E·XFL

NXP USA Inc. - MPC8360VVALFH Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e300
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	667MHz
Co-Processors/DSP	Communications; QUICC Engine
RAM Controllers	DDR, DDR2
Graphics Acceleration	No
Display & Interface Controllers	·
Ethernet	10/100/1000Mbps (1)
SATA	-
USB	USB 1.x (1)
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	740-LBGA
Supplier Device Package	740-TBGA (37.5x37.5)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8360vvalfh

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Programmable highest priority request
- Four groups of interrupts with programmable priority
- External and internal interrupts directed to communication processor
- Redirects interrupts to external INTA pin when in core disable mode
- Unique vector number for each interrupt source
- Dual industry-standard I²C interfaces
 - Two-wire interface
 - Multiple master support
 - Master or slave I²C mode support
 - On-chip digital filtering rejects spikes on the bus
 - System initialization data is optionally loaded from I²C-1 EPROM by boot sequencer embedded hardware
- DMA controller
 - Four independent virtual channels
 - Concurrent execution across multiple channels with programmable bandwidth control
 - All channels accessible by local core and remote PCI masters
 - Misaligned transfer capability
 - Data chaining and direct mode
 - Interrupt on completed segment and chain
 - DMA external handshake signals: DMA_DREQ[0:3]/DMA_DACK[0:3]/DMA_DONE[0:3]. There is one set for each DMA channel. The pins are multiplexed to the parallel IO pins with other QE functions.
- DUART
 - Two 4-wire interfaces (RxD, TxD, RTS, CTS)
 - Programming model compatible with the original 16450 UART and the PC16550D
- System timers
 - Periodic interrupt timer
 - Real-time clock
 - Software watchdog timer
 - Eight general-purpose timers
- IEEE Std. 1149.1[™]-compliant, JTAG boundary scan
- Integrated PCI bus and SDRAM clock generation

2 Electrical Characteristics

This section provides the AC and DC electrical specifications and thermal characteristics for the MPC8360E/58E. The device is currently targeted to these specifications. Some of these specifications are independent of the I/O cell, but are included for a more complete reference. These are not purely I/O buffer design specifications.

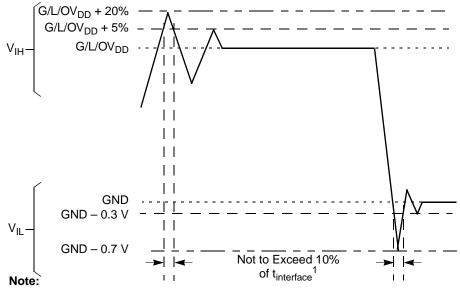

Characteristic	Symbol	Recommended Value	Unit	Notes
PCI, local bus, DUART, system control and power management, I ² C, SPI, and JTAG I/O voltage	OV _{DD}	3.3 V ± 330 mV	V	Ι
Junction temperature	TJ	0 to 105 -40 to 105	°C	2

Table 2. Recommended Operating Conditions (continued)

Notes:

- 1. GV_{DD}, LV_{DD}, OV_{DD}, AV_{DD}, and V_{DD} must track each other and must vary in the same direction—either in the positive or negative direction.
- The operating conditions for junction temperature, T_J, on the 600/333/400 MHz and 500/333/500 MHz on rev. 2.0 silicon is 0° to 70 °C. Refer to Errata General9 in *Chip Errata for the MPC8360E, Rev. 1*.
- 3. For more information on Part Numbering, refer to Table 80.

This figure shows the undershoot and overshoot voltages at the interfaces of the device.

1. Note that $t_{\mbox{interface}}$ refers to the clock period associated with the bus clock interface.

Figure 3. Overshoot/Undershoot Voltage for $GV_{DD}/OV_{DD}/LV_{DD}$

Power Sequencing

This figure shows the undershoot and overshoot voltage of the PCI interface of the device for the 3.3-V signals, respectively.

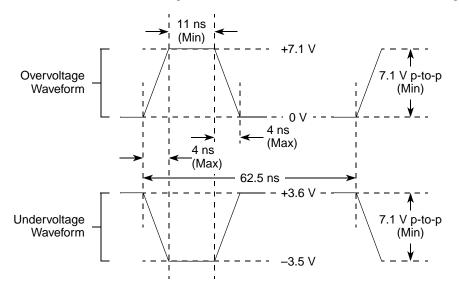


Figure 4. Maximum AC Waveforms on PCI interface for 3.3-V Signaling

2.1.3 Output Driver Characteristics

This table provides information on the characteristics of the output driver strengths. The values are preliminary estimates.

Driver Type	Output Impedance (Ω)	Supply Voltage
Local bus interface utilities signals	42	OV _{DD} = 3.3 V
PCI signals	25	
PCI output clocks (including PCI_SYNC_OUT)	42	
DDR signal	20 36 (half-strength mode) ¹	GV _{DD} = 2.5 V
DDR2 signal	18 36 (half-strength mode) ¹	GV _{DD} = 1.8 V
10/100/1000 Ethernet signals	42	LV _{DD} = 2.5/3.3 V
DUART, system control, I ² C, SPI, JTAG	42	OV _{DD} = 3.3 V
GPIO signals	42	OV _{DD} = 3.3 V LV _{DD} = 2.5/3.3 V

Note:

1. DDR output impedance values for half strength mode are verified by design and not tested.

2.2 Power Sequencing

This section details the power sequencing considerations for the MPC8360E/58E.

RESET DC Electrical Characteristics

Table 9. GTX_CLK125 AC Timing Specifications

At recommended operating conditions with LV_{DD} = 2.5 ± 0.125 mV/ 3.3 V ± 165 mV (continued)

Parameter/Condition	Symbol	Min	Typical	Мах	Unit	Notes
GTX_CLK rise and fall time $LV_{DD} = 2.5 V \\ LV_{DD} = 3.3 V$	t _{G125R} /t _{G125F}			0.75 1.0	ns	1
GTX_CLK125 duty cycle GMII & TBI 1000Base-T for RGMII & RTBI		45 47	_	55 53	%	2
GTX_CLK125 jitter	—	—	_	±150	ps	2

Notes:

- 1. Rise and fall times for GTX_CLK125 are measured from 0.5 and 2.0 V for LV_{DD} = 2.5 V and from 0.6 and 2.7 V for LV_{DD} = 3.3 V.
- GTX_CLK125 is used to generate the GTX clock for the UCC Ethernet transmitter with 2% degradation. The GTX_CLK125 duty cycle can be loosened from 47%/53% as long as the PHY device can tolerate the duty cycle generated by GTX_CLK. See Section 8.2.2, "MII AC Timing Specifications," Section 8.2.3, "RMII AC Timing Specifications," and Section 8.2.5, "RGMII and RTBI AC Timing Specifications" for the duty cycle for 10Base-T and 100Base-T reference clock.

5 **RESET Initialization**

This section describes the DC and AC electrical specifications for the reset initialization timing and electrical requirements of the MPC8360E/58E.

5.1 **RESET DC Electrical Characteristics**

This table provides the DC electrical characteristics for the RESET pins of the device.

Characteristic	Symbol	Condition	Min	Мах	Unit
Input high voltage	V _{IH}	_	2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	-0.3	0.8	V
Input current	I _{IN}	—	_	±10	μA
Output high voltage	V _{OH} ²	I _{OH} = -8.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	_	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	_	0.4	V

Table 10. RESET Pins DC Electrical Characteristics ¹

Notes:

1. This table applies for pins PORESET, HRESET, SRESET, and QUIESCE.

2. HRESET and SRESET are open drain pins, thus V_{OH} is not relevant for those pins.

GMII, MII, RMII, TBI, RGMII, and RTBI AC Timing Specifications

8.2.1.2 GMII Receive AC Timing Specifications

This table provides the GMII receive AC timing specifications.

Table 28. GMII Receive AC Timing Specifications

At recommended operating conditions with LV_{DD}/OV_{DD} of 3.3 V \pm 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit	Notes
RX_CLK clock period	t _{GRX}	_	8.0	_	ns	—
RX_CLK duty cycle	t _{GRXH} /t _{GRX}	40	—	60	%	—
RXD[7:0], RX_DV, RX_ER setup time to RX_CLK	t _{GRDVKH}	2.0	—	_	ns	_
RXD[7:0], RX_DV, RX_ER hold time to RX_CLK	t _{GRDXKH}	0.2	—	_	ns	2
RX_CLK clock rise time, (20% to 80%)	t _{GRXR}	_	—	1.0	ns	_
RX_CLK clock fall time, (80% to 20%)	t _{GRXF}	_		1.0	ns	_

Notes:

- 1. The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{GRDVKH} symbolizes GMII receive timing (GR) with respect to the time data input signals (D) reaching the valid state (V) relative to the t_{RX} clock reference (K) going to the high state (H) or setup time. Also, t_{GRDXKL} symbolizes GMII receive timing (GR) with respect to the time data input signals (D) reaching the valid state (V) relative to the t_{RX} clock reference (K) going to the high state (H) or setup time. Also, t_{GRDXKL} symbolizes GMII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t_{GRX} clock reference (K) going to the low (L) state or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{GRX} represents the GMII (G) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}
- In rev. 2.0 silicon, due to errata, t_{GRDXKH} minimum is 0.5 which is not compliant with the standard. Refer to Errata QE_ENET18 in Chip Errata for the MPC8360E, Rev. 1.

This figure shows the GMII receive AC timing diagram.

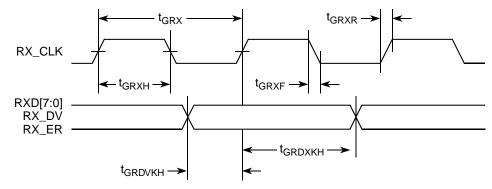


Figure 11. GMII Receive AC Timing Diagram

8.3.2 MII Management AC Electrical Specifications

This table provides the MII management AC timing specifications.

Table 37. MII Management AC Timing Specifications

At recommended operating conditions with LV_{DD} is 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit	Notes
MDC frequency	f _{MDC}	—	2.5	—	MHz	2
MDC period	t _{MDC}	—	400	—	ns	—
MDC clock pulse width high	t _{MDCH}	32	—	—	ns	—
MDC to MDIO delay	^t MDTKHDX ^t MDTKHDV	10 —	_	 110	ns	3
MDIO to MDC setup time	t _{MDRDVKH}	10	—	—	ns	—
MDIO to MDC hold time	t _{MDRDXKH}	0	—	—	ns	—
MDC rise time	t _{MDCR}	—	—	10	ns	—
MDC fall time	t _{MDHF}	—	—	10	ns	—

Notes:

- The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{MDKHDX} symbolizes management data timing (MD) for the time t_{MDC} from clock reference (K) high (H) until data outputs (D) are invalid (X) or data hold time. Also, t_{MDRDVKH} symbolizes management data timing (MD) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MDC} clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
 </sub>
- This parameter is dependent on the csb_clk speed (that is, for a csb_clk of 267 MHz, the maximum frequency is 8.3 MHz and the minimum frequency is 1.2 MHz; for a csb_clk of 375 MHz, the maximum frequency is 11.7 MHz and the minimum frequency is 1.7 MHz).
- 3. This parameter is dependent on the ce_clk speed (that is, for a ce_clk of 200 MHz, the delay is 90 ns and for a ce_clk of 300 MHz, the delay is 63 ns).

This figure shows the MII management AC timing diagram.

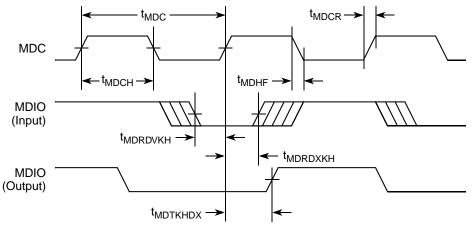


Figure 21. MII Management Interface Timing Diagram

Parameter	Symbol ¹	Min	Мах	Unit	Notes
LUPWAIT input hold from local bus clock	t _{LBIXKH2}	1.0	_	ns	3, 4
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT1}	1.5		ns	5
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT2}	3.0		ns	6
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT3}	2.5		ns	7
Local bus clock to LALE rise	t _{LBKHLR}	—	4.5	ns	_
Local bus clock to output valid (except LAD/LDP and LALE)	t _{LBKHOV1}	—	4.5	ns	—
Local bus clock to data valid for LAD/LDP	t _{LBKHOV2}	—	4.5	ns	3
Local bus clock to address valid for LAD	t _{LBKHOV3}	—	4.5	ns	3
Output hold from local bus clock (except LAD/LDP and LALE)	t _{LBKHOX1}	1.0	_	ns	3
Output hold from local bus clock for LAD/LDP	t _{LBKHOX2}	1.0	_	ns	3
Local bus clock to output high impedance for LAD/LDP	t _{LBKHOZ}	—	3.8	ns	8

Table 40. Local Bus General Timing Parameters—DLL Enabled (continued)

Notes:

- The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{LBIXKH1} symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t_{LBK} clock reference (K) goes high (H), in this case for clock one (1). Also, t_{LBKHOX} symbolizes local bus timing (LB) for the output (O) going invalid (X) or output hold time.
 </sub>
- 2. All timings are in reference to rising edge of LSYNC_IN.
- 3. All signals are measured from $OV_{DD}/2$ of the rising edge of LSYNC_IN to $0.4 \times OV_{DD}$ of the signal in question for 3.3-V signaling levels.
- 4. Input timings are measured at the pin.
- 5. t_{LBOTOT1} should be used when RCWH[LALE] is not set and when the load on LALE output pin is at least 10 pF less than the load on LAD output pins.
- t_{LBOTOT2} should be used when RCWH[LALE] is set and when the load on LALE output pin is at least 10 pF less than the load on LAD output pins.
- 7. t_{LBOTOT3} should be used when RCWH[LALE] is set and when the load on LALE output pin equals to the load on LAD output pins.
- 8. For purposes of active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.

This table describes the general timing parameters of the local bus interface of the device.

Table 41. Local Bus General Timing Parameters—DLL Bypass Mode⁹

Parameter	Symbol ¹	Min	Max	Unit	Notes
Local bus cycle time	t _{LBK}	15	—	ns	2
Input setup to local bus clock	t _{LBIVKH}	7	—	ns	3, 4
Input hold from local bus clock	t _{LBIXKH}	1.0	—	ns	3, 4
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT1}	1.5	—	ns	5
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT2}	3	—	ns	6
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT3}	2.5	—	ns	7

These figures show the local bus signals.

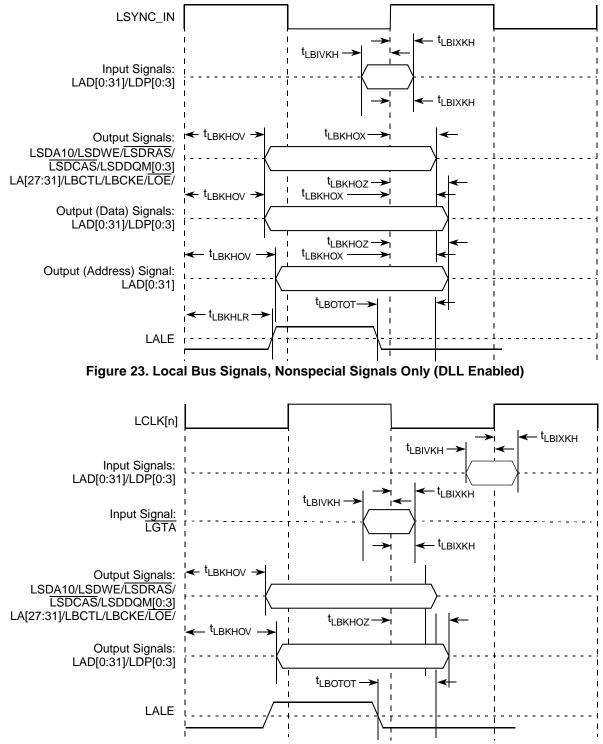


Figure 24. Local Bus Signals, Nonspecial Signals Only (DLL Bypass Mode)

10.2 JTAG AC Electrical Characteristics

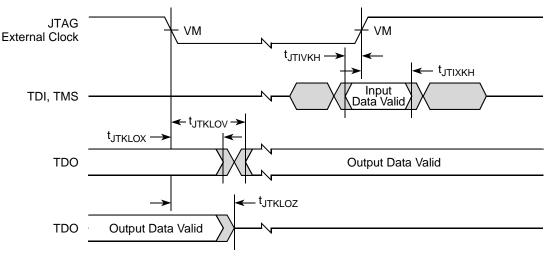
This section describes the AC electrical specifications for the IEEE 1149.1 (JTAG) interface of the device.

This table provides the JTAG AC timing specifications as defined in Figure 30 through Figure 33.

Table 43. JTAG AC Timing Specifications (Independent of CLKIN)¹

At recommended operating conditions (see Table 2).

Parameter	Symbol ²	Min	Мах	Unit	Notes
JTAG external clock frequency of operation	f _{JTG}	0	33.3	MHz	—
JTAG external clock cycle time	t _{JTG}	30	—	ns	—
JTAG external clock duty cycle	t _{JTKHKL} /t _{JTG}	45	55	%	—
JTAG external clock rise and fall times	t _{JTGR} & t _{JTGF}	0	2	ns	—
TRST assert time	t _{TRST}	25	—	ns	3
Input setup times: Boundary-scan data TMS, TDI	t _{JTDVKH} t _{JTIVKH}	4 4		ns	4
Input hold times: Boundary-scan data TMS, TDI	t _{JTDXKH} t _{JTIXKH}	10 10	_	ns	4
Valid times: Boundary-scan data TDO	t _{JTKLDV} t _{JTKLOV}	2 2	11 11	ns	5
Output hold times: Boundary-scan data TDO	t _{JTKLDX} t _{JTKLOX}	2 2		ns	5
JTAG external clock to output high impedance: Boundary-scan data TDO	t _{jtkldz} t _{jtkloz}	2 2	19 9	ns	5, 6


Notes:

- 2. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{JTDVKH} symbolizes JTAG device timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the t_{JTG} clock reference (K) going to the high (H) state or setup time. Also, t_{JTDXKH} symbolizes JTAG timing (JT) with respect to the time data input signals (D) went invalid (X) relative to the t_{JTG} clock reference (K) going to the high (H) state. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
- 3. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.
- 4. Non-JTAG signal input timing with respect to t_{TCLK}.
- 5. Non-JTAG signal output timing with respect to t_{TCLK}.
- 6. Guaranteed by design and characterization.

All outputs are measured from the midpoint voltage of the falling/rising edge of t_{TCLK} to the midpoint of the signal in question. The output timings are measured at the pins. All output timings assume a purely resistive 50-Ω load (see Figure 22). Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.

This figure provides the test access port timing diagram.

VM = Midpoint Voltage (OV_{DD}/2)

Figure 33. Test Access Port Timing Diagram

11 I²C

This section describes the DC and AC electrical characteristics for the I^2C interface of the MPC8360E/58E.

11.1 I²C DC Electrical Characteristics

This table provides the DC electrical characteristics for the I^2C interface of the device.

Table 44. I²C DC Electrical Characteristics

At recommended operating conditions with OV_{DD} of 3.3 V ± 10%.

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage level	V _{IH}	$0.7 imes OV_{DD}$	OV _{DD} + 0.3	V	—
Input low voltage level	V _{IL}	-0.3	$0.3 imes OV_{DD}$	V	—
Low level output voltage	V _{OL}	0	0.4	V	1
Output fall time from $V_{IH}(min)$ to $V_{IL}(max)$ with a bus capacitance from 10 to 400 pF	t _{I2KLKV}	$20 + 0.1 \times C_B$	250	ns	2
Pulse width of spikes which must be suppressed by the input filter	t _{i2KHKL}	0	50	ns	3
Capacitance for each I/O pin	Cl	—	10	pF	—
Input current (0 V ≤V _{IN} ≤OV _{DD})	I _{IN}	—	±10	μA	4

Notes:

1. Output voltage (open drain or open collector) condition = 3 mA sink current.

- 2. C_B = capacitance of one bus line in pF.
- 3. Refer to the MPC8360E Integrated Communications Processor Reference Manual for information on the digital filter used.
- 4. I/O pins obstruct the SDA and SCL lines if OV_{DD} is switched off.

This figure provides the AC test load for the I^2C .

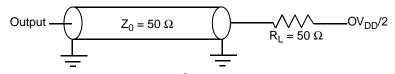
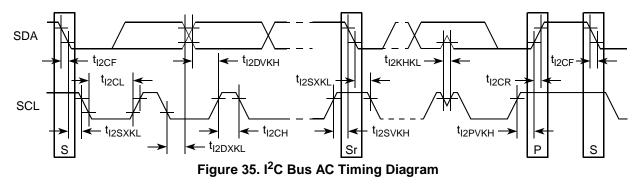



Figure 34. I²C AC Test Load

This figure shows the AC timing diagram for the I^2C bus.

12 PCI

This section describes the DC and AC electrical specifications for the PCI bus of the MPC8360E/58E.

12.1 PCI DC Electrical Characteristics

This table provides the DC electrical characteristics for the PCI interface of the device.

Table 46. PCI DC Electrical Characteristics

Parameter	Symbol	Test Condition	Min	Мах	Unit
High-level input voltage	V _{IH}	$V_{OUT} \ge V_{OH}$ (min) or	$0.5 imes OV_{DD}$	OV _{DD} + 0.5	V
Low-level input voltage	V _{IL}	V _{OUT} ⊴V _{OL} (max)	-0.5	$0.3 imes OV_{DD}$	V
High-level output voltage	V _{OH}	I _{OH} = -500 μA	$0.9 imes OV_{DD}$	—	V
Low-level output voltage	V _{OL}	I _{OL} = 1500 μA	—	$0.1 imes OV_{DD}$	V
Input current	I _{IN}	0 V ≤V _{IN} ¹ ≤OV _{DD}	—	±10	μA

12.2 PCI AC Electrical Specifications

This section describes the general AC timing parameters of the PCI bus of the device. Note that the PCI_CLK or PCI_SYNC_IN signal is used as the PCI input clock depending on whether the device is configured as a host or agent device. This table provides the PCI AC timing specifications at 66 MHz.

Parameter	Symbol ¹	Min	Мах	Unit	Notes
Clock to output valid	t _{PCKHOV}	—	6.0	ns	2, 5
Output hold from clock	t _{PCKHOX}	1	_	ns	2

Table 47. PCI AC Timing Specifications at 66 MHz

SPI AC Timing Specifications

Table 56.	SPI AC	Timing	Specifications ¹
-----------	--------	--------	-----------------------------

Characteristic	Symbol ²	Min	Max	Unit
SPI inputs—Slave mode (external clock) input hold time	t _{NEIXKH}	2	—	ns

Notes:

- 1. Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are measured at the pin.
- The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state)} for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{NIKHOV} symbolizes the NMSI outputs internal timing (NI) for the time t_{SPI} memory clock reference (K) goes from the high state (H) until outputs (O) are valid (V).

This figure provides the AC test load for the SPI.

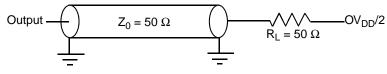
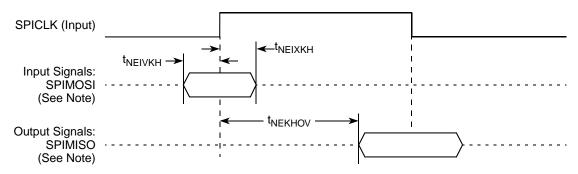
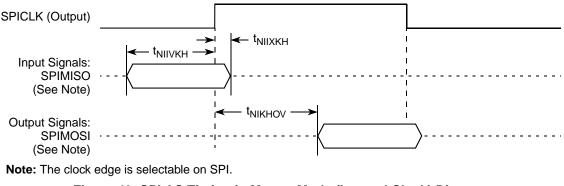



Figure 41. SPI AC Test Load

These figures represent the AC timing from Table 56. Note that although the specifications generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge is the active edge.


This figure shows the SPI timing in slave mode (external clock).

Note: The clock edge is selectable on SPI.

Figure 42. SPI AC Timing in Slave Mode (External Clock) Diagram

This figure shows the SPI timing in Master mode (internal clock).

18.3 AC Test Load

These figures represent the AC timing from Table 62 and Table 63. Note that although the specifications generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge is the active edge.

This figure shows the timing with external clock.

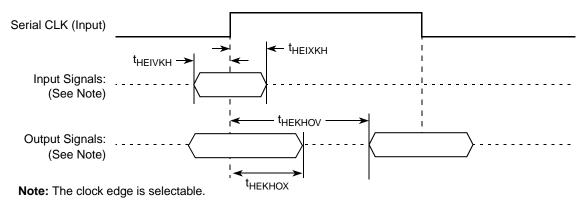


Figure 50. AC Timing (External Clock) Diagram

This figure shows the timing with internal clock.

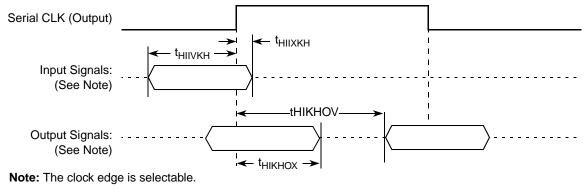


Figure 51. AC Timing (Internal Clock) Diagram

Table 66. MPC8360E TBGA Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
PCI_DEVSEL/CE_PF[16]	E26	I/O	OV _{DD}	5
PCI_IDSEL/CE_PF[17]	F22	I/O	OV _{DD}	—
PCI_SERR/CE_PF[18]	B29	I/O	OV _{DD}	5
PCI_PERR/CE_PF[19]	A29	I/O	OV _{DD}	5
PCI_REQ[0]/CE_PF[20]	F19	I/O	LV _{DD} 2	—
PCI_REQ[1]/CPCI_HS_ES/ CE_PF[21]	A21	I/O	LV _{DD} 2	—
PCI_REQ[2]/CE_PF[22]	C21	I/O	LV _{DD} 2	—
PCI_GNT[0]/CE_PF[23]	E20	I/O	LV _{DD} 2	—
PCI_GNT[1]/CPCI1_HS_LED/ CE_PF[24]	B20	I/O	LV _{DD} 2	
PCI_GNT[2]/CPCI1_HS_ENUM/ CE_PF[25]	C20	I/O	LV _{DD} 2	_
PCI_MODE	D36	I	OV _{DD}	—
M66EN/CE_PF[4]	B37	I/O	OV _{DD}	—
	Local Bus Controller Interface			
LAD[0:31]	N32, N33, N35, N36, P37, P32, P34, R36, R35, R34, R33, T37, T35, T34, T33, U37, T32, U36, U34, V36, V35, W37, W35, V33, V32, W34, Y36, W32, AA37, Y33, AA35, AA34	I/O	OV _{DD}	—
LDP[0]/CKSTOP_OUT	AB37	I/O	OV _{DD}	—
LDP[1]/CKSTOP_IN	AB36	I/O	OV _{DD}	- I
LDP[2]/LCS[6]	AB35	I/O	OV _{DD}	—
LDP[3]/LCS[7]	AA33	I/O	OV _{DD}	—
LA[27:31]	AC37, AA32, AC36, AC34, AD36	0	OV _{DD}	—
LCS[0:5]	AD33, AG37, AF34, AE33, AD32, AH37	0	OV _{DD}	—
LWE[0:3]/LSDDQM[0:3]/LBS[0:3]	AG35, AG34, AH36, AE32	0	OV _{DD}	—
LBCTL	AD35	0	OV _{DD}	—
LALE	M37	0	OV _{DD}	—
LGPL0/LSDA10/cfg_reset_source0	AB32	I/O	OV _{DD}	—
LGPL1/LSDWE/cfg_reset_source1	AE37	I/O	OV _{DD}	—
LGPL2/LSDRAS/LOE	AC33	0	OV _{DD}	—
LGPL3/LSDCAS/cfg_reset_source2	AD34	I/O	OV _{DD}	—
LGPL4/LGTA/LUPWAIT/LPBSE	AE35	I/O	OV _{DD}	-
LGPL5/cfg_clkin_div	AF36	I/O	OV _{DD}	—
LCKE	G36	0	OV _{DD}	—
LCLK[0]	J33	0	OV _{DD}	—
LCLK[1]/LCS[6]	J34	0	OV _{DD}	—

Pinout Listings

Table 66. MPC8360E TBGA Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes	
LCLK[2]/LCS[7]	G37	0	OV _{DD}	—	
LSYNC_OUT	F34	0	OV _{DD}	—	
LSYNC_IN	G35	I	OV _{DD}	_	
	Programmable Interrupt Controller			1	
MCP_OUT	E34	0	OV _{DD}	2	
IRQ0/MCP_IN	C37	I	OV _{DD}	—	
IRQ[1]/M1SRCID[4]/M2SRCID[4]/ LSRCID[4]	F35	I/O	OV _{DD}	—	
RQ[2]/M1DVAL/M2DVAL/LDVAL F36		I/O	OV _{DD}	—	
IRQ[3]/CORE_SRESET	H34	I/O	OV _{DD}	—	
IRQ[4:5]	G33, G32	I/O	OV _{DD}	—	
IRQ[6]/LCS[6]/CKSTOP_OUT	E35	I/O	OV _{DD}	—	
IRQ[7]/LCS[7]/CKSTOP_IN	H36	I/O	OV _{DD}	—	
	DUART			1	
UART1_SOUT/M1SRCID[0]/ M2SRCID[0]/LSRCID[0]	E32	0	OV _{DD}	—	
UART1_SIN/M1SRCID[1]/ M2SRCID[1]/LSRCID[1]	B34	I/O	OV _{DD}	_	
UART1_CTS/M1SRCID[2]/ M2SRCID[2]/LSRCID[2]	C34	I/O	OV _{DD}	—	
UART1_RTS/M1SRCID[3]/ M2SRCID[3]/LSRCID[3]	A35	0	OV _{DD}	_	
	I ² C Interface				
IIC1_SDA	D34	I/O	OV _{DD}	2	
IIC1_SCL	B35	I/O	OV _{DD}	2	
IIC2_SDA	E33	I/O	OV _{DD}	2	
IIC2_SCL	C35	I/O	OV _{DD}	2	
	QUICC Engine Block				
CE_PA[0]	F8	I/O	LV _{DD0}	_	
CE_PA[1:2]	AH1, AG5	I/O	OV _{DD}		
CE_PA[3:7]	F6, D4, C3, E5, A3	I/O	LV _{DD} 0	_	
CE_PA[8]	AG3	I/O	OV _{DD}		
CE_PA[9:12]	F7, B3, E6, B4	I/O	LV _{DD} 0	_	
CE_PA[13:14]	AG1, AF6	I/O	OV _{DD}	_	
CE_PA[15]	B2	I/O	LV _{DD} 0	_	
CE_PA[16]	AF4	I/O	OV _{DD}	_	
CE_PA[17:21]	B16, A16, E17, A17, B17	I/O	LV _{DD} 1	—	

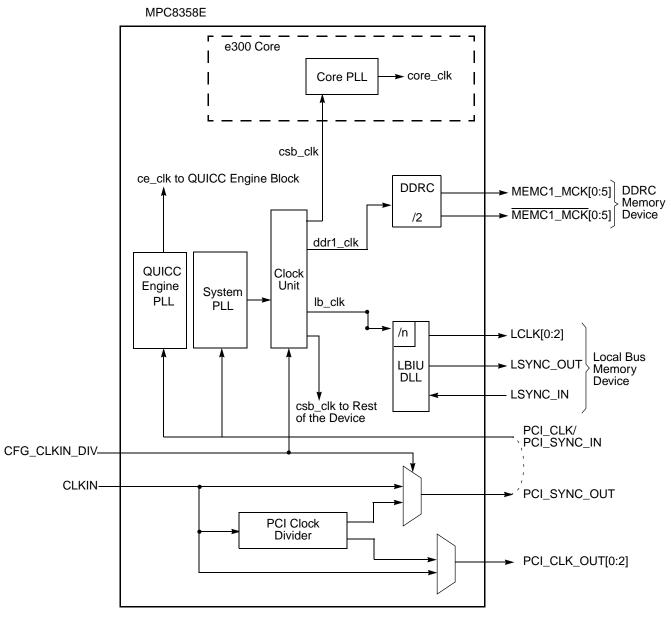


Table 67. MPC8358E TBGA Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
PCI_MODE	D36	I	OV _{DD}	-
M66EN/CE_PF[4]	B37	I/O	OV _{DD}	—
	Local Bus Controller Interface			
LAD[0:31]	N32, N33, N35, N36, P37, P32, P34, R36, R35, R34, R33, T37, T35, T34, T33, U37, T32, U36, U34, V36, V35, W37, W35, V33, V32, W34, Y36, W32, AA37, Y33, AA35, AA34	I/O	OV _{DD}	-
LDP[0]/CKSTOP_OUT	AB37	I/O	OV _{DD}	—
LDP[1]/CKSTOP_IN	AB36	I/O	OV _{DD}	—
LDP[2]/LCS[6]	AB35	I/O	OV _{DD}	—
LDP[3]/LCS[7]	AA33	I/O	OV _{DD}	—
LA[27:31]	AC37, AA32, AC36, AC34, AD36	0	OV _{DD}	—
LCS[0:5]	AD33, AG37, AF34, AE33, AD32, AH37	0	OV _{DD}	—
LWE[0:3]/LSDDQM[0:3]/LBS[0:3]	AG35, AG34, AH36, AE32	0	OV _{DD}	—
LBCTL	AD35	0	OV _{DD}	—
LALE	M37	0	OV _{DD}	—
LGPL0/LSDA10/cfg_reset_source0	AB32	I/O	OV _{DD}	—
LGPL1/LSDWE/cfg_reset_source1	AE37	I/O	OV _{DD}	—
LGPL2/LSDRAS/LOE	AC33	0	OV _{DD}	—
LGPL3/LSDCAS/cfg_reset_source2	AD34	I/O	OV _{DD}	—
LGPL4/LGTA/LUPWAIT/LPBSE	AE35	I/O	OV _{DD}	—
LGPL5/cfg_clkin_div	AF36	I/O	OV _{DD}	—
LCKE	G36	0	OV _{DD}	—
LCLK[0]	J33	0	OV _{DD}	—
LCLK[1]/LCS[6]	J34	0	OV _{DD}	—
LCLK[2]/LCS[7]	G37	0	OV _{DD}	—
LSYNC_OUT	F34	0	OV _{DD}	—
LSYNC_IN	G35	I	OV _{DD}	—
	Programmable Interrupt Controller		1	
MCP_OUT	E34	0	OV _{DD}	2
IRQ0/MCP_IN	C37	I	OV _{DD}	<u> </u>
IRQ[1]/M1SRCID[4]/M2SRCID[4]/ LSRCID[4]	F35	I/O	OV _{DD}	-
IRQ[2]/M1DVAL/M2DVAL/LDVAL	F36	I/O	OV _{DD}	-
IRQ[3]/CORE_SRESET	H34	I/O	OV _{DD}	—

This figure shows the internal distribution of clocks within the MPC8358E.

The primary clock source for the device can be one of two inputs, CLKIN or PCI_CLK, depending on whether the device is configured in PCI host or PCI agent mode. Note that in PCI host mode, the primary clock input also depends on whether PCI clock outputs are selected with RCWH[PCICKDRV]. When the device is configured as a PCI host device (RCWH[PCIHOST] = 1) and PCI clock output is selected (RCWH[PCICKDRV] = 1), CLKIN is its primary input clock. CLKIN feeds the PCI clock divider (\div 2) and the multiplexors for PCI_SYNC_OUT and PCI_CLK_OUT. The CFG_CLKIN_DIV configuration input selects whether CLKIN or CLKIN/2 is driven out on the PCI_SYNC_OUT signal. The OCCR[PCIOEN*n*] parameters enable the PCI_CLK_OUT*n*, respectively.

PCI_SYNC_OUT is connected externally to PCI_SYNC_IN to allow the internal clock subsystem to synchronize to the system PCI clocks. PCI_SYNC_OUT must be connected properly to PCI_SYNC_IN, with equal delay to all PCI agent devices in the system, to allow the device to function. When the device is configured as a PCI agent device, PCI_CLK is the primary input

Thermal Management Information

This table shows heat sinks and junction-to-ambient thermal resistance for TBGA package.

Table 78. Heat Sinks and Junction-to-Ambient	Thermal Resistance of TBGA Package
--	------------------------------------

		$35 \times 35 \text{ mm TBGA}$
Heat Sink Assuming Thermal Grease	Airflow	Junction-to-Ambient Thermal Resistance
AAVID 30 × 30 × 9.4 mm pin fin	Natural convention	10.7
AAVID 30 × 30 × 9.4 mm pin fin	1 m/s	6.2
AAVID 30 × 30 × 9.4 mm pin fin	2 m/s	5.3
AAVID 31 × 35 × 23 mm pin fin	Natural convention	8.1
AAVID 31 × 35 × 23 mm pin fin	1 m/s	4.4
AAVID 31 × 35 × 23 mm pin fin	2 m/s	3.7
Wakefield, 53 × 53 × 25 mm pin fin	Natural convention	5.4
Wakefield, 53 × 53 × 25 mm pin fin	1 m/s	3.2
Wakefield, 53 × 53 × 25 mm pin fin	2 m/s	2.4
MEI, 75 x 85 x 12 no adjacent board, extrusion	Natural convention	6.4
MEI, 75 x 85 x 12 no adjacent board, extrusion	1 m/s	3.8
MEI, 75 x 85 x 12 no adjacent board, extrusion	2 m/s	2.5
MEI, 75 x 85 x 12 mm, adjacent board, 40 mm side bypass	1 m/s	2.8

Accurate thermal design requires thermal modeling of the application environment using computational fluid dynamics software which can model both the conduction cooling and the convection cooling of the air moving through the application. Simplified thermal models of the packages can be assembled using the junction-to-case and junction-to-board thermal resistances listed in the thermal resistance table. More detailed thermal models can be made available on request.

Heat sink vendors include the following:

Aavid Thermalloy 80 Commercial St. Concord, NH 03301 Internet: www.aavidthermalloy.com	603-224-9988
Alpha Novatech 473 Sapena Ct. #15 Santa Clara, CA 95054 Internet: www.alphanovatech.com	408-749-7601
International Electronic Research Corporation (IERC) 413 North Moss St. Burbank, CA 91502 Internet: www.ctscorp.com	818-842-7277

Heat Sink Attachment

Millennium Electronic Loroco Sites 671 East Brokaw Road San Jose, CA 95112 Internet: www.mei-mil	1	408-436-8770
Tyco Electronics Chip Coolers™ P.O. Box 3668 Harrisburg, PA 17105- Internet: www.chipcoo		800-522-6752
Wakefield Engineering 33 Bridge St. Pelham, NH 03076 Internet: www.wakefie		603-635-5102
Interface material vendors include Chomerics, Inc. 77 Dragon Ct. Woburn, MA 01888-40 Internet: www.chomer	014	781-935-4850
Dow-Corning Corpora Dow-Corning Electron 2200 W. Salzburg Rd. Midland, MI 48686-09 Internet: www.dowcor	nic Materials 997	800-248-2481
Shin-Etsu MicroSi, Ind 10028 S. 51st St. Phoenix, AZ 85044 Internet: www.microsi		888-642-7674
The Bergquist Compar 18930 West 78th St. Chanhassen, MN 5531 Internet: www.bergqui	7	800-347-4572

22.3 Heat Sink Attachment

When attaching heat sinks to these devices, an interface material is required. The best method is to use thermal grease and a spring clip. The spring clip should connect to the printed-circuit board, either to the board itself, to hooks soldered to the board, or to a plastic stiffener. Avoid attachment forces which would lift the edge of the package or peel the package from the board. Such peeling forces reduce the solder joint lifetime of the package. Recommended maximum force on the top of the package is 10 lb force (4.5 kg force). If an adhesive attachment is planned, the adhesive should be intended for attachment to painted or plastic surfaces and its performance verified under the application requirements.

23.7 Pull-Up Resistor Requirements

The device requires high resistance pull-up resistors (10 k Ω is recommended) on open drain type pins including I²C pins, Ethernet Management MDIO pin, and EPIC interrupt pins.

For more information on required pull-up resistors and the connections required for the JTAG interface, see *MPC8360E/MPC8358E PowerQUICC Design Checklist* (AN3097).

24 Ordering Information

24.1 Part Numbers Fully Addressed by this Document

This table provides the Freescale part numbering nomenclature for the MPC8360E/58E. Note that the individual part numbers correspond to a maximum processor core frequency. For available frequencies, contact your local Freescale sales office. Additionally to the processor frequency, the part numbering scheme also includes an application modifier, which may specify special application conditions. Each part number also contains a revision code that refers to the die mask revision number.

MPC	nnnn	е	t	рр	aa	а	а	Α
Product Code	Part Identifier	Encryption Acceleration	Temperature Range	Package ²	Processor Frequency ³	Platform Frequency	QUICC Engine Frequency	Die Revision
MPC	8358	Blank = not included E = included	Blank = 0° C T _A to 105° C T _J	ZU = TBGA VV = TBGA (no lead)	e300 core speed AD = 266 MHz AG = 400 MHz	D = 266 MHz	E = 300 MHz G = 400 MHz	A = rev. 2.1 silicon
	8360		C= -40° C T _A to 105° C T _J		e300 core speed AG = 400 MHz AJ = 533 MHz AL = 667 MHz	D = 266 MHz F = 333 MHz	G = 400 MHz H = 500 MHz	A = rev. 2.1 silicon
MPC (rev. 2.0 silicon only)	8360	Blank = not included E = included	0° C T _A to 70° C T _J	ZU = TBGA VV = TBGA (no lead)	e300 core speed AH = 500 MHz AL = 667 MHz	F = 333 MHz	G = 400 MHz H = 500 MHz	—

Table 80. Part Numbering Nomenclature¹

Notes:

1. Not all processor, platform, and QUICC Engine block frequency combinations are supported. For available frequency combinations, contact your local Freescale sales office or authorized distributor.

2. See Section 20, "Package and Pin Listings," for more information on available package types.

 Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this specification support all core frequencies. Additionally, parts addressed by part number specifications may support other maximum core frequencies.

This table shows the SVR settings by device and package type.

Table 81	. SVR	Settings
----------	-------	----------

Device	Package	SVR (Rev. 2.0)	SVR (Rev. 2.1)
MPC8360E	TBGA	0x8048_0020	0x8048_0021
MPC8360	TBGA	0x8049_0020	0x8049_0021