E·XFL

NXP USA Inc. - MPC8360VVAJDG Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e300
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	533MHz
Co-Processors/DSP	Communications; QUICC Engine
RAM Controllers	DDR, DDR2
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (1)
SATA	-
USB	USB 1.x (1)
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	740-LBGA
Supplier Device Package	740-TBGA (37.5x37.5)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8360vvajdg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

wide range of protocols including ATM, Ethernet, HDLC, and POS. The QUICC Engine module's enhanced interworking eases the transition and reduces investment costs from ATM to IP based systems. The other major features include a dual DDR SDRAM memory controller for the MPC8360E, which allows equipment providers to partition system parameters and data in an extremely efficient way, such as using one 32-bit DDR memory controller for control plane processing and the other for data plane processing. The MPC8358E has a single DDR SDRAM memory controller. The MPC8360E/58E also offers a 32-bit PCI controller, a flexible local bus, and a dedicated security engine.

This figure shows the MPC8360Eblock diagram.

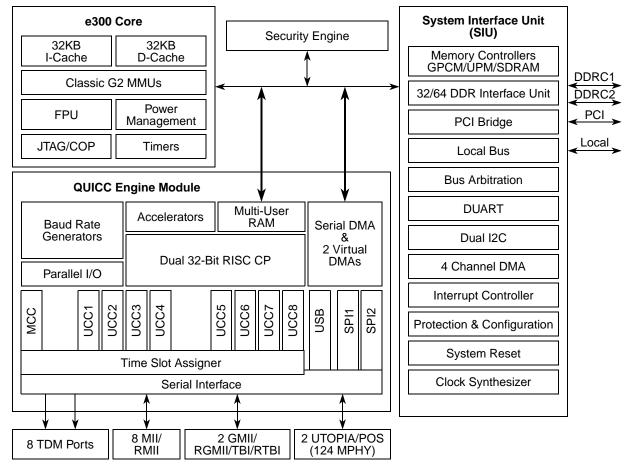


Figure 1. MPC8360E Block Diagram

- Programmable highest priority request
- Four groups of interrupts with programmable priority
- External and internal interrupts directed to communication processor
- Redirects interrupts to external INTA pin when in core disable mode
- Unique vector number for each interrupt source
- Dual industry-standard I²C interfaces
 - Two-wire interface
 - Multiple master support
 - Master or slave I²C mode support
 - On-chip digital filtering rejects spikes on the bus
 - System initialization data is optionally loaded from I²C-1 EPROM by boot sequencer embedded hardware
- DMA controller
 - Four independent virtual channels
 - Concurrent execution across multiple channels with programmable bandwidth control
 - All channels accessible by local core and remote PCI masters
 - Misaligned transfer capability
 - Data chaining and direct mode
 - Interrupt on completed segment and chain
 - DMA external handshake signals: DMA_DREQ[0:3]/DMA_DACK[0:3]/DMA_DONE[0:3]. There is one set for each DMA channel. The pins are multiplexed to the parallel IO pins with other QE functions.
- DUART
 - Two 4-wire interfaces (RxD, TxD, RTS, CTS)
 - Programming model compatible with the original 16450 UART and the PC16550D
- System timers
 - Periodic interrupt timer
 - Real-time clock
 - Software watchdog timer
 - Eight general-purpose timers
- IEEE Std. 1149.1[™]-compliant, JTAG boundary scan
- Integrated PCI bus and SDRAM clock generation

2 Electrical Characteristics

This section provides the AC and DC electrical specifications and thermal characteristics for the MPC8360E/58E. The device is currently targeted to these specifications. Some of these specifications are independent of the I/O cell, but are included for a more complete reference. These are not purely I/O buffer design specifications.

DDR and DDR2 SDRAM AC Electrical Characteristics

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
Input high voltage	V _{IH}	MV _{REF} + 0.18	GV _{DD} + 0.3	V	
Input low voltage	V _{IL}	-0.3	MV _{REF} – 0.18	V	_
Output leakage current	I _{OZ}	—	±10	μA	4
Output high current (V _{OUT} = 1.95 V)	I _{ОН}	-15.2		mA	—
Output low current (V _{OUT} = 0.35 V)	I _{OL}	15.2	_	mA	_
MV _{REF} input leakage current	I _{VREF}	—	±10	μA	—
Input current (0 V ≰⁄ _{IN} ≤OV _{DD})	I _{IN}	—	±10	μA	_

Table 16. DDR SDRAM DC Electrical Characteristics for GV_{DD}(typ) = 2.5 V (continued)

Notes:

1. GV_{DD} is expected to be within 50 mV of the DRAM GV_{DD} at all times.

- 2. MV_{REF} is expected to be equal to $0.5 \times GV_{DD}$, and to track GV_{DD} DC variations as measured at the receiver. Peak-to-peak noise on MV_{REF} may not exceed ±2% of the DC value.
- 3. V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to MV_{REF}. This rail should track variations in the DC level of MV_{REF}.
- 4. Output leakage is measured with all outputs disabled, 0 V \leq V_{OUT} \leq GV_{DD}.

This table provides the DDR capacitance when $GV_{DD}(typ) = 2.5$ V.

Table 17. DDR SDRAM Capacitance for GV_{DD}(typ) = 2.5 V

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
Input/output capacitance: DQ, DQS	C _{IO}	6	8	pF	1
Delta input/output capacitance: DQ, DQS	C _{DIO}	—	0.5	pF	1

Note:

1. This parameter is sampled. GV_{DD} = 2.5 V ± 0.125 V, f = 1 MHz, T_A = 25°C, V_{OUT} = $GV_{DD}/2$, V_{OUT} (peak-to-peak) = 0.2 V.

6.2 DDR and DDR2 SDRAM AC Electrical Characteristics

This section provides the AC electrical characteristics for the DDR and DDR2 SDRAM interface.

6.2.1 DDR and DDR2 SDRAM Input AC Timing Specifications

This table provides the input AC timing specifications for the DDR2 SDRAM interface when $GV_{DD}(typ) = 1.8 V$.

Table 18. DDR2 SDRAM Input AC Timing Specifications for GV_{DD}(typ) = 1.8 V

At recommended operating conditions with GV_{DD} of 1.8 V ± 5%.

Parameter	Symbol	Min	Мах	Unit	Notes
AC input low voltage	V _{IL}	_	MV _{REF} – 0.25	V	—
AC input high voltage	V _{IH}	MV _{REF} + 0.25		V	—

GMII, MII, RMII, TBI, RGMII, and RTBI AC Timing Specifications

Physical Layer Device Specification Version 1.2a (9/22/2000). The electrical characteristics for the MDIO and MDC are specified in Section 8.3, "Ethernet Management Interface Electrical Characteristics."

8.1.1 10/100/1000 Ethernet DC Electrical Characteristics

The electrical characteristics specified here apply to media independent interface (MII), reduced gigabit media independent interface (RGMII), reduced ten-bit interface (RTBI), reduced media independent interface (RMII) signals, management data input/output (MDIO) and management data clock (MDC).

The MII and RMII interfaces are defined for 3.3 V, while the RGMII and RTBI interfaces can be operated at 2.5 V. The RGMII and RTBI interfaces follow the *Reduced Gigabit Media-Independent Interface (RGMII) Specification Version 1.3*. The RMII interface follows the *RMII Consortium RMII Specification Version 1.2*.

Table 25. RGMII/RTBI, GMII, TBI, MII, and RMII DC Electrical Characteristics (when operating at 3.3 V)

Parameter	Symbol	Conditions		Min	Max	Unit	Notes
Supply voltage 3.3 V	LV _{DD}	—		2.97	3.63	V	1
Output high voltage	V _{OH}	I _{OH} = -4.0 mA	LV _{DD} = Min	2.40	LV _{DD} + 0.3	V	_
Output low voltage	V _{OL}	I _{OL} = 4.0 mA	LV _{DD} = Min	GND	0.50	V	_
Input high voltage	V _{IH}	_	—	2.0	LV _{DD} + 0.3	V	_
Input low voltage	V _{IL}	_	—	-0.3	0.90	V	_
Input current	I _{IN}	0 V ≤V _{IN} ≤LV _{DD}		—	±10	μA	_

Note:

1. GMII/MII pins that are not needed for RGMII, RMII, or RTBI operation are powered by the OV_{DD} supply.

Table 26. RGMII/RTBI DC Electrical Characteristics	(when operating at 2.5 V)
--	---------------------------

Parameters	Symbol	Conditions		Min	Max	Unit
Supply voltage 2.5 V	LV _{DD}	-	_	2.37	2.63	V
Output high voltage	V _{OH}	$I_{OH} = -1.0 \text{ mA}$ $LV_{DD} = Min$		2.00	LV _{DD} + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 1.0 mA LV _{DD} = Min		GND – 0.3	0.40	V
Input high voltage	V _{IH}	— LV _{DD} = Min		1.7	LV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	$LV_{DD} = Min$	-0.3	0.70	V
Input current	I _{IN}	0 V ≤V _{IN} ≤LV _{DD}		—	±10	μA

8.2 GMII, MII, RMII, TBI, RGMII, and RTBI AC Timing Specifications

The AC timing specifications for GMII, MII, TBI, RGMII, and RTBI are presented in this section.

8.2.1 GMII Timing Specifications

This sections describe the GMII transmit and receive AC timing specifications.

8.2.1.1 GMII Transmit AC Timing Specifications

This table provides the GMII transmit AC timing specifications.

Table 27. GMII Transmit AC Timing Specifications

At recommended operating conditions with LV_{DD}/OV_{DD} of 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit	Notes
GTX_CLK clock period	t _{GTX}	—	8.0	_	ns	—
GTX_CLK duty cycle	t _{GTXH/tGTX}	40	—	60	%	—
GTX_CLK to GMII data TXD[7:0], TX_ER, TX_EN delay	^t GTKHDX ^t GTKHDV	0.5	_	 5.0	ns	3
GTX_CLK clock rise time, (20% to 80%)	t _{GTXR}	—	—	1.0	ns	—
GTX_CLK clock fall time, (80% to 20%)	t _{GTXF}	—	—	1.0	ns	—
GTX_CLK125 clock period	t _{G125}	—	8.0	—	ns	2
GTX_CLK125 reference clock duty cycle measured at LV _{DD/2}	t _{G125H} /t _{G125}	45	—	55	%	2

Notes:

- 1. The symbols used for timing specifications follow the pattern t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{GTKHDV} symbolizes GMII transmit timing (GT) with respect to the t_{GTX} clock reference (K) going to the high state (H) relative to the time date input signals (D) reaching the valid state (V) to state or setup time. Also, t_{GTKHDX} symbolizes GMII transmit timing (GT) with respect to the t_{GTX} clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{GTX} represents the GMII(G) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}
- 2. This symbol is used to represent the external GTX_CLK125 signal and does not follow the original symbol naming convention.
- In rev. 2.0 silicon, due to errata, t_{GTKHDX} minimum and t_{GTKHDV} maximum are not supported when the GTX_CLK is selected. Refer to Errata QE_ENET18 in Chip Errata for the MPC8360E, Rev. 1.

This figure shows the GMII transmit AC timing diagram.

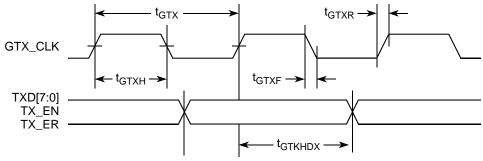


Figure 10. GMII Transmit AC Timing Diagram

GMII, MII, RMII, TBI, RGMII, and RTBI AC Timing Specifications

8.2.4.2 TBI Receive AC Timing Specifications

This table provides the TBI receive AC timing specifications.

Table 34. TBI Receive AC Timing Specifications

At recommended operating conditions with LV_{DD}/OV_{DD} of 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit	Notes
PMA_RX_CLK clock period	t _{TRX}	_	16.0	_	ns	—
PMA_RX_CLK skew	t _{SKTRX}	7.5	—	8.5	ns	—
RX_CLK duty cycle	t _{TRXH} /t _{TRX}	40	—	60	%	—
RCG[9:0] setup time to rising PMA_RX_CLK	t _{TRDVKH}	2.5	—	_	ns	2
RCG[9:0] hold time to rising PMA_RX_CLK	t _{TRDXKH}	1.0	—	_	ns	2
RX_CLK clock rise time, $V_{IL}(min)$ to $V_{IH}(max)$	t _{TRXR}	0.7	—	2.4	ns	—
RX_CLK clock fall time, $V_{IH}(max)$ to $V_{IL}(min)$	t _{TRXF}	0.7	—	2.4	ns	_

Notes:

- 1. The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{TRDVKH} symbolizes TBI receive timing (TR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{TRX} clock reference (K) going to the high (H) state or setup time. Also, t_{TRDXKH} symbolizes TBI receive timing (TR) with respect to the time data input signals (D) went invalid (X) relative to the t_{TRX} clock reference (K) going to the high (H) state. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{TRX} represents the TBI (T) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall). For symbols representing skews, the subscript is skew (SK) followed by the clock that is being skewed (TRX).}
- 2. Setup and hold time of even numbered RCG are measured from riding edge of PMA_RX_CLK1. Setup and hold time of odd numbered RCG are measured from riding edge of PMA_RX_CLK0.

This figure shows the TBI receive AC timing diagram.

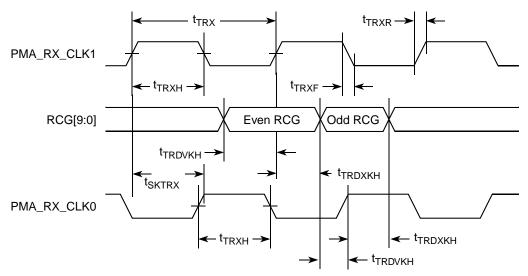


Figure 19. TBI Receive AC Timing Diagram

Ethernet Management Interface Electrical Characteristics

This figure shows the RGMII and RTBI AC timing and multiplexing diagrams.

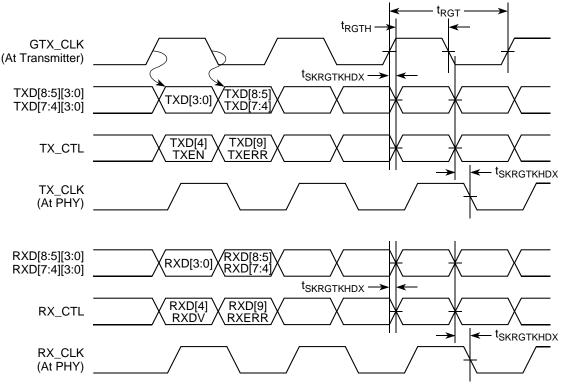


Figure 20. RGMII and RTBI AC Timing and Multiplexing Diagrams

8.3 Ethernet Management Interface Electrical Characteristics

The electrical characteristics specified here apply to MII management interface signals MDIO (management data input/output) and MDC (management data clock). The electrical characteristics for GMII, RGMII, TBI, and RTBI are specified in Section 8.1, "Three-Speed Ethernet Controller (10/100/1000 Mbps)— GMII/MII/RMII/TBI/RGMII/RTBI Electrical Characteristics."

8.3.1 MII Management DC Electrical Characteristics

The MDC and MDIO are defined to operate at a supply voltage of 3.3 V. The DC electrical characteristics for MDIO and MDC are provided in this table.

Parameter	Symbol	Conditions		Min	Мах	Unit
Supply voltage (3.3 V)	OV _{DD}	—		2.97	3.63	V
Output high voltage	V _{OH}	I _{OH} = -1.0 mA	$OV_{DD} = Min$	2.10	OV _{DD} + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 1.0 mA	OV _{DD} = Min	GND	0.50	V
Input high voltage	V _{IH}	-			_	V
Input low voltage	V _{IL}	—		_	0.80	V
Input current	I _{IN}	0 V ≤V _{IN} ≤OV _{DD}		_	±10	μA

able 36. MII Management DC Electrical Characteristics When Powered at 3.3 V

Parameter	Symbol ¹	Min	Мах	Unit	Notes
LUPWAIT input hold from local bus clock	t _{LBIXKH2}	1.0	_	ns	3, 4
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT1}	1.5		ns	5
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT2}	3.0		ns	6
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT3}	2.5		ns	7
Local bus clock to LALE rise	t _{LBKHLR}	—	4.5	ns	_
Local bus clock to output valid (except LAD/LDP and LALE)	t _{LBKHOV1}	—	4.5	ns	—
Local bus clock to data valid for LAD/LDP	t _{LBKHOV2}	—	4.5	ns	3
Local bus clock to address valid for LAD	t _{LBKHOV3}	—	4.5	ns	3
Output hold from local bus clock (except LAD/LDP and LALE)	t _{LBKHOX1}	1.0	_	ns	3
Output hold from local bus clock for LAD/LDP	t _{LBKHOX2}	1.0	_	ns	3
Local bus clock to output high impedance for LAD/LDP	t _{LBKHOZ}	—	3.8	ns	8

Table 40. Local Bus General Timing Parameters—DLL Enabled (continued)

Notes:

- The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{LBIXKH1} symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t_{LBK} clock reference (K) goes high (H), in this case for clock one (1). Also, t_{LBKHOX} symbolizes local bus timing (LB) for the output (O) going invalid (X) or output hold time.
 </sub>
- 2. All timings are in reference to rising edge of LSYNC_IN.
- 3. All signals are measured from $OV_{DD}/2$ of the rising edge of LSYNC_IN to $0.4 \times OV_{DD}$ of the signal in question for 3.3-V signaling levels.
- 4. Input timings are measured at the pin.
- 5. t_{LBOTOT1} should be used when RCWH[LALE] is not set and when the load on LALE output pin is at least 10 pF less than the load on LAD output pins.
- t_{LBOTOT2} should be used when RCWH[LALE] is set and when the load on LALE output pin is at least 10 pF less than the load on LAD output pins.
- 7. t_{LBOTOT3} should be used when RCWH[LALE] is set and when the load on LALE output pin equals to the load on LAD output pins.
- 8. For purposes of active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.

This table describes the general timing parameters of the local bus interface of the device.

Table 41. Local Bus General Timing Parameters—DLL Bypass Mode⁹

Parameter	Symbol ¹	Min	Max	Unit	Notes
Local bus cycle time	t _{LBK}	15	—	ns	2
Input setup to local bus clock	t _{LBIVKH}	7	—	ns	3, 4
Input hold from local bus clock	t _{LBIXKH}	1.0	—	ns	3, 4
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT1}	1.5	—	ns	5
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT2}	3	—	ns	6
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT3}	2.5	—	ns	7

Local Bus AC Electrical Specifications

Parameter	Symbol ¹	Min	Max	Unit	Notes
Local bus clock to output valid	t _{LBKHOV}	—	3	ns	3
Local bus clock to output high impedance for LAD/LDP	t _{LBKHOZ}	—	4	ns	8

Table 41. Local Bus General Timing Parameters—DLL Bypass Mode⁹ (continued)

Notes:

- The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{LBIXKH1} symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t_{LBK} clock reference (K) goes high (H), in this case for clock one (1). Also, t_{LBKHOX} symbolizes local bus timing (LB) for the to the output (O) going invalid (X) or output hold time.
 </sub>
- 2. All timings are in reference to falling edge of LCLK0 (for all outputs and for LGTA and LUPWAIT inputs) or rising edge of LCLK0 (for all other inputs).
- 3. All signals are measured from OV_{DD}/2 of the rising/falling edge of LCLK0 to 0.4 × OV_{DD} of the signal in question for 3.3-V signaling levels.
- 4. Input timings are measured at the pin.
- 5. t_{LBOTOT1} should be used when RCWH[LALE] is not set and when the load on LALE output pin is at least 10 pF less than the load on LAD output pins.
- t_{LBOTOT2} should be used when RCWH[LALE] is set and when the load on LALE output pin is at least 10 pF less than the load on LAD output pins.
- 7. t_{LBOTOT3} should be used when RCWH[LALE] is set and when the load on LALE output pin equals to the load on LAD output pins.
- 8. For purposes of active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 9. DLL bypass mode is not recommended for use at frequencies above 66 MHz.

This figure provides the AC test load for the local bus.

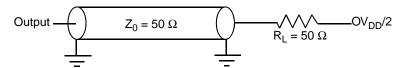


Figure 22. Local Bus C Test Load

These figures show the local bus signals.

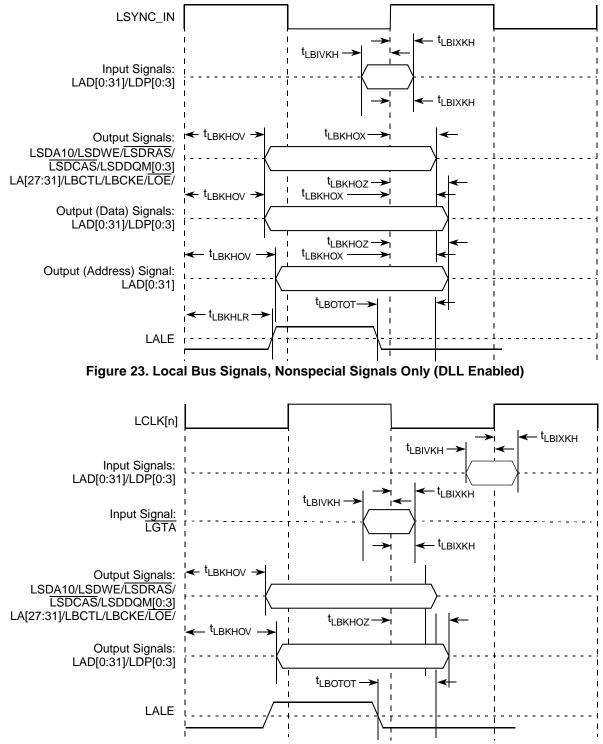


Figure 24. Local Bus Signals, Nonspecial Signals Only (DLL Bypass Mode)

IPIC AC Timing Specifications

15.2 IPIC AC Timing Specifications

This table provides the IPIC input and output AC timing specifications.

Table 54. IPIC Input AC Timing Specifications¹

Characteristic	Symbol ²	Min	Unit
IPIC inputs—minimum pulse width	t _{PIWID}	20	ns

Notes:

1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are measured at the pin.

IPIC inputs and outputs are asynchronous to any visible clock. IPIC outputs should be synchronized before use by any
external synchronous logic. IPIC inputs are required to be valid for at least t_{PIWID} ns to ensure proper operation when
working in edge triggered mode.

16 SPI

This section describes the DC and AC electrical specifications for the SPI of the MPC8360E/58E.

16.1 SPI DC Electrical Characteristics

This table provides the DC electrical characteristics for the device SPI.

Table 55. SPI DC Electrical Characteristics

Characteristic	Symbol	Condition	Min	Max	Unit
Output high voltage	V _{OH}	I _{OH} = -6.0 mA	2.4	_	V
Output low voltage	V _{OL}	I _{OL} = 6.0 mA	—	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	—	0.4	V
Input high voltage	V _{IH}	—	2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	-0.3	0.8	V
Input current	I _{IN}	0 V ≤V _{IN} ≤OV _{DD}	—	±10	μA

16.2 SPI AC Timing Specifications

This table and provide the SPI input and output AC timing specifications.

Table 56. SPI AC Timing Specifications¹

Characteristic	Symbol ²	Min	Max	Unit
SPI outputs—Master mode (internal clock) delay	t _{NIKHOX} t _{NIKHOV}	0.3	8	ns
SPI outputs—Slave mode (external clock) delay	t _{NEKHOX} t _{NEKHOV}	2	 8	ns
SPI inputs—Master mode (internal clock) input setup time	t _{NIIVKH}	8	—	ns
SPI inputs—Master mode (internal clock) input hold time	t _{NIIXKH}	0	—	ns
SPI inputs—Slave mode (external clock) input setup time	t _{NEIVKH}	4		ns

TDM/SI DC Electrical Characteristics

17 TDM/SI

This section describes the DC and AC electrical specifications for the time-division-multiplexed and serial interface of the MPC8360E/58E.

17.1 TDM/SI DC Electrical Characteristics

This table provides the DC electrical characteristics for the device TDM/SI.

Table 57. TDM/SI DC Electrical Characteristics

Characteristic	Symbol	Condition	Min	Мах	Unit
Output high voltage	V _{OH}	I _{OH} = -2.0 mA	2.4	_	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	_	0.5	V
Input high voltage	V _{IH}	_	2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}	_	-0.3	0.8	V
Input current	I _{IN}	0 V ≤V _{IN} ≤OV _{DD}	—	±10	μA

17.2 TDM/SI AC Timing Specifications

This table provides the TDM/SI input and output AC timing specifications.

Table 58.	TDM/SI	AC	Timina	S	pecifications ¹	l
			· · · · · · · · · · · · · · · · · · ·	-	o o o ni o a no no	

Characteristic	Symbol ²	Min	Max ³	Unit
TDM/SI outputs—External clock delay	t _{SEKHOV}	2	10	ns
TDM/SI outputs—External clock high impedance	t _{SEKHOX}	2	10	ns
TDM/SI inputs—External clock input setup time	t _{SEIVKH}	5	—	ns
TDM/SI inputs—External clock input hold time	t _{SEIXKH}	2	—	ns

Notes:

- 1. Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are measured at the pin.
- The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{SEKHOX} symbolizes the TDM/SI outputs external timing (SE) for the time t_{TDM/SI} memory clock reference (K) goes from the high state (H) until outputs (O) are invalid (X).
 </sub>
- 3. Timings are measured from the positive or negative edge of the clock, according to SIxMR [CE] and SITXCEI[TXCEIx]. Refer *MPC8360E Integrated Communications Processor Reference Manual* for more details.

This figure provides the AC test load for the TDM/SI.

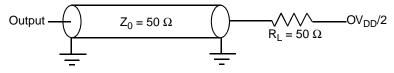
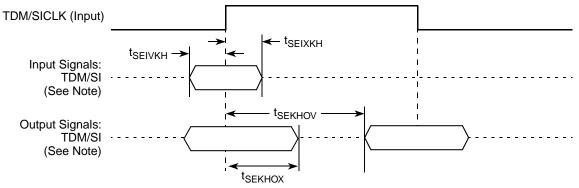



Figure 44. TDM/SI AC Test Load

Figure 45 represents the AC timing from Table 56. Note that although the specifications generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge is the active edge.

This figure shows the TDM/SI timing with external clock.

Note: The clock edge is selectable on TDM/SI

17.3 UTOPIA/POS

This section describes the DC and AC electrical specifications for the UTOPIA/POS of the MPC8360E/58E.

17.4 UTOPIA/POS DC Electrical Characteristics

This table provides the DC electrical characteristics for the device UTOPIA.

 Table 59. UTOPIA DC Electrical Characteristics

Characteristic	Symbol	Condition	Min	Мах	Unit
Output high voltage	V _{OH}	I _{OH} = -8.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	—	0.5	V
Input high voltage	V _{IH}	—	2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	-0.3	0.8	V
Input current	I _{IN}	0 V ≤V _{IN} ≤OV _{DD}	—	±10	μA

17.5 UTOPIA/POS AC Timing Specifications

This table provides the UTOPIA input and output AC timing specifications.

Table 60. UTOPIA AC Timing Specifications¹

Characteristic	Symbol ²	Min	Max	Unit	Notes
UTOPIA outputs—Internal clock delay	t _{UIKHOV}	0	11.5	ns	—
UTOPIA outputs—External clock delay	t _{UEKHOV}	1	11.6	ns	_
UTOPIA outputs—Internal clock high impedance	t _{UIKHOX}	0	8.0	ns	_
UTOPIA outputs—External clock high impedance	t _{UEKHOX}	1	10.0	ns	_
UTOPIA inputs—Internal clock input setup time	t _{UIIVKH}	6	_	ns	_
UTOPIA inputs—External clock input setup time	t _{UEIVKH}	4	_	ns	3

NP

20.3 Pinout Listings

Refer to AN3097, "MPC8360/MPC8358E PowerQUICC Design Checklist," for proper pin termination and usage.

This table shows the pin list of the MPC8360E TBGA package.

Signal	Package Pin Number	Pin Type	Power Supply	Notes				
Primary DDR SDRAM Memory Controller Interface								
MEMC1_MDQ[0:31]	AJ34, AK33, AL33, AL35, AJ33, AK34, AK32, AM36, AN37, AN35, AR34, AT34, AP37, AP36, AR36, AT35, AP34, AR32, AP32, AM31, AN33, AM34, AM33, AM30, AP31, AM27, AR30, AT32, AN29, AP29, AN27, AR29	I/O	GV _{DD}	_				
MEMC1_MDQ[32:63]/ MEMC2_MDQ[0:31]	AN8, AN7, AM8, AM6, AP9, AN9, AT7, AP7, AU6, AP6, AR4, AR3, AT6, AT5, AR5, AT3, AP4, AM5, AP3, AN3, AN5, AL5, AN4, AM2, AL2, AH5, AK3, AJ2, AJ3, AH4, AK4, AH3	I/O	GV _{DD}	_				
MEMC1_MECC[0:4]/ MSRCID[0:4]	AP24, AN22, AM19, AN19, AM24	I/O	GV _{DD}	-				
MEMC1_MECC[5]/ MDVAL	AM23	I/O	GV _{DD}	_				
MEMC1_MECC[6:7]	AM22, AN18	I/O	GV _{DD}	—				
MEMC1_MDM[0:3]	AL36, AN34, AP33, AN28	0	GV _{DD}	—				
MEMC1_MDM[4:7]/ MEMC2_MDM[0:3]	AT9, AU4, AM3, AJ6	0	GV _{DD}	_				
MEMC1_MDM[8]	AP27	0	GV _{DD}	—				
MEMC1_MDQS[0:3]	AK35, AP35, AN31, AM26	I/O	GV _{DD}	—				
MEMC1_MDQS[4:7]/ MEMC2_MDQS[0:3]	AT8, AU3, AL4, AJ5	I/O	GV _{DD}	_				
MEMC1_MDQS[8]	AP26	I/O	GV _{DD}	—				
MEMC1_MBA[0:1]	AU29, AU30	0	GV _{DD}					
MEMC1_MBA[2]	AT30	0	GV _{DD}	—				
MEMC1_MA[0:14]	AU21, AP22, AP21, AT21, AU25, AU26, AT23, AR26, AU24, AR23, AR28, AU23, AR22, AU20, AR18	0	GV _{DD}	—				
MEMC1_MODT[0:1]	AG33, AJ36	0	GV _{DD}	6				
MEMC1_MODT[2:3]/ MEMC2_MODT[0:1]	AT1, AK2	0	GV _{DD}	6				
MEMC1_MWE	AT26	0	GV _{DD}	—				
MEMC1_MRAS	AT29	0	GV _{DD}	—				
MEMC1_MCAS	AT24	0	GV _{DD}	—				
MEMC1_MCS[0:1]	AU27, AT27	0	GV _{DD}	—				
MEMC1_MCS[2:3]/ MEMC2_MCS[0:1]	AU8, AU7	0	GV _{DD}	_				

Table 66. MPC8360E TBGA Pinout Listing

Table 67. MPC8358E TBGA Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
IRQ[4:5]	G33, G32	I/O	OV _{DD}	—
IRQ[6]/LCS[6]/CKSTOP_OUT	E35	I/O	OV _{DD}	_
IRQ[7]/LCS[7]/CKSTOP_IN	H36	I/O	OV _{DD}	—
	DUART			
UART1_SOUT/M1SRCID[0]/ M2SRCID[0]/LSRCID[0]	E32	0	OV _{DD}	-
UART1_SIN/M1SRCID[1]/ M2SRCID[1]/LSRCID[1]	B34	I/O	OV _{DD}	—
UART1_CTS/M1SRCID[2]/ M2SRCID[2]/LSRCID[2]	C34	I/O	OV _{DD}	—
UART1_RTS/M1SRCID[3]/ M2SRCID[3]/LSRCID[3]	A35	0	OV _{DD}	—
	I ² C Interface			
IIC1_SDA	D34	I/O	OV _{DD}	2
IIC1_SCL	B35	I/O	OV _{DD}	2
IIC2_SDA	E33	I/O	OV _{DD}	2
IIC2_SCL	C35	I/O	OV _{DD}	2
	QUICC Engine			
CE_PA[0]	F8	I/O	LV _{DD0}	_
CE_PA[1:2]	AH1, AG5	I/O	OV _{DD}	_
CE_PA[3:7]	F6, D4, C3, E5, A3	I/O	LV _{DD} 0	—
CE_PA[8]	AG3	I/O	OV _{DD}	_
CE_PA[9:12]	F7, B3, E6, B4	I/O	LV _{DD} 0	
CE_PA[13:14]	AG1, AF6	I/O	OV _{DD}	—
CE_PA[15]	B2	I/O	LV _{DD} 0	
CE_PA[16]	AF4	I/O	OV _{DD}	_
CE_PA[17:21]	B16, A16, E17, A17, B17	I/O	LV _{DD} 1	
CE_PA[22]	AF3	I/O	OV _{DD}	_
CE_PA[23:26]	C18, D18, E18, A18	I/O	LV _{DD} 1	—
CE_PA[27:28]	AF2, AE6	I/O	OV _{DD}	—
CE_PA[29]	B19	I/O	LV _{DD} 1	_
CE_PA[30]	AE5	I/O	OV _{DD}	—
CE_PA[31]	F16	I/O	LV _{DD} 1	—

Table 67. MPC8358E TBGA Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
PORESET	L37	I	OV _{DD}	
HRESET	L36	I/O	OV _{DD}	1
SRESET	M33	I/O	OV _{DD}	2
	Thermal Management			
THERM0	AP19	I	GV _{DD}	—
THERM1	AT31	I	GV _{DD}	—
	Power and Ground Signals			
AV _{DD} 1	K35	Power for LBIU DLL (1.2 V)	AV _{DD} 1	_
AV _{DD} 2	K36	Power for CE PLL (1.2 V)	AV _{DD} 2	_
AV _{DD} 5	AM29	Power for e300 PLL (1.2 V)	AV _{DD} 5	_
AV _{DD} 6	К37	Power for system PLL (1.2 V)	AV _{DD} 6	_
GND	 A2, A8, A13, A19, A22, A25, A31, A33, A36, B7, B12, B24, B27, B30, C4, C6, C9, C15, C26, C32, D3, D8, D11, D14, D17, D19, D23, D27, E7, E13, E25, E30, E36, F4, F37, G34, H1, H5, H32, H33, J4, J32, J37, K1, L3, L5, L33, L34, M1, M34, M35, N37, P2, P5, P35, P36, R4, T3, U1, U5, U35, V37, W1, W4, W33, W36, Y34, AA3, AA5, AC3, AC32, AC35, AD1, AD37, AE4, AE34, AE36, AF33, AG4, AG6, AG32, AH35, AJ1, AJ4, AJ32, AJ35, AJ37, AK36, AL3, AL34, AM4, AN6, AN23, AN30, AP8, AP12, AP14, AP16, AP17, AP20, AP25, AR6, AR8, AR9, AR19, AR24, AR31, AR35, AR37, AT4, AT10, AT19, AT20, AT25, AU14, AU22, AU28, AU35 	_	_	-
GV _{DD}	AD4, AE3, AF1, AF5, AF35, AF37, AG2, AG36, AH33, AH34, AK5, AM1, AM35, AM37, AN2, AN10, AN11, AN12, AN14, AN32, AN36, AP5, AP23, AP28, AR1, AR7, AR10, AR12, AR21, AR25, AR27, AR33, AT15, AT22, AT28, AT33, AU2, AU5, AU16, AU31, AU36	Power for DDR DRAM I/O voltage (2.5 or 1.8 V)	GV _{DD}	_
LV _{DD} 0	D5, D6	Power for UCC1 Ethernet interface (2.5 V, 3.3 V)	LV _{DD} 0	_

Core PLL Configuration

21.2 Core PLL Configuration

RCWL[COREPLL] selects the ratio between the internal coherent system bus clock (*csb_clk*) and the e300 core clock (*core_clk*). This table shows the encodings for RCWL[COREPLL]. COREPLL values not listed in this table should be considered reserved.

RCWL[COREPLL]		core_clk:csb_clk	VCO divider		
0–1	2–5	6	Ratio		
nn	0000	n	PLL bypassed (PLL off, <i>csb_clk</i> clocks core directly)	PLL bypassed (PLL off, <i>csb_clk</i> clocks core directly)	
00	0001	0	1:1	÷2	
01	0001	0	1:1	÷4	
10	0001	0	1:1	÷8	
11	0001	0	1:1	÷8	
00	0001	1	1.5:1	÷2	
01	0001	1	1.5:1	÷4	
10	0001	1	1.5:1	÷8	
11	0001	1	1.5:1	÷8	
00	0010	0	2:1	÷2	
01	0010	0	2:1	÷4	
10	0010	0	2:1	÷8	
11	0010	0	2:1	÷8	
00	0010	1	2.5:1	÷2	
01	0010	1	2.5:1	÷4	
10	0010	1	2.5:1	÷8	
11	0010	1	2.5:1	÷8	
00	0011	0	3:1	÷2	
01	0011	0	3:1	÷4	
10	0011	0	3:1	÷8	
11	0011	0	3:1	÷8	

Table 73. e300 Core PLL Configuration

NOTE

Core VCO frequency = Core frequency \times VCO divider. The VCO divider (RCWL[COREPLL[0:1]]) must be set properly so that the core VCO frequency is in the range of 800–1800 MHz. Having a core frequency below the CSB frequency is not a possible option because the core frequency must be equal to or greater than the CSB frequency.

Thermal Management Information

This table shows heat sinks and junction-to-ambient thermal resistance for TBGA package.

Table 78. Heat Sinks and Junction-to-Ambient	Thermal Resistance of TBGA Package
--	------------------------------------

		35 imes35 mm TBGA	
Heat Sink Assuming Thermal Grease	Airflow	Junction-to-Ambient Thermal Resistance	
AAVID 30 × 30 × 9.4 mm pin fin	Natural convention	10.7	
AAVID 30 × 30 × 9.4 mm pin fin	1 m/s	6.2	
AAVID 30 × 30 × 9.4 mm pin fin	2 m/s	5.3	
AAVID 31 × 35 × 23 mm pin fin	Natural convention	8.1	
AAVID 31 × 35 × 23 mm pin fin	1 m/s	4.4	
AAVID 31 × 35 × 23 mm pin fin	2 m/s	3.7	
Wakefield, 53 × 53 × 25 mm pin fin	Natural convention	5.4	
Wakefield, 53 × 53 × 25 mm pin fin	1 m/s	3.2	
Wakefield, 53 × 53 × 25 mm pin fin	2 m/s	2.4	
MEI, 75 x 85 x 12 no adjacent board, extrusion	Natural convention	6.4	
MEI, 75 x 85 x 12 no adjacent board, extrusion	1 m/s	3.8	
MEI, 75 x 85 x 12 no adjacent board, extrusion	2 m/s	2.5	
MEI, 75 x 85 x 12 mm, adjacent board, 40 mm side bypass	1 m/s	2.8	

Accurate thermal design requires thermal modeling of the application environment using computational fluid dynamics software which can model both the conduction cooling and the convection cooling of the air moving through the application. Simplified thermal models of the packages can be assembled using the junction-to-case and junction-to-board thermal resistances listed in the thermal resistance table. More detailed thermal models can be made available on request.

Heat sink vendors include the following:

Aavid Thermalloy 80 Commercial St. Concord, NH 03301 Internet: www.aavidthermalloy.com	603-224-9988
Alpha Novatech 473 Sapena Ct. #15 Santa Clara, CA 95054 Internet: www.alphanovatech.com	408-749-7601
International Electronic Research Corporation (IERC) 413 North Moss St. Burbank, CA 91502 Internet: www.ctscorp.com	818-842-7277

23.7 Pull-Up Resistor Requirements

The device requires high resistance pull-up resistors (10 k Ω is recommended) on open drain type pins including I²C pins, Ethernet Management MDIO pin, and EPIC interrupt pins.

For more information on required pull-up resistors and the connections required for the JTAG interface, see *MPC8360E/MPC8358E PowerQUICC Design Checklist* (AN3097).

24 Ordering Information

24.1 Part Numbers Fully Addressed by this Document

This table provides the Freescale part numbering nomenclature for the MPC8360E/58E. Note that the individual part numbers correspond to a maximum processor core frequency. For available frequencies, contact your local Freescale sales office. Additionally to the processor frequency, the part numbering scheme also includes an application modifier, which may specify special application conditions. Each part number also contains a revision code that refers to the die mask revision number.

MPC	nnnn	е	t	рр	aa	а	а	Α
Product Code	Part Identifier	Encryption Acceleration	Temperature Range	Package ²	Processor Frequency ³	Platform Frequency	QUICC Engine Frequency	Die Revision
MPC	8358	Blank = not included E = included	Blank = 0° C T _A to 105° C T _J	ZU = TBGA VV = TBGA (no lead)	e300 core speed AD = 266 MHz AG = 400 MHz	D = 266 MHz	E = 300 MHz G = 400 MHz	A = rev. 2.1 silicon
	8360		C= -40° C T _A to 105° C T _J	/ \	e300 core speed AG = 400 MHz AJ = 533 MHz AL = 667 MHz	D = 266 MHz F = 333 MHz	G = 400 MHz H = 500 MHz	A = rev. 2.1 silicon
MPC (rev. 2.0 silicon only)	8360	Blank = not included E = included	0° C T _A to 70° C T _J	ZU = TBGA VV = TBGA (no lead)	e300 core speed AH = 500 MHz AL = 667 MHz	F = 333 MHz	G = 400 MHz H = 500 MHz	—

Table 80. Part Numbering Nomenclature¹

Notes:

1. Not all processor, platform, and QUICC Engine block frequency combinations are supported. For available frequency combinations, contact your local Freescale sales office or authorized distributor.

2. See Section 20, "Package and Pin Listings," for more information on available package types.

 Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this specification support all core frequencies. Additionally, parts addressed by part number specifications may support other maximum core frequencies.

This table shows the SVR settings by device and package type.

Table 8 ⁻	1. SVR	Settings
----------------------	--------	----------

Device	Package	SVR (Rev. 2.0)	SVR (Rev. 2.1)
MPC8360E	TBGA	0x8048_0020	0x8048_0021
MPC8360	TBGA	0x8049_0020	0x8049_0021

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center 1-800 441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale, the Freescale logo, and PowerQUICC are trademarks of Freescale Semiconductor, Inc. Reg. U.S. Pat. & Tm. Off. QUICC Engine is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. © 2011 Freescale Semiconductor, Inc.

Document Number: MPC8360EEC Rev. 5 09/2011

