E·XFL

NXP USA Inc. - MPC8360ZUAJDG Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Obsolete
PowerPC e300
1 Core, 32-Bit
533MHz
Communications; QUICC Engine
DDR, DDR2
No
-
10/100/1000Mbps (1)
-
USB 1.x (1)
1.8V, 2.5V, 3.3V
0°C ~ 105°C (TA)
-
740-LBGA
740-TBGA (37.5x37.5)
https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8360zuajdg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- 10/100 Mbps Ethernet/IEEE Std. 802.3TM CDMA/CS interface through a media-independent interface (MII, RMII, RGMII)¹
- 1000 Mbps Ethernet/IEEE 802.3 CDMA/CS interface through a media-independent interface (GMII, RGMII, TBI, RTBI) on UCC1 and UCC2
- 9.6-Kbyte jumbo frames
- ATM full-duplex SAR, up to 622 Mbps (OC-12/STM-4), AAL0, AAL1, and AAL5 in accordance ITU-T I.363.5
- ATM AAL2 CPS, SSSAR, and SSTED up to 155 Mbps (OC-3/STM-1) Mbps full duplex (with 4 CPS packets per cell) in accordance ITU-T I.366.1 and I.363.2
- ATM traffic shaping for CBR, VBR, UBR, and GFR traffic types compatible with ATM forum TM4.1 for up to 64-Kbyte simultaneous ATM channels
- ATM AAL1 structured and unstructured circuit emulation service (CES 2.0) in accordance with ITU-T I.163.1 and ATM Forum af-vtoa-00-0078.000
- IMA (Inverse Multiplexing over ATM) for up to 31 IMA links over 8 IMA groups in accordance with the ATM forum AF-PHY-0086.000 (Version 1.0) and AF-PHY-0086.001 (Version 1.1)
- ATM Transmission Convergence layer support in accordance with ITU-T I.432
- ATM OAM handling features compatible with ITU-T I.610
- PPP, Multi-Link (ML-PPP), Multi-Class (MC-PPP) and PPP mux in accordance with the following RFCs: 1661, 1662, 1990, 2686, and 3153
- IP support for IPv4 packets including TOS, TTL, and header checksum processing
- Ethernet over first mile IEEE 802.3ah
- Shim header
- Ethernet-to-Ethernet/AAL5/AAL2 inter-working
- L2 Ethernet switching using MAC address or IEEE Std. 802.1P/Q[™] VLAN tags
- ATM (AAL2/AAL5) to Ethernet (IP) interworking in accordance with RFC2684 including bridging of ATM ports to Ethernet ports
- Extensive support for ATM statistics and Ethernet RMON/MIB statistics
- AAL2 protocol rate up to 4 CPS at OC-3/STM-1 rate
- Packet over Sonet (POS) up to 622-Mbps full-duplex 124 MultiPHY
- POS hardware; microcode must be loaded as an IRAM package
- Transparent up to 70-Mbps full-duplex
- HDLC up to 70-Mbps full-duplex
- HDLC BUS up to 10 Mbps
- Asynchronous HDLC
- UART
- BISYNC up to 2 Mbps
- User-programmable Virtual FIFO size
- QUICC multichannel controller (QMC) for 64 TDM channels
- One multichannel communication controller (MCC) only on the MPC8360E supporting the following:
 - 256 HDLC or transparent channels
 - 128 SS7 channels
 - Almost any combination of subgroups can be multiplexed to single or multiple TDM interfaces
- Two UTOPIA/POS interfaces on the MPC8360E supporting 124 MultiPHY each (optional 2*128 MultiPHY with extended address) and one UTOPIA/POS interface on the MPC8358E supporting 31/124 MultiPHY
- Two serial peripheral interfaces (SPI); SPI2 is dedicated to Ethernet PHY management

1.SMII or SGMII media-independent interface is not currently supported.

- DRAM chip configurations from 64 Mbits to 1 Gigabit with $\times 8/\times 16$ data ports
- Full ECC support (when the MPC8360E is configured as 2×32-bit DDR memory controllers, both support ECC)
- Page mode support (up to 16 simultaneous open pages for DDR1, up to 32 simultaneous open pages for DDR2)
- Contiguous or discontiguous memory mapping
- Read-modify-write support
- Sleep mode support for self refresh SDRAM
- Supports auto refreshing
- Supports source clock mode
- On-the-fly power management using CKE
- Registered DIMM support
- 2.5-V SSTL2 compatible I/O for DDR1, 1.8-V SSTL2 compatible I/O for DDR2
- External driver impedance calibration
- On-die termination (ODT)
- PCI interface
 - PCI Specification Revision 2.3 compatible
 - Data bus widths:
 - Single 32-bit data PCI interface that operates at up to 66 MHz
 - PCI 3.3-V compatible (not 5-V compatible)
 - PCI host bridge capabilities on both interfaces
 - PCI agent mode supported on PCI interface
 - Support for PCI-to-memory and memory-to-PCI streaming
 - Memory prefetching of PCI read accesses and support for delayed read transactions
 - Support for posting of processor-to-PCI and PCI-to-memory writes
 - On-chip arbitration, supporting five masters on PCI
 - Support for accesses to all PCI address spaces
 - Parity support
 - Selectable hardware-enforced coherency
 - Address translation units for address mapping between host and peripheral
 - Dual address cycle supported when the device is the target
 - Internal configuration registers accessible from PCI
- Local bus controller (LBC)
 - Multiplexed 32-bit address and data operating at up to 133 MHz
 - Eight chip selects support eight external slaves
 - Up to eight-beat burst transfers
 - 32-, 16-, and 8-bit port sizes are controlled by an on-chip memory controller
 - Three protocol engines available on a per chip select basis:
 - General-purpose chip select machine (GPCM)
 - Three user programmable machines (UPMs)
 - Dedicated single data rate SDRAM controller
 - Parity support
 - Default boot ROM chip select with configurable bus width (8-, 16-, or 32-bit)
- Programmable interrupt controller (PIC)
 - Functional and programming compatibility with the MPC8260 interrupt controller
 - Support for 8 external and 35 internal discrete interrupt sources
 - Support for one external (optional) and seven internal machine checkstop interrupt sources

Overall DC Electrical Characteristics

2.1 **Overall DC Electrical Characteristics**

This section covers the ratings, conditions, and other characteristics.

2.1.1 Absolute Maximum Ratings

This table provides the absolute maximum ratings.

Table 1. Absolute Maximum Ratings¹

	Characteristic	Symbol	Max Value	Unit	Notes
Core and PLL supply vo	ltage for	V _{DD} & AV _{DD}	-0.3 to 1.32	V	—
MPC8358 Device Part N Processor Frequency la QUICC Engine Frequen	Number with bel of AD=266MHz and AG=400MHz & icy label of E=300MHz & G=400MHz				
MPC8360 Device Part N Processor Frequency la QUICC Engine Frequen	Number with bel of AG=400MHz and AJ=533MHz & icy label of G=400MHz				
Core and PLL supply vo	ltage for	V _{DD} & AV _{DD}	-0.3 to 1.37	V	—
MPC8360 device Part N Processor Frequency la Frequency label of H=50	lumber with bel of AL=667MHz and QUICC Engine 00MHz				
DDR and DDR2 DRAM	I/O voltage DDR DDR2	GV _{DD}	-0.3 to 2.75 -0.3 to 1.89	V	—
Three-speed Ethernet I	O, MII management voltage	LV _{DD}	-0.3 to 3.63	V	—
PCI, local bus, DUART, I ² C, SPI, and JTAG I/O	system control and power management, voltage	OV _{DD}	-0.3 to 3.63	V	—
Input voltage	DDR DRAM signals	MV _{IN}	-0.3 to (GV _{DD} + 0.3)	V	2, 5
	DDR DRAM reference	MV _{REF}	-0.3 to (GV _{DD} + 0.3)	V	2, 5
	Three-speed Ethernet signals	LV _{IN}	-0.3 to (LV _{DD} + 0.3)	V	4, 5
	Local bus, DUART, CLKIN, system control and power management, I ² C, SPI, and JTAG signals	OV _{IN}	-0.3 to (OV _{DD} + 0.3)	V	3, 5
	PCI	OV _{IN}	-0.3 to (OV _{DD} + 0.3)	V	6

Characteristic	Symbol	Recommended Value	Unit	Notes
PCI, local bus, DUART, system control and power management, I^2C , SPI, and JTAG I/O voltage	OV _{DD}	3.3 V ± 330 mV	V	_
Junction temperature	TJ	0 to 105 -40 to 105	°C	2

Table 2. Recommended Operating Conditions (continued)

Notes:

- 1. GV_{DD}, LV_{DD}, OV_{DD}, AV_{DD}, and V_{DD} must track each other and must vary in the same direction—either in the positive or negative direction.
- The operating conditions for junction temperature, T_J, on the 600/333/400 MHz and 500/333/500 MHz on rev. 2.0 silicon is 0° to 70 °C. Refer to Errata General9 in *Chip Errata for the MPC8360E, Rev. 1*.
- 3. For more information on Part Numbering, refer to Table 80.

This figure shows the undershoot and overshoot voltages at the interfaces of the device.

1. Note that $t_{\mbox{interface}}$ refers to the clock period associated with the bus clock interface.

Figure 3. Overshoot/Undershoot Voltage for $GV_{DD}/OV_{DD}/LV_{DD}$

DDR and DDR2 SDRAM AC Electrical Characteristics

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
Input high voltage	V _{IH}	MV _{REF} + 0.18	GV _{DD} + 0.3	V	—
Input low voltage	V _{IL}	-0.3	MV _{REF} – 0.18	V	—
Output leakage current	I _{OZ}	—	±10	μA	4
Output high current (V _{OUT} = 1.95 V)	I _{ОН}	-15.2	-	mA	—
Output low current (V _{OUT} = 0.35 V)	I _{OL}	15.2	_	mA	—
MV _{REF} input leakage current	I _{VREF}	—	±10	μA	—
Input current (0 V ≰⁄ _{IN} ≤OV _{DD})	I _{IN}	—	±10	μA	_

Table 16. DDR SDRAM DC Electrical Characteristics for GV_{DD}(typ) = 2.5 V (continued)

Notes:

1. GV_{DD} is expected to be within 50 mV of the DRAM GV_{DD} at all times.

- 2. MV_{REF} is expected to be equal to $0.5 \times GV_{DD}$, and to track GV_{DD} DC variations as measured at the receiver. Peak-to-peak noise on MV_{REF} may not exceed ±2% of the DC value.
- 3. V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to MV_{REF}. This rail should track variations in the DC level of MV_{REF}.
- 4. Output leakage is measured with all outputs disabled, 0 V \leq V_{OUT} \leq GV_{DD}.

This table provides the DDR capacitance when $GV_{DD}(typ) = 2.5$ V.

Table 17. DDR SDRAM Capacitance for GV_{DD}(typ) = 2.5 V

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
Input/output capacitance: DQ, DQS	C _{IO}	6	8	pF	1
Delta input/output capacitance: DQ, DQS	C _{DIO}	_	0.5	pF	1

Note:

1. This parameter is sampled. GV_{DD} = 2.5 V ± 0.125 V, f = 1 MHz, T_A = 25° C, V_{OUT} = $GV_{DD}/2$, V_{OUT} (peak-to-peak) = 0.2 V.

6.2 DDR and DDR2 SDRAM AC Electrical Characteristics

This section provides the AC electrical characteristics for the DDR and DDR2 SDRAM interface.

6.2.1 DDR and DDR2 SDRAM Input AC Timing Specifications

This table provides the input AC timing specifications for the DDR2 SDRAM interface when $GV_{DD}(typ) = 1.8 V$.

Table 18. DDR2 SDRAM Input AC Timing Specifications for GV_{DD}(typ) = 1.8 V

At recommended operating conditions with GV_{DD} of 1.8 V ± 5%.

Parameter	Symbol	Min	Мах	Unit	Notes
AC input low voltage	V _{IL}	—	MV _{REF} – 0.25	V	—
AC input high voltage	V _{IH}	MV _{REF} + 0.25	_	V	_

GMII, MII, RMII, TBI, RGMII, and RTBI AC Timing Specifications

Physical Layer Device Specification Version 1.2a (9/22/2000). The electrical characteristics for the MDIO and MDC are specified in Section 8.3, "Ethernet Management Interface Electrical Characteristics."

8.1.1 10/100/1000 Ethernet DC Electrical Characteristics

The electrical characteristics specified here apply to media independent interface (MII), reduced gigabit media independent interface (RGMII), reduced ten-bit interface (RTBI), reduced media independent interface (RMII) signals, management data input/output (MDIO) and management data clock (MDC).

The MII and RMII interfaces are defined for 3.3 V, while the RGMII and RTBI interfaces can be operated at 2.5 V. The RGMII and RTBI interfaces follow the *Reduced Gigabit Media-Independent Interface (RGMII) Specification Version 1.3*. The RMII interface follows the *RMII Consortium RMII Specification Version 1.2*.

Table 25. RGMII/RTBI, GMII, TBI, MII, and RMII DC Electrical Characteristics (when operating at 3.3 V)

Parameter	Symbol	Conditions		Min	Мах	Unit	Notes
Supply voltage 3.3 V	LV _{DD}	—		2.97	3.63	V	1
Output high voltage	V _{OH}	I _{OH} = -4.0 mA	$LV_{DD} = Min$	2.40	LV _{DD} + 0.3	V	—
Output low voltage	V _{OL}	I _{OL} = 4.0 mA	$LV_{DD} = Min$	GND	0.50	V	—
Input high voltage	V _{IH}	—	_	2.0	LV _{DD} + 0.3	V	—
Input low voltage	V _{IL}	—	_	-0.3	0.90	V	—
Input current	I _{IN}	0 V ≤V _{IN} ≤LV _{DD}		—	±10	μA	—

Note:

1. GMII/MII pins that are not needed for RGMII, RMII, or RTBI operation are powered by the OV_{DD} supply.

Table 26. RGMII/RTBI DC Electrical Characteristics	(when o	perating	at 2.5 V)
	·······			,

Parameters	Symbol	Conditions		Min	Max	Unit
Supply voltage 2.5 V	LV _{DD}	-	_	2.37	2.63	V
Output high voltage	V _{OH}	I _{OH} = -1.0 mA	LV _{DD} = Min	2.00	LV _{DD} + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 1.0 mA	LV _{DD} = Min	GND – 0.3	0.40	V
Input high voltage	V _{IH}	—	LV _{DD} = Min	1.7	LV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	$LV_{DD} = Min$	-0.3	0.70	V
Input current	I _{IN}	0 V ≤V _{IN} ≤LV _{DD}		—	±10	μA

8.2 GMII, MII, RMII, TBI, RGMII, and RTBI AC Timing Specifications

The AC timing specifications for GMII, MII, TBI, RGMII, and RTBI are presented in this section.

8.2.1 GMII Timing Specifications

This sections describe the GMII transmit and receive AC timing specifications.

8.2.3 RMII AC Timing Specifications

This section describes the RMII transmit and receive AC timing specifications.

8.2.3.1 RMII Transmit AC Timing Specifications

This table provides the RMII transmit AC timing specifications.

Table 31. RMII Transmit AC Timing Specifications

At recommended operating conditions with LV_{DD}/OV_{DD} of 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
REF_CLK clock	t _{RMX}	_	20	—	ns
REF_CLK duty cycle	t _{RMXH} /t _{RMX}	35	_	65	%
REF_CLK to RMII data TXD[1:0], TX_EN delay	t _{RMTKHDX} t _{RMTKHDV}	2	_	 10	ns
REF_CLK data clock rise time	t _{RMXR}	1.0	_	4.0	ns
REF_CLK data clock fall time	t _{RMXF}	1.0		4.0	ns

Note:

The symbols used for timing specifications follow the pattern of t<sub>(first three letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{RMTKHDX} symbolizes RMII transmit timing (RMT) for the time t_{RMX} clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in general, the clock reference symbol representation is based on two to three letters representing the clock of a particular functional. For example, the subscript of t_{RMX} represents the RMII(RM) reference (X) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
</sub>

This figure shows the RMII transmit AC timing diagram.

Figure 15. RMII Transmit AC Timing Diagram

8.2.3.2 RMII Receive AC Timing Specifications

This table provides the RMII receive AC timing specifications.

Table 32. RMII Receive AC Timing Specifications

At recommended operating conditions with LV_{DD}/OV_{DD} of 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
REF_CLK clock period	t _{RMX}	—	20	—	ns
REF_CLK duty cycle	t _{RMXH} /t _{RMX}	35	—	65	%

Ethernet Management Interface Electrical Characteristics

This figure shows the RGMII and RTBI AC timing and multiplexing diagrams.

Figure 20. RGMII and RTBI AC Timing and Multiplexing Diagrams

8.3 Ethernet Management Interface Electrical Characteristics

The electrical characteristics specified here apply to MII management interface signals MDIO (management data input/output) and MDC (management data clock). The electrical characteristics for GMII, RGMII, TBI, and RTBI are specified in Section 8.1, "Three-Speed Ethernet Controller (10/100/1000 Mbps)— GMII/MII/RMII/TBI/RGMII/RTBI Electrical Characteristics."

8.3.1 MII Management DC Electrical Characteristics

The MDC and MDIO are defined to operate at a supply voltage of 3.3 V. The DC electrical characteristics for MDIO and MDC are provided in this table.

Parameter	Symbol	Conditions		Min	Мах	Unit
Supply voltage (3.3 V)	OV _{DD}	—		2.97	3.63	V
Output high voltage	V _{OH}	$I_{OH} = -1.0 \text{ mA}$	$OV_{DD} = Min$	2.10	OV _{DD} + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 1.0 mA	$OV_{DD} = Min$	GND	0.50	V
Input high voltage	V _{IH}	-	_		—	V
Input low voltage	V _{IL}	—		—	0.80	V
Input current	I _{IN}	0 V ≤V _{IN}	₁≤OV _{DD}	—	±10	μA

Table 36. MII Management DC Electrica	I Characteristics When Powered at 3.3 V
---------------------------------------	---

8.3.2 MII Management AC Electrical Specifications

This table provides the MII management AC timing specifications.

Table 37. MII Management AC Timing Specifications

At recommended operating conditions with LV_{DD} is 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit	Notes
MDC frequency	f _{MDC}	—	2.5	—	MHz	2
MDC period	t _{MDC}	—	400	—	ns	—
MDC clock pulse width high	t _{MDCH}	32	—	—	ns	_
MDC to MDIO delay	^t мрткнрх ^t мрткнрv	10 —	_	 110	ns	3
MDIO to MDC setup time	t _{MDRDVKH}	10	—	—	ns	—
MDIO to MDC hold time	t _{MDRDXKH}	0	—	—	ns	—
MDC rise time	t _{MDCR}	—	—	10	ns	—
MDC fall time	t _{MDHF}	_	_	10	ns	

Notes:

- The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{MDKHDX} symbolizes management data timing (MD) for the time t_{MDC} from clock reference (K) high (H) until data outputs (D) are invalid (X) or data hold time. Also, t_{MDRDVKH} symbolizes management data timing (MD) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MDC} clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
 </sub>
- This parameter is dependent on the csb_clk speed (that is, for a csb_clk of 267 MHz, the maximum frequency is 8.3 MHz and the minimum frequency is 1.2 MHz; for a csb_clk of 375 MHz, the maximum frequency is 11.7 MHz and the minimum frequency is 1.7 MHz).
- 3. This parameter is dependent on the ce_clk speed (that is, for a ce_clk of 200 MHz, the delay is 90 ns and for a ce_clk of 300 MHz, the delay is 63 ns).

This figure shows the MII management AC timing diagram.

Figure 21. MII Management Interface Timing Diagram

JTAG AC Electrical Characteristics

This figure provides the AC test load for TDO and the boundary-scan outputs of the device.

Figure 29. AC Test Load for the JTAG Interface

This figure provides the JTAG clock input timing diagram.

VM = Midpoint Voltage (OV_{DD}/2)

Figure 30. JTAG Clock Input Timing Diagram

This figure provides the $\overline{\text{TRST}}$ timing diagram.

This figure provides the boundary-scan timing diagram.

VM = Midpoint Voltage (OV_{DD}/2)

This figure shows the PCI input AC timing conditions.

Figure 37. PCI Input AC Timing Measurement Conditions

This figure shows the PCI output AC timing conditions.

13 Timers

This section describes the DC and AC electrical specifications for the timers of the MPC8360E/58E.

13.1 Timers DC Electrical Characteristics

This table provides the DC electrical characteristics for the device timer pins, including TIN, TOUT, TGATE, and RTC_CLK.

Table 49. Timers DC Electrical Characteristics

Characteristic	Symbol	Condition	Min	Мах	Unit
Output high voltage	V _{OH}	I _{OH} = -6.0 mA	2.4	_	V
Output low voltage	V _{OL}	I _{OL} = 6.0 mA	_	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	_	0.4	V
Input high voltage	V _{IH}	—	2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	-0.3	0.8	V
Input current	I _{IN}	$0 \ V \leq V_{IN} \leq OV_{DD}$	_	±10	μA

IPIC AC Timing Specifications

15.2 IPIC AC Timing Specifications

This table provides the IPIC input and output AC timing specifications.

Table 54. IPIC Input AC Timing Specifications¹

Characteristic	Symbol ²	Min	Unit
IPIC inputs—minimum pulse width	t _{PIWID}	20	ns

Notes:

1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are measured at the pin.

IPIC inputs and outputs are asynchronous to any visible clock. IPIC outputs should be synchronized before use by any
external synchronous logic. IPIC inputs are required to be valid for at least t_{PIWID} ns to ensure proper operation when
working in edge triggered mode.

16 SPI

This section describes the DC and AC electrical specifications for the SPI of the MPC8360E/58E.

16.1 SPI DC Electrical Characteristics

This table provides the DC electrical characteristics for the device SPI.

Table 55. SPI DC Electrical Characteristics

Characteristic	Symbol	Condition	Min	Мах	Unit
Output high voltage	V _{OH}	I _{OH} = -6.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 6.0 mA	_	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	_	0.4	V
Input high voltage	V _{IH}	—	2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	-0.3	0.8	V
Input current	I _{IN}	0 V ≤V _{IN} ≤OV _{DD}	_	±10	μA

16.2 SPI AC Timing Specifications

This table and provide the SPI input and output AC timing specifications.

Table 56. SPI AC Timing Specifications¹

Characteristic	Symbol ²	Min	Мах	Unit
SPI outputs—Master mode (internal clock) delay	t _{NIKHOX} t _{NIKHOV}	0.3	8	ns
SPI outputs—Slave mode (external clock) delay	t _{NEKHOX} t _{NEKHOV}	2	8	ns
SPI inputs—Master mode (internal clock) input setup time	t _{NIIVKH}	8	—	ns
SPI inputs—Master mode (internal clock) input hold time	t _{NIIXKH}	0	—	ns
SPI inputs—Slave mode (external clock) input setup time	t _{NEIVKH}	4	—	ns

Table 60. UTOPIA AC Timing Specifications¹ (continued)

Characteristic	Symbol ²	Min	Мах	Unit	Notes
UTOPIA inputs—Internal clock input hold time	t _{UIIXKH}	2.4	—	ns	
UTOPIA inputs—External clock input hold time	t _{UEIXKH}	1	—	ns	3

Notes:

- 1. Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are measured at the pin.
- The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{UIKHOX} symbolizes the UTOPIA outputs internal timing (UI) for the time t_{UTOPIA} memory clock reference (K) goes from the high state (H) until outputs (O) are invalid (X).
 </sub>
- In rev. 2.0 silicon, due to errata, t_{UEIVKH} minimum is 4.3 ns and t_{UEIXKH} minimum is 1.4 ns under specific conditions. Refer to Errata QE_UPC3 in *Chip Errata for the MPC8360E, Rev. 1.*

This figure provides the AC test load for the UTOPIA.

Figure 46. UTOPIA AC Test Load

These figures represent the AC timing from Table 56. Note that although the specifications generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge is the active edge.

This figure shows the UTOPIA timing with external clock.

Figure 47. UTOPIA AC Timing (External Clock) Diagram

Pinout Listings

Table 66. MPC8360E TBGA Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes	
No Connect					
NC	AM20, AU19	—	—	—	

Notes:

- 1. This pin is an open drain signal. A weak pull-up resistor (1 kΩ) should be placed on this pin to OV_{DD}
- 2. This pin is an open drain signal. A weak pull-up resistor (2–10 kΩ) should be placed on this pin to OV_{DD}.
- 3. This output is actively driven during reset rather than being three-stated during reset.
- 4. These JTAG pins have weak internal pull-up P-FETs that are always enabled.
- 5. This pin should have a weak pull up if the chip is in PCI host mode. Follow PCI specifications recommendation.
- 6. These are On Die Termination pins, used to control DDR2 memories internal termination resistance.
- 7. This pin must always be tied to GND.
- 8. This pin must always be left not connected.
- 9. Refer to MPC8360E PowerQUICC II Pro Integrated Communications Processor Reference Manual section on "RGMII Pins," for information about the two UCC2 Ethernet interface options.
- 10.It is recommended that MDIC0 be tied to GND using an 18.2 Ω resistor and MDIC1 be tied to DDR power using an 18.2 Ω resistor for DDR2.

This table shows the pin list of the MPC8358E TBGA package.

Table 67. MPC8358E TBGA Pinout Listing

Signal	Package Pin Number	Pin Type	Power Supply	Notes	
DDR SDRAM Memory Controller Interface					
MEMC1_MDQ[0:63]	AJ34, AK33, AL33, AL35, AJ33, AK34, AK32, AM36, AN37, AN35, AR34, AT34, AP37, AP36, AR36, AT35, AP34, AR32, AP32, AM31, AN33, AM34, AM33, AM30, AP31, AM27, AR30, AT32, AN29, AP29, AN27, AR29, AN8, AN7, AM8, AM6, AP9, AN9, AT7, AP7, AU6, AP6, AR4, AR3, AT6, AT5, AR5, AT3, AP4, AM5, AP3, AN3, AN5, AL5, AN4, AM2, AL2, AH5, AK3, AJ2, AJ3, AH4, AK4, AH3	I/O	GV _{DD}		
MEMC_MECC[0:4]/MSRCID[0:4]	AP24, AN22, AM19, AN19, AM24	I/O	GV _{DD}	—	
MEMC_MECC[5]/MDVAL	AM23	I/O	GV _{DD}	—	
MEMC_MECC[6:7]	AM22, AN18	I/O	GV _{DD}	—	
MEMC_MDM[0:8]	AL36, AN34, AP33, AN28,AT9, AU4, AM3, AJ6,AP27	0	GV _{DD}	Ι	
MEMC_MDQS[0:8]	AK35, AP35, AN31, AM26,AT8, AU3, AL4, AJ5, AP26	I/O	GV _{DD}	Ι	
MEMC_MBA[0:1]	AU29, AU30	0	GV _{DD}		
MEMC_MBA[2]	AT30	0	GV _{DD}	_	
MEMC_MA[0:14]	AU21, AP22, AP21, AT21, AU25, AU26, AT23, AR26, AU24, AR23, AR28, AU23, AR22, AU20, AR18	0	GV _{DD}		
MEMC_MODT[0:3]	AG33, AJ36, AT1, AK2	0	GV _{DD}	6	

Pinout Listings

Signal	Package Pin Number	Pin Type	Power Supply	Notes	
CE_PB[0:27]	AE2, AE1, AD5, AD3, AD2, AC6, AC5, AC4, AC2, AC1, AB5, AB4, AB3, AB1, AA6, AA4, AA2, Y6, Y4, Y3, Y2, Y1, W6, W5, W2, V5, V3, V2	I/O	OV _{DD}	_	
CE_PC[0:1]	V1, U6	I/O	OV _{DD}		
CE_PC[2:3]	C16, A15	I/O	LV _{DD} 1	—	
CE_PC[4:6]	U4, U3, T6	I/O	OV _{DD}	—	
CE_PC[7]	C19	I/O	LV _{DD} 2	—	
CE_PC[8:9]	A4, C5	I/O	LV _{DD} 0	—	
CE_PC[10:30]	T5, T4, T2, T1, R5, R3, R1, C11, D12, F13, B10, C10, E12, A9, B8, D10, A14, E15, B14, D15, AH2	I/O	OV _{DD}	—	
CE_PD[0:27]	E11, D9, C8, F11, A7, E9, C7, A6, F10, B6, D7, E8, B5, A5, C2, E4, F5, B1, D2, G5, D1, E2, H6, F3, E1, F2, G3, H4	I/O	OV _{DD}	—	
CE_PE[0:31]	K3, J2, F1, G2, J5, H3, G1, H2, K6, J3, K5, K4, L6, P6, P4, P3, P1, N4, N5, N2, N1, M2, M3, M5, M6, L1, L2, L4, E14, C13, C14, B13	I/O	OV _{DD}	—	
CE_PF[0:3]	F14, D13, A12, A11	I/O	OV _{DD}	—	
	Clocks				
PCI_CLK_OUT[0]/CE_PF[26]	B22	I/O	LV _{DD} 2	—	
PCI_CLK_OUT[1:2]/CE_PF[27:28]	D22, A23	I/O	OV _{DD}	—	
CLKIN	E37	I	OV _{DD}	—	
PCI_CLOCK/PCI_SYNC_IN	M36	I	OV _{DD}	—	
PCI_SYNC_OUT/CE_PF[29]	D37	I/O	OV _{DD}	3	
	JTAG				
ТСК	К33	I	OV _{DD}	_	
TDI	K34	I	OV _{DD}	4	
TDO	H37	0	OV _{DD}	3	
TMS	J36	I	OV _{DD}	4	
TRST	L32	I	OV _{DD}	4	
Test					
TEST	L35	I	OV _{DD}	7	
TEST_SEL	AU34	I	GV _{DD}	10	
	РМС				
QUIESCE	B36	0	OV _{DD}	—	
System Control					

Table 67. MPC8358E TBGA Pinout Listing (continued)

This figure shows the internal distribution of clocks within the MPC8358E.

The primary clock source for the device can be one of two inputs, CLKIN or PCI_CLK, depending on whether the device is configured in PCI host or PCI agent mode. Note that in PCI host mode, the primary clock input also depends on whether PCI clock outputs are selected with RCWH[PCICKDRV]. When the device is configured as a PCI host device (RCWH[PCIHOST] = 1) and PCI clock output is selected (RCWH[PCICKDRV] = 1), CLKIN is its primary input clock. CLKIN feeds the PCI clock divider (\div 2) and the multiplexors for PCI_SYNC_OUT and PCI_CLK_OUT. The CFG_CLKIN_DIV configuration input selects whether CLKIN or CLKIN/2 is driven out on the PCI_SYNC_OUT signal. The OCCR[PCIOEN*n*] parameters enable the PCI_CLK_OUT*n*, respectively.

PCI_SYNC_OUT is connected externally to PCI_SYNC_IN to allow the internal clock subsystem to synchronize to the system PCI clocks. PCI_SYNC_OUT must be connected properly to PCI_SYNC_IN, with equal delay to all PCI agent devices in the system, to allow the device to function. When the device is configured as a PCI agent device, PCI_CLK is the primary input

Table 77. Package Thermal Characteristics for the TBGA Package (continued)

Characteristic	Symbol	Value	Unit	Notes
Junction-to-package natural convection on top	ΨJT	1	° C/W	6

Notes

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, airflow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per JEDEC JESD51-2 and SEMI G38-87 with the single layer board horizontal.
- 3. Per JEDEC JESD51-6 with the board horizontal. 1 m/sec is approximately equal to 200 linear feet per minute (LFM).
- 4. Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.

22.2 Thermal Management Information

For the following sections, $P_D = (V_{DD} \times I_{DD}) + P_{I/O}$ where $P_{I/O}$ is the power dissipation of the I/O drivers. See Table 6 for typical power dissipations values.

22.2.1 Estimation of Junction Temperature with Junction-to-Ambient Thermal Resistance

An estimation of the chip junction temperature, T_J, can be obtained from the equation:

$$T_J = T_A + (R_{\theta JA} \times P_D)$$

where:

 T_J = junction temperature (° C)

 T_A = ambient temperature for the package (° C)

 $R_{\theta IA}$ = junction-to-ambient thermal resistance (° C/W)

 P_D = power dissipation in the package (W)

The junction-to-ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal performance. As a general statement, the value obtained on a single-layer board is appropriate for a tightly packed printed-circuit board. The value obtained on the board with the internal planes is usually appropriate if the board has low power dissipation and the components are well separated. Test cases have demonstrated that errors of a factor of two (in the quantity $T_J - T_A$) are possible.

22.2.2 Estimation of Junction Temperature with Junction-to-Board Thermal Resistance

The thermal performance of a device cannot be adequately predicted from the junction-to-ambient thermal resistance. The thermal performance of any component is strongly dependent on the power dissipation of surrounding components. Additionally, the ambient temperature varies widely within the application. For many natural convection and especially closed box applications, the board temperature at the perimeter (edge) of the package is approximately the same as the local air temperature near the device. Specifying the local ambient conditions explicitly as the board temperature provides a more precise description of the local ambient conditions that determine the temperature of the device. At a known board temperature, the junction temperature is estimated using the following equation:

22.3.1 Experimental Determination of the Junction Temperature with a Heat Sink

When heat sink is used, the junction temperature is determined from a thermocouple inserted at the interface between the case of the package and the interface material. A clearance slot or hole is normally required in the heat sink. Minimizing the size of the clearance is important to minimize the change in thermal performance caused by removing part of the thermal interface to the heat sink. Because of the experimental difficulties with this technique, many engineers measure the heat sink temperature and then back calculate the case temperature using a separate measurement of the thermal resistance of the interface. From this case temperature, the junction temperature is determined from the junction-to-case thermal resistance.

$$T_J = T_C + (R_{\theta JC} \times P_D)$$

where:

 T_I = junction temperature (° C)

 T_C = case temperature of the package (° C)

 $R_{\theta JC}$ = junction to case thermal resistance (° C/W)

 P_D = power dissipation (W)

23 System Design Information

This section provides electrical and thermal design recommendations for successful application of the MPC8360E/58E. Additional information can be found in *MPC8360E/MPC8358E PowerQUICC Design Checklist* (AN3097).

23.1 System Clocking

The device includes two PLLs, as follows.

- The platform PLL (AV_{DD}1) generates the platform clock from the externally supplied CLKIN input. The frequency ratio between the platform and CLKIN is selected using the platform PLL ratio configuration bits as described in Section 21.1, "System PLL Configuration."
- The e300 core PLL (AV_{DD}2) generates the core clock as a slave to the platform clock. The frequency ratio between the e300 core clock and the platform clock is selected using the e300 PLL ratio configuration bits as described in Section 21.2, "Core PLL Configuration."

23.2 PLL Power Supply Filtering

Each of the PLLs listed above is provided with power through independent power supply pins (AV_{DD} 1, AV_{DD} 2, respectively). The AV_{DD} level should always be equivalent to V_{DD} , and preferably these voltages are derived directly from V_{DD} through a low frequency filter scheme such as the following.

There are a number of ways to reliably provide power to the PLLs, but the recommended solution is to provide five independent filter circuits as illustrated in Figure 56, one to each of the five AV_{DD} pins. By providing independent filters to each PLL, the opportunity to cause noise injection from one PLL to the other is reduced.

This circuit is intended to filter noise in the PLLs resonant frequency range from a 500 kHz to 10 MHz range. It should be built with surface mount capacitors with minimum Effective Series Inductance (ESL). Consistent with the recommendations of Dr. Howard Johnson in *High Speed Digital Design: A Handbook of Black Magic* (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a single large value capacitor.

Each circuit should be placed as close as possible to the specific AV_{DD} pin being supplied to minimize noise coupled from nearby circuits. It should be possible to route directly from the capacitors to the AV_{DD} pin, which is on the periphery of package, without the inductance of vias.

This figure shows the PLL power supply filter circuit.

Figure 56. PLL Power Supply Filter Circuit

23.3 Decoupling Recommendations

Due to large address and data buses as well as high operating frequencies, the device can generate transient power surges and high frequency noise in its power supply, especially while driving large capacitive loads. This noise must be prevented from reaching other components in the device system, and the device itself requires a clean, tightly regulated source of power. Therefore, it is recommended that the system designer place at least one decoupling capacitor at each V_{DD} , OV_{DD} , GV_{DD} , and LV_{DD} pins of the device. These decoupling capacitors should receive their power from separate V_{DD} , OV_{DD} , GV_{DD} , and GND power planes in the PCB, utilizing short traces to minimize inductance. Capacitors may be placed directly under the device using a standard escape pattern. Others may surround the part.

These capacitors should have a value of 0.01 or 0.1 μ F. Only ceramic SMT (surface mount technology) capacitors should be used to minimize lead inductance, preferably 0402 or 0603 sizes.

Additionally, it is recommended that there be several bulk storage capacitors distributed around the PCB, feeding the V_{DD} , OV_{DD} , GV_{DD} , GV_{DD} , and LV_{DD} planes, to enable quick recharging of the smaller chip capacitors. These bulk capacitors should have a low ESR (equivalent series resistance) rating to ensure the quick response time necessary. They should also be connected to the power and ground planes through two vias to minimize inductance. Suggested bulk capacitors—100–330 μ F (AVX TPS tantalum or Sanyo OSCON).

23.4 Connection Recommendations

To ensure reliable operation, it is highly recommended to connect unused inputs to an appropriate signal level. Unused active low inputs should be tied to OV_{DD} , GV_{DD} , or LV_{DD} as required. Unused active high inputs should be connected to GND. All NC (no-connect) signals must remain unconnected.

Power and ground connections must be made to all external V_{DD}, GV_{DD}, LV_{DD}, OV_{DD}, and GND pins of the device.

23.5 Output Buffer DC Impedance

The device drivers are characterized over process, voltage, and temperature. For all buses, the driver is a push-pull single-ended driver type (open drain for I^2C).

To measure Z_0 for the single-ended drivers, an external resistor is connected from the chip pad to OV_{DD} or GND. Then, the value of each resistor is varied until the pad voltage is $OV_{DD}/2$ (see Figure 57). The output impedance is the average of two components, the resistances of the pull-up and pull-down devices. When data is held high, SW1 is closed (SW2 is open) and R_p is trimmed until the voltage at the pad equals $OV_{DD}/2$. R_p then becomes the resistance of the pull-up devices. R_p and R_N are designed to be close to each other in value. Then, $Z_0 = (R_P + R_N)/2$.

Table 82.	Revision	History	(continued)
-----------	----------	---------	-------------

Rev. Number	Date	Substantive Change(s)
3	03/2010	 Changed references to RCWH[PCICKEN] to RCWH[PCICKDRV]. In Table 2, added extended temperature characteristics. Added Figure 6, "DDR Input Timing Diagram." In Figure 53, "Mechanical Dimensions and Bottom Surface Nomenclature of the TBGA Package," removed watermark. Updated the title of Table 19,"DDR SDRAM Input AC Timing Specifications." In Table 20, "DDR and DDR2 SDRAM Input AC Timing Specifications Mode," changed table subtitle. In Table 20, "DDR and DDR2 SDRAM Input AC Timing Specifications Mode," changed table subtitle. In Table 27–Table 30, and Table 33—Table 34, changed the rise and fall time specifications to reference 20–80% and 80–20% of the voltage supply, respectively. In Table 38, "IEEE 1588 Timer AC Specifications," changed units to "ns" for t_{I2DVKH}. In Table 45, "I2C AC Electrical Specifications," changed units to "ns" for t_{I2DVKH}. In Table 66, "MPC8360E TBGA Pinout Listing," and Table 67 "MPC8358E TBGA Pinout Listing, added note 7: "This pin must always be tied to GND" to the TEST pin and added a note to SPARE1 stating: "This pin must always be left not connected." In Section 4, "Clock Input Timing," added note regarding rise/fall time on QUICC Engine block input pins. Added Section 4.1, "injol/100/1000 Ethernet DC Electrical Characteristics." In Section 2.1, "Pinout Listing," added sentence stating "Refer to AN3097, 'MPC8360/MPC8358E PowerQUICC Design Checklist,' for proper pin termination and usage." In Section 21, "Clocking," removed statement: "The OCCR[PCICDn] parameters select whether CLKIN or CLKIN/2 is driven out on the PCI_CLK_OUTn signals." In Section 21.1, "System PLL Configuration," updated the system VCO frequency conditions. In Table 80, added extended temperature characteristics.
2	12/2007	Initial release.