	t _{KH} , t _{KL}	0.6	1.0	2.3	ns	2
CLKIN/PCI_CLK duty cycle	t _{KHK} /t _{CLKIN}	40	—	60	%	3
CLKIN/PCI_CLK jitter	—	—	—	±150	ps	4, 5

Notes:

- 1. **Caution:** The system, core, USB, security, and 10/100/1000 Ethernet must not exceed their respective maximum or minimum operating frequencies.
- 2. Rise and fall times for CLKIN/PCI_CLK are measured at 0.4 V and 2.7 V.
- 3. Timing is guaranteed by design and characterization.
- 4. This represents the total input jitter-short term and long term-and is guaranteed by design.
- 5. The CLKIN/PCI_CLK driver's closed loop jitter bandwidth should be <500 kHz at -20 dB. The bandwidth must be set low to allow cascade-connected PLL-based devices to track CLKIN drivers with the specified jitter.

4.3 Gigabit Reference Clock Input Timing

This table provides the Gigabit reference clocks (GTX_CLK125) AC timing specifications.

Table 9. GTX_CLK125 AC Timing Specifications

At recommended operating conditions with LV_{DD} = 2.5 \pm 0.125 mV/ 3.3 V \pm 165 mV

Parameter/Condition	Symbol	Min	Typical	Max	Unit	Notes
GTX_CLK125 frequency	t _{G125}	_	125	_	MHz	_
GTX_CLK125 cycle time	t _{G125}	_	8		ns	

QUICC Engine Block Operating Frequency Limitations

5.3 QUICC Engine Block Operating Frequency Limitations

This section specify the limits of the AC electrical characteristics for the operation of the QUICC Engine block's communication interfaces.

NOTE

The settings listed below are required for correct hardware interface operation. Each protocol by itself requires a minimal QUICC Engine block operating frequency setting for meeting the performance target. Because the performance is a complex function of all the QUICC Engine block settings, the user should make use of the QUICC Engine block performance utility tool provided by Freescale to validate their system.

This table lists the maximal QUICC Engine block I/O frequencies and the minimal QUICC Engine block core frequency for each interface.

Interface	Interface Operating Frequency (MHz)	Max Interface Bit Rate (Mbps)	Min QUICC Engine Operating Frequency ¹ (MHz)	Notes
Ethernet Management: MDC/MDIO	10 (max)	10	20	_
MII	25 (typ)	100	50	_
RMII	50 (typ)	100	50	_
GMII/RGMII/TBI/RTBI	125 (typ)	1000	250	_
SPI (master/slave)	10 (max)	10	20	_
UCC through TDM	50 (max)	70	8 imes F	2
MCC	25 (max)	16.67	16 × F	2, 4
UTOPIA L2	50 (max)	800	$2 \times F$	2
POS-PHY L2	50 (max)	800	$2 \times F$	2
HDLC bus	10 (max)	10	20	_
HDLC/transparent	50 (max)	50	8/3 × F	2, 3
UART/async HDLC	3.68 (max internal ref clock)	115 (Kbps)	20	_
BISYNC	2 (max)	2	20	
USB	48 (ref clock)	12	96	_

Table 13. QUICC Engine Block Operating Frequency Limitations

Notes:

1. The QUICC Engine module needs to run at a frequency higher than or equal to what is listed in this table.

2. 'F' is the actual interface operating frequency.\

3. The bit rate limit is independent of the data bus width (that is, the same for serial, nibble, or octal interfaces).

4. TDM in high-speed mode for serial data interface.

6 DDR and DDR2 SDRAM

This section describes the DC and AC electrical specifications for the DDR and DDR2 SDRAM interface of the MPC8360E/58E.

This section describes the DC and AC electrical specifications for the DUART interface of the MPC8360E/58E.

7.1 DUART DC Electrical Characteristics

This table provides the DC electrical characteristics for the DUART interface of the device.

Table 23. DUART DC Electrical Characteristics

Parameter	Symbol	Min	Мах	Unit	Notes
High-level input voltage	V _{IH}	2	OV _{DD} + 0.3	V	—
Low-level input voltage OV _{DD}	V _{IL}	-0.3	0.8	V	—
High-level output voltage, I _{OH} = −100 μA	V _{OH}	OV _{DD} - 0.4	—	V	—
Low-level output voltage, I _{OL} = 100 μA	V _{OL}	—	0.2	V	—
Input current (0 V ≰⁄ _{IN} ≤OV _{DD})	I _{IN}	—	±10	μA	1

Note:

1. Note that the symbol V_{IN}, in this case, represents the OV_{IN} symbol referenced in Table 1 and Table 2.

7.2 DUART AC Electrical Specifications

This table provides the AC timing parameters for the DUART interface of the device.

Table 24.	DUART	AC T	iming	Speci	ifications
-----------	-------	------	-------	-------	------------

Parameter	Value	Unit	Notes
Minimum baud rate	256	baud	_
Maximum baud rate	>1,000,000	baud	1
Oversample rate	16	_	2

Notes:

- 1. Actual attainable baud rate is limited by the latency of interrupt processing.
- 2. The middle of a start bit is detected as the eighth sampled 0 after the 1-to-0 transition of the start bit. Subsequent bit values are sampled each sixteenth sample.

8 UCC Ethernet Controller: Three-Speed Ethernet, MII Management

This section provides the AC and DC electrical characteristics for three-speed, 10/100/1000, and MII management.

8.1 Three-Speed Ethernet Controller (10/100/1000 Mbps)— GMII/MII/RMII/TBI/RGMII/RTBI Electrical Characteristics

The electrical characteristics specified here apply to all GMII (gigabit media independent interface), MII (media independent interface), RMII (reduced media independent interface), TBI (ten-bit interface), RGMII (reduced gigabit media independent interface), and RTBI (reduced ten-bit interface) signals except MDIO (management data input/output) and MDC (management data clock). The MII, RMII, GMII, and TBI interfaces are only defined for 3.3 V, while the RGMII and RTBI interfaces are only defined for 2.5 V. The RGMII and RTBI interfaces follow the Hewlett-Packard reduced pin-count interface for Gigabit Ethernet

8.2.4.1 TBI Transmit AC Timing Specifications

This table provides the TBI transmit AC timing specifications.

Table 33. TBI Transmit AC Timing Specifications

At recommended operating conditions with LV_{DD}/OV_{DD} of 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit	Notes
GTX_CLK clock period	t _{TTX}	_	8.0	_	ns	—
GTX_CLK duty cycle	t _{TTXH} /t _{TTX}	40	—	60	%	—
GTX_CLK to TBI data TCG[9:0] delay	t _{TTKHDX} t _{TTKHDV}	1.0	—	 5.0	ns	3
GTX_CLK clock rise time, (20% to 80%)	t _{TTXR}	_	—	1.0	ns	—
GTX_CLK clock fall time, (80% to 20%)	t _{TTXF}	_	_	1.0	ns	—
GTX_CLK125 reference clock period	t _{G125}	_	8.0	_	ns	2
GTX_CLK125 reference clock duty cycle	t _{G125H} /t _{G125}	45	—	55	ns	—

Notes:

- The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{TTKHDV} symbolizes the TBI transmit timing (TT) with respect to the time from t_{TTX} (K) going high (H) until the referenced data signals (D) reach the valid state (V) or setup time. Also, t_{TTKHDX} symbolizes the TBI transmit timing (TT) with respect to the time from t_{TTX} (K) going high (H) until the referenced data signals (D) reach the valid state (V) or setup time. Also, t_{TTKHDX} symbolizes the TBI transmit timing (TT) with respect to the time from t_{TTX} (K) going high (H) until the referenced data signals (D) reach the invalid state (X) or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{TTX} represents the TBI (T) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
- 2. This symbol is used to represent the external GTX_CLK125 and does not follow the original symbol naming convention.
- 3. In rev. 2.0 silicon, due to errata, t_{TTKHDX} minimum is 0.7 ns for UCC1. Refer to Errata QE_ENET19 in Chip Errata for the MPC8360E, Rev. 1.

This figure shows the TBI transmit AC timing diagram.

Figure 18. TBI Transmit AC Timing Diagram

Ethernet Management Interface Electrical Characteristics

This figure shows the RGMII and RTBI AC timing and multiplexing diagrams.

Figure 20. RGMII and RTBI AC Timing and Multiplexing Diagrams

8.3 Ethernet Management Interface Electrical Characteristics

The electrical characteristics specified here apply to MII management interface signals MDIO (management data input/output) and MDC (management data clock). The electrical characteristics for GMII, RGMII, TBI, and RTBI are specified in Section 8.1, "Three-Speed Ethernet Controller (10/100/1000 Mbps)— GMII/MII/RMII/TBI/RGMII/RTBI Electrical Characteristics."

8.3.1 MII Management DC Electrical Characteristics

The MDC and MDIO are defined to operate at a supply voltage of 3.3 V. The DC electrical characteristics for MDIO and MDC are provided in this table.

Parameter	Symbol	Conditions		Min	Мах	Unit
Supply voltage (3.3 V)	OV _{DD}	—		2.97	3.63	V
Output high voltage	V _{OH}	$I_{OH} = -1.0 \text{ mA}$	$OV_{DD} = Min$	2.10	OV _{DD} + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 1.0 mA	$OV_{DD} = Min$	GND	0.50	V
Input high voltage	V _{IH}	_		2.00	—	V
Input low voltage	V _{IL}	—		—	0.80	V
Input current	I _{IN}	0 V ≤V _{IN} ≤OV _{DD}		—	±10	μA

Table 36. MII Management DC Electrica	I Characteristics When Powered at 3.3 V
---------------------------------------	---

8.3.2 MII Management AC Electrical Specifications

This table provides the MII management AC timing specifications.

Table 37. MII Management AC Timing Specifications

At recommended operating conditions with LV_{DD} is 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit	Notes
MDC frequency	f _{MDC}	—	2.5	—	MHz	2
MDC period	t _{MDC}	—	400	—	ns	—
MDC clock pulse width high	t _{MDCH}	32	—	—	ns	_
MDC to MDIO delay	^t мрткнрх ^t мрткнрv	10 —	_	 110	ns	3
MDIO to MDC setup time	t _{MDRDVKH}	10	—	—	ns	—
MDIO to MDC hold time	t _{MDRDXKH}	0	—	—	ns	—
MDC rise time	t _{MDCR}	—	—	10	ns	—
MDC fall time	t _{MDHF}	_	_	10	ns	

Notes:

- The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{MDKHDX} symbolizes management data timing (MD) for the time t_{MDC} from clock reference (K) high (H) until data outputs (D) are invalid (X) or data hold time. Also, t_{MDRDVKH} symbolizes management data timing (MD) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MDC} clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
 </sub>
- This parameter is dependent on the csb_clk speed (that is, for a csb_clk of 267 MHz, the maximum frequency is 8.3 MHz and the minimum frequency is 1.2 MHz; for a csb_clk of 375 MHz, the maximum frequency is 11.7 MHz and the minimum frequency is 1.7 MHz).
- 3. This parameter is dependent on the ce_clk speed (that is, for a ce_clk of 200 MHz, the delay is 90 ns and for a ce_clk of 300 MHz, the delay is 63 ns).

This figure shows the MII management AC timing diagram.

Figure 21. MII Management Interface Timing Diagram

Parameter	Symbol ¹	Min	Max	Unit	Notes
LUPWAIT input hold from local bus clock	t _{LBIXKH2}	1.0	_	ns	3, 4
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT1}	1.5	_	ns	5
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT2}	3.0	_	ns	6
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT3}	2.5	_	ns	7
Local bus clock to LALE rise	t _{LBKHLR}	_	4.5	ns	
Local bus clock to output valid (except LAD/LDP and LALE)	t _{LBKHOV1}	_	4.5	ns	
Local bus clock to data valid for LAD/LDP	t _{LBKHOV2}	_	4.5	ns	3
Local bus clock to address valid for LAD	t _{LBKHOV3}	_	4.5	ns	3
Output hold from local bus clock (except LAD/LDP and LALE)	t _{LBKHOX1}	1.0	_	ns	3
Output hold from local bus clock for LAD/LDP	t _{LBKHOX2}	1.0	_	ns	3
Local bus clock to output high impedance for LAD/LDP	t _{LBKHOZ}		3.8	ns	8

Table 40. Local Bus General Timing Parameters—DLL Enabled (continued)

Notes:

- The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{LBIXKH1} symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t_{LBK} clock reference (K) goes high (H), in this case for clock one (1). Also, t_{LBKHOX} symbolizes local bus timing (LB) for the output (O) going invalid (X) or output hold time.
 </sub>
- 2. All timings are in reference to rising edge of LSYNC_IN.
- 3. All signals are measured from $OV_{DD}/2$ of the rising edge of LSYNC_IN to $0.4 \times OV_{DD}$ of the signal in question for 3.3-V signaling levels.
- 4. Input timings are measured at the pin.
- 5. t_{LBOTOT1} should be used when RCWH[LALE] is not set and when the load on LALE output pin is at least 10 pF less than the load on LAD output pins.
- t_{LBOTOT2} should be used when RCWH[LALE] is set and when the load on LALE output pin is at least 10 pF less than the load on LAD output pins.
- 7. t_{LBOTOT3} should be used when RCWH[LALE] is set and when the load on LALE output pin equals to the load on LAD output pins.
- 8. For purposes of active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.

This table describes the general timing parameters of the local bus interface of the device.

Table 41. Local Bus General Timing Parameters—DLL Bypass Mode⁹

Parameter	Symbol ¹	Min	Max	Unit	Notes
Local bus cycle time	t _{LBK}	15	—	ns	2
Input setup to local bus clock	t _{LBIVKH}	7	—	ns	3, 4
Input hold from local bus clock	t _{LBIXKH}	1.0	—	ns	3, 4
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT1}	1.5	—	ns	5
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT2}	3	—	ns	6
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT3}	2.5	—	ns	7

10.2 JTAG AC Electrical Characteristics

This section describes the AC electrical specifications for the IEEE 1149.1 (JTAG) interface of the device.

This table provides the JTAG AC timing specifications as defined in Figure 30 through Figure 33.

Table 43. JTAG AC Timing Specifications (Independent of CLKIN)¹

At recommended operating conditions (see Table 2).

Parameter	Symbol ²	Min	Max	Unit	Notes
JTAG external clock frequency of operation	f _{JTG}	0	33.3	MHz	—
JTAG external clock cycle time	t _{JTG}	30	—	ns	_
JTAG external clock duty cycle	t _{JTKHKL} /t _{JTG}	45	55	%	_
JTAG external clock rise and fall times	t _{JTGR} & t _{JTGF}	0	2	ns	_
TRST assert time	t _{TRST}	25	—	ns	3
Input setup times: Boundary-scan data TMS, TDI	t _{JTDVKH} t _{JTIVKH}	4 4	_	ns	4
Input hold times: Boundary-scan data TMS, TDI	t _{JTDXKH} t _{JTIXKH}	10 10	_	ns	4
Valid times: Boundary-scan data TDO	t _{JTKLDV} t _{JTKLOV}	2 2	11 11	ns	5
Output hold times: Boundary-scan data TDO	t _{jtkldx} t _{jtklox}	2 2	_	ns	5
JTAG external clock to output high impedance: Boundary-scan data TDO	t _{JTKLDZ} t _{JTKLOZ}	2 2	19 9	ns	5, 6

Notes:

- 2. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{JTDVKH} symbolizes JTAG device timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the t_{JTG} clock reference (K) going to the high (H) state or setup time. Also, t_{JTDXKH} symbolizes JTAG timing (JT) with respect to the time data input signals (D) went invalid (X) relative to the t_{JTG} clock reference (K) going to the high (H) state. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
- 3. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.
- 4. Non-JTAG signal input timing with respect to t_{TCLK}.
- 5. Non-JTAG signal output timing with respect to t_{TCLK}.
- 6. Guaranteed by design and characterization.

All outputs are measured from the midpoint voltage of the falling/rising edge of t_{TCLK} to the midpoint of the signal in question. The output timings are measured at the pins. All output timings assume a purely resistive 50-Ω load (see Figure 22). Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.

This figure provides the test access port timing diagram.

VM = Midpoint Voltage (OV_{DD}/2)

Figure 33. Test Access Port Timing Diagram

11 I²C

This section describes the DC and AC electrical characteristics for the I^2C interface of the MPC8360E/58E.

11.1 I²C DC Electrical Characteristics

This table provides the DC electrical characteristics for the I^2C interface of the device.

Table 44. I²C DC Electrical Characteristics

At recommended operating conditions with OV_{DD} of 3.3 V ± 10%.

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage level	V _{IH}	$0.7 imes OV_{DD}$	OV _{DD} + 0.3	V	—
Input low voltage level	V _{IL}	-0.3	$0.3 imes OV_{DD}$	V	—
Low level output voltage	V _{OL}	0	0.4	V	1
Output fall time from $V_{IH}(\text{min})$ to $V_{IL}(\text{max})$ with a bus capacitance from 10 to 400 pF	^t I2KLKV	$20 + 0.1 \times C_B$	250	ns	2
Pulse width of spikes which must be suppressed by the input filter	t _{I2KHKL}	0	50	ns	3
Capacitance for each I/O pin	CI	_	10	pF	—
Input current (0 V ≤V _{IN} ≤OV _{DD})	I _{IN}		±10	μA	4

Notes:

1. Output voltage (open drain or open collector) condition = 3 mA sink current.

- 2. C_B = capacitance of one bus line in pF.
- 3. Refer to the MPC8360E Integrated Communications Processor Reference Manual for information on the digital filter used.
- 4. I/O pins obstruct the SDA and SCL lines if OV_{DD} is switched off.

I2C AC Electrical Specifications

11.2 I²C AC Electrical Specifications

This table provides the AC timing parameters for the I²C interface of the device.

Table 45. I²C AC Electrical Specifications

All values refer to V_{IH} (min) and V_{IL} (max) levels (see Table 44).

Parameter	Symbol ¹	Min	Max	Unit	Note
SCL clock frequency	f _{I2C}	0	400	kHz	2
Low period of the SCL clock	t _{I2CL}	1.3	_	μs	—
High period of the SCL clock	t _{I2CH}	0.6	_	μs	—
Setup time for a repeated START condition	t _{I2SVKH}	0.6	_	μs	—
Hold time (repeated) START condition (after this period, the first clock pulse is generated)	t _{I2SXKL}	0.6	_	μs	_
Data setup time	t _{I2DVKH}	100	_	ns	3
Data hold time: CBUS compatible masters I ² C bus devices	t _{I2DXKL}	$\frac{1}{0^2}$	 0.9 ³	μs	—
Rise time of both SDA and SCL signals	t _{I2CR}	20 + 0.1 C _b ⁴	300	ns	—
Fall time of both SDA and SCL signals	t _{I2CF}	20 + 0.1 C _b ⁴	300	ns	—
Set-up time for STOP condition	t _{I2PVKH}	0.6	_	μs	—
Bus free time between a STOP and START condition	t _{I2KHDX}	1.3	_	μs	—
Noise margin at the LOW level for each connected device (including hysteresis)	V _{NL}	$0.1 \times \text{OV}_{\text{DD}}$	_	V	_
Noise margin at the HIGH level for each connected device (including hysteresis)	V _{NH}	$0.2 \times \text{OV}_{\text{DD}}$	_	V	_

Notes:

1. The symbols used for timing specifications follow the pattern of t_{(first two letters of functional}

block)(signal)(state)(reference)(state) for inputs and t_{(first} two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{I2DVKH} symbolizes I²C timing (I2) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{I2C} clock reference (K) going to the high (H) state or setup time. Also, t_{I2SXKL} symbolizes I²C timing (I2) for the time that the data with respect to the start condition (S) went invalid (X) relative to the t_{I2C} clock reference (K) going to the low (L) state or hold time. Also, t_{I2PVKH} symbolizes I²C timing (I2) for the time that the data with respect to the start condition (S) went invalid (X) relative to the t_{I2C} clock reference (K) going to the low (L) state or hold time. Also, t_{I2PVKH} symbolizes I²C timing (I2) for the time that the data with respect to the stop condition (P) reaching the valid state (V) relative to the t_{I2C} clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

 The device provides a hold time of at least 300 ns for the SDA signal (referred to the V_{IH} min of the SCL signal) to bridge the undefined region of the falling edge of SCL.

3. The maximum t_{12DVKH} has only to be met if the device does not stretch the LOW period (t_{12CL}) of the SCL signal.

4. C_B = capacitance of one bus line in pF.

This figure provides the AC test load for the I^2C .

Figure 34. I²C AC Test Load

This figure shows the AC timing diagram for the I^2C bus.

12 PCI

This section describes the DC and AC electrical specifications for the PCI bus of the MPC8360E/58E.

12.1 PCI DC Electrical Characteristics

This table provides the DC electrical characteristics for the PCI interface of the device.

Table 46. PCI DC Electrical Characteristics

Parameter	Symbol	Test Condition	Min	Мах	Unit
High-level input voltage	V _{IH}	$V_{OUT} \ge V_{OH}$ (min) or	$0.5\times\text{OV}_\text{DD}$	OV _{DD} + 0.5	V
Low-level input voltage	V _{IL}	V _{OUT} ≤V _{OL} (max)	-0.5	$0.3 imes OV_{DD}$	V
High-level output voltage	V _{OH}	I _{OH} = -500 μA	$0.9 imes OV_{DD}$	—	V
Low-level output voltage	V _{OL}	l _{OL} = 1500 μA	—	$0.1 imes OV_{DD}$	V
Input current	I _{IN}	0 V ≤V _{IN} ¹ ≤OV _{DD}	—	±10	μA

12.2 PCI AC Electrical Specifications

This section describes the general AC timing parameters of the PCI bus of the device. Note that the PCI_CLK or PCI_SYNC_IN signal is used as the PCI input clock depending on whether the device is configured as a host or agent device. This table provides the PCI AC timing specifications at 66 MHz.

Parameter	Symbol ¹	Min	Мах	Unit	Notes
Clock to output valid	t _{PCKHOV}	_	6.0	ns	2, 5
Output hold from clock	t _{PCKHOX}	1	—	ns	2

Table 47. PCI AC Timing Specifications at 66 MHz

14.2 GPIO AC Timing Specifications

This table provides the GPIO input and output AC timing specifications.

Table 52. GPIO Input AC Timing Specifications¹

Characteristic	Symbol ²	Тур	Unit
GPIO inputs—minimum pulse width	t _{PIWID}	20	ns

Notes:

- 1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are measured at the pin.
- 2. GPIO inputs and outputs are asynchronous to any visible clock. GPIO outputs should be synchronized before use by any external synchronous logic. GPIO inputs are required to be valid for at least t_{PIWID} ns to ensure proper operation.

This figure provides the AC test load for the GPIO.

Figure 40. GPIO AC Test Load

15 IPIC

This section describes the DC and AC electrical specifications for the external interrupt pins of the MPC8360E/58E.

15.1 IPIC DC Electrical Characteristics

This table provides the DC electrical characteristics for the external interrupt pins of the IPIC.

Table 53. IPIC DC Electrical Characteristics

Characteristic	Symbol	Condition	Min	Мах	Unit
Input high voltage	V _{IH}	—	2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	-0.3	0.8	V
Input current	I _{IN}	—	—	±10	μA
Output low voltage	V _{OL}	I _{OL} = 6.0 mA	—	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	_	0.4	V

Notes:

1. This table applies for pins IRQ[0:7], IRQ_OUT, MCP_OUT, and CE ports Interrupts.

2. IRQ_OUT and MCP_OUT are open drain pins, thus V_{OH} is not relevant for those pins.

SPI AC Timing Specifications

Table 56.	SPI AC	Timing	Specifications ¹
-----------	--------	--------	-----------------------------

Characteristic	Symbol ²	Min	Мах	Unit
SPI inputs—Slave mode (external clock) input hold time	t _{NEIXKH}	2	—	ns

Notes:

- 1. Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are measured at the pin.
- The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state)} for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state)</sub> for outputs. For example, t_{NIKHOV} symbolizes the NMSI outputs internal timing (NI) for the time t_{SPI} memory clock reference (K) goes from the high state (H) until outputs (O) are valid (V).

This figure provides the AC test load for the SPI.

Figure 41. SPI AC Test Load

These figures represent the AC timing from Table 56. Note that although the specifications generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge is the active edge.

This figure shows the SPI timing in slave mode (external clock).

Note: The clock edge is selectable on SPI.

Figure 42. SPI AC Timing in Slave Mode (External Clock) Diagram

This figure shows the SPI timing in Master mode (internal clock).

USB DC Electrical Characteristics

19 USB

This section provides the AC and DC electrical specifications for the USB interface of the MPC8360E/58E.

19.1 USB DC Electrical Characteristics

This table provides the DC electrical characteristics for the USB interface.

Table 64. USB DC Electrical Characteristics

Parameter	Symbol	Min	Max	Unit
High-level input voltage	V _{IH}	2	OV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	-0.3	0.8	V
High-level output voltage, $I_{OH} = -100 \ \mu A$	V _{OH}	OV _{DD} - 0.4	—	V
Low-level output voltage, I _{OL} = 100 μA	V _{OL}	—	0.2	V
Input current	I _{IN}	—	±10	μA

19.2 USB AC Electrical Specifications

This table describes the general timing parameters of the USB interface of the device.

Table 65. USB General Timing Parameters

Parameter	Symbol ¹	Min	Max	Unit	Notes	Note
USB clock cycle time	t _{USCK}	20.83		ns	Full speed 48 MHz	_
USB clock cycle time	t _{USCK}	166.67		ns	Low speed 6 MHz	_
Skew between TXP and TXN	t _{USTSPN}	_	5	ns	—	2
Skew among RXP, RXN, and RXD	t _{USRSPND}	_	10	ns	Full speed transitions	2
Skew among RXP, RXN, and RXD	t _{USRPND}		100	ns	Low speed transitions	2

Notes:

The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(state)(signal)} for receive signals and t_{(first two letters of functional block)(state)(signal)} for transmit signals. For example, t_{USRSPND} symbolizes USB timing (US) for the USB receive signals skew (RS) among RXP, RXN, and RXD (PND). Also, t_{USTSPN} symbolizes USB timing (US) for the USB transmit signals skew (TS) between TXP and TXN (PN).

2. Skew measurements are done at $OV_{DD}/2$ of the rising or falling edge of the signals.

This figure provide the AC test load for the USB.

Figure 52. USB AC Test Load

Pinout Listings

Signal	Package Pin Number	Pin Type	Power Supply	Notes	
MEMC1_MCKE[0:1]	AL32, AU33	0	GV _{DD}	3	
MEMC1_MCK[0:1]	AK37, AT37	0	GV _{DD}		
MEMC1_MCK[2:3]/ MEMC2_MCK[0:1]	AN1, AR2	0	GV _{DD}	-	
MEMC1_MCK[4:5]/ MEMC2_MCKE[0:1]	AN25, AK1	0	GV _{DD}	_	
MEMC1_MCK[0:1]	AL37, AT36	0	GV _{DD}	_	
MEMC1_MCK[2:3]/ MEMC2_MCK[0:1]	AP2, AT2	0	GV _{DD}	_	
MEMC1_MCK[4]/ MEMC2_MDM[8]	AN24	0	GV _{DD}		
MEMC1_MCK[5]/ MEMC2_MDQS[8]	AL1	0	GV _{DD}	_	
MDIC[0:1]	АН6, АР30	I/O	GV _{DD}	10	
Sec	ondary DDR SDRAM Memory Controller Interface				
MEMC2_MECC[0:7]	AN16, AP18, AM16, AM17, AN17, AP13, AP15, AN13	I/O	GV _{DD}	_	
MEMC2_MBA[0:2]	AU12, AU15, AU13	0	GV _{DD}	_	
MEMC2_MA[0:14]	AT12, AP11, AT13, AT14, AR13, AR15, AR16, AT16, AT18, AT17, AP10, AR20, AR17, AR14, AR11	0	GV _{DD}	_	
MEMC2_MWE	AU10	0	GV _{DD}	_	
MEMC2_MRAS	AT11	0	GV _{DD}	_	
MEMC2_MCAS	AU11	0	GV _{DD}		
PCI					
PCI_INTA/IRQ_OUT/CE_PF[5]	A20	I/O	LV _{DD} 2	2	
PCI_RESET_OUT/CE_PF[6]	E19	I/O	LV _{DD} 2	_	
PCI_AD[31:30]/CE_PG[31:30]	D20, D21	I/O	LV _{DD} 2		
PCI_AD[29:25]/CE_PG[29:25]	A24, B23, C23, E23, A26	I/O	OV _{DD}		
PCI_AD[24]/CE_PG[24]	B21	I/O	LV _{DD} 2	_	
PCI_AD[23:0]/CE_PG[23:0]	C24, C25, D25, B25, E24, F24, A27, A28, F27, A30, C30, D30, E29, B31, C31, D31, D32, A32, C33, B33, F30, E31, A34, D33	I/O	OV _{DD}		
PCI_C/BE[3:0]/CE_PF[10:7]	E22, B26, E28, F28	I/O	OV _{DD}		
PCI_PAR/CE_PF[11]	D28	I/O	OV _{DD}		
PCI_FRAME/CE_PF[12]	D26	I/O	OV _{DD}	5	
PCI_TRDY/CE_PF[13]	C27	I/O	OV _{DD}	5	
PCI_IRDY/CE_PF[14]	C28	I/O	OV _{DD}	5	
PCI_STOP/CE_PF[15]	B28	I/O	OV _{DD}	5	

Pinout Listings

Table 66. MPC8360E TBGA Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes	
No Connect					
NC	AM20, AU19	—	—	—	

Notes:

- 1. This pin is an open drain signal. A weak pull-up resistor (1 kΩ) should be placed on this pin to OV_{DD}
- 2. This pin is an open drain signal. A weak pull-up resistor (2–10 kΩ) should be placed on this pin to OV_{DD}.
- 3. This output is actively driven during reset rather than being three-stated during reset.
- 4. These JTAG pins have weak internal pull-up P-FETs that are always enabled.
- 5. This pin should have a weak pull up if the chip is in PCI host mode. Follow PCI specifications recommendation.
- 6. These are On Die Termination pins, used to control DDR2 memories internal termination resistance.
- 7. This pin must always be tied to GND.
- 8. This pin must always be left not connected.
- 9. Refer to MPC8360E PowerQUICC II Pro Integrated Communications Processor Reference Manual section on "RGMII Pins," for information about the two UCC2 Ethernet interface options.
- 10.It is recommended that MDIC0 be tied to GND using an 18.2 Ω resistor and MDIC1 be tied to DDR power using an 18.2 Ω resistor for DDR2.

This table shows the pin list of the MPC8358E TBGA package.

Table 67. MPC8358E TBGA Pinout Listing

Signal	Package Pin Number	Pin Type	Power Supply	Notes	
DDR SDRAM Memory Controller Interface					
MEMC1_MDQ[0:63]	AJ34, AK33, AL33, AL35, AJ33, AK34, AK32, AM36, AN37, AN35, AR34, AT34, AP37, AP36, AR36, AT35, AP34, AR32, AP32, AM31, AN33, AM34, AM33, AM30, AP31, AM27, AR30, AT32, AN29, AP29, AN27, AR29, AN8, AN7, AM8, AM6, AP9, AN9, AT7, AP7, AU6, AP6, AR4, AR3, AT6, AT5, AR5, AT3, AP4, AM5, AP3, AN3, AN5, AL5, AN4, AM2, AL2, AH5, AK3, AJ2, AJ3, AH4, AK4, AH3	I/O	GV _{DD}		
MEMC_MECC[0:4]/MSRCID[0:4]	AP24, AN22, AM19, AN19, AM24	I/O	GV _{DD}	—	
MEMC_MECC[5]/MDVAL	AM23	I/O	GV _{DD}	—	
MEMC_MECC[6:7]	AM22, AN18	I/O	GV _{DD}	—	
MEMC_MDM[0:8]	AL36, AN34, AP33, AN28,AT9, AU4, AM3, AJ6,AP27	0	GV _{DD}	Ι	
MEMC_MDQS[0:8]	AK35, AP35, AN31, AM26,AT8, AU3, AL4, AJ5, AP26	I/O	GV _{DD}	Ι	
MEMC_MBA[0:1]	AU29, AU30	0	GV _{DD}		
MEMC_MBA[2]	AT30	0	GV _{DD}	_	
MEMC_MA[0:14]	AU21, AP22, AP21, AT21, AU25, AU26, AT23, AR26, AU24, AR23, AR28, AU23, AR22, AU20, AR18	0	GV _{DD}		
MEMC_MODT[0:3]	AG33, AJ36, AT1, AK2	0	GV _{DD}	6	

System PLL Configuration

RCWL[SPMF]	System PLL Multiplication Factor
1100	× 12
1101	× 13
1110	× 14
1111	× 15

The RCWL[SVCOD] denotes the system PLL VCO internal frequency as shown in this table.

VCO Divider
4
8
2
Reserved

Table 71. System PLL VCO Divider

NOTE

The VCO divider must be set properly so that the system VCO frequency is in the range of 600-1400 MHz.

The system VCO frequency is derived from the following equations:

- $csb_clk = \{PCI_SYNC_IN \times (1 + CFG_CLKIN_DIV)\} \times SPMF$
- System VCO Frequency = *csb_clk* × VCO divider (if both RCWL[DDRCM] and RCWL[LBCM] are cleared) OR
- System VCO frequency = $2 \times csb_clk \times$ VCO divider (if either RCWL[DDRCM] or RCWL[LBCM] are set).

As described in Section 21, "Clocking," the LBCM, DDRCM, and SPMF parameters in the reset configuration word low and the CFG_CLKIN_DIV configuration input signal select the ratio between the primary clock input (CLKIN or PCI_CLK) and the internal coherent system bus clock (*csb_clk*). This table shows the expected frequency values for the CSB frequency for select *csb_clk* to CLKIN/PCI_SYNC_IN ratios.

CFG_CLKIN_DIV at Reset ¹ SPMI			In	put Clock Fre	equency (MHz	:) ²
	SPMF	<i>csb_clk</i> : Input Clock Ratio ²	16.67	25	33.33	66.67
				<i>csb_clk</i> Frequency (MHz)		
Low	0010	2:1				133
Low	0011	3:1			100	200
Low	0100	4:1		100	133	266
Low	0101	5:1		125	166	333

Table 72. CSB Frequency Options

This figure shows the PLL power supply filter circuit.

Figure 56. PLL Power Supply Filter Circuit

23.3 Decoupling Recommendations

Due to large address and data buses as well as high operating frequencies, the device can generate transient power surges and high frequency noise in its power supply, especially while driving large capacitive loads. This noise must be prevented from reaching other components in the device system, and the device itself requires a clean, tightly regulated source of power. Therefore, it is recommended that the system designer place at least one decoupling capacitor at each V_{DD} , OV_{DD} , GV_{DD} , and LV_{DD} pins of the device. These decoupling capacitors should receive their power from separate V_{DD} , OV_{DD} , GV_{DD} , and GND power planes in the PCB, utilizing short traces to minimize inductance. Capacitors may be placed directly under the device using a standard escape pattern. Others may surround the part.

These capacitors should have a value of 0.01 or 0.1 μ F. Only ceramic SMT (surface mount technology) capacitors should be used to minimize lead inductance, preferably 0402 or 0603 sizes.

Additionally, it is recommended that there be several bulk storage capacitors distributed around the PCB, feeding the V_{DD} , OV_{DD} , GV_{DD} , GV_{DD} , and LV_{DD} planes, to enable quick recharging of the smaller chip capacitors. These bulk capacitors should have a low ESR (equivalent series resistance) rating to ensure the quick response time necessary. They should also be connected to the power and ground planes through two vias to minimize inductance. Suggested bulk capacitors—100–330 μ F (AVX TPS tantalum or Sanyo OSCON).

23.4 Connection Recommendations

To ensure reliable operation, it is highly recommended to connect unused inputs to an appropriate signal level. Unused active low inputs should be tied to OV_{DD} , GV_{DD} , or LV_{DD} as required. Unused active high inputs should be connected to GND. All NC (no-connect) signals must remain unconnected.

Power and ground connections must be made to all external V_{DD}, GV_{DD}, LV_{DD}, OV_{DD}, and GND pins of the device.

23.5 Output Buffer DC Impedance

The device drivers are characterized over process, voltage, and temperature. For all buses, the driver is a push-pull single-ended driver type (open drain for I^2C).

To measure Z_0 for the single-ended drivers, an external resistor is connected from the chip pad to OV_{DD} or GND. Then, the value of each resistor is varied until the pad voltage is $OV_{DD}/2$ (see Figure 57). The output impedance is the average of two components, the resistances of the pull-up and pull-down devices. When data is held high, SW1 is closed (SW2 is open) and R_p is trimmed until the voltage at the pad equals $OV_{DD}/2$. R_p then becomes the resistance of the pull-up devices. R_p and R_N are designed to be close to each other in value. Then, $Z_0 = (R_P + R_N)/2$.