

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Active
Core Processor	PowerPC e300
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	533MHz
Co-Processors/DSP	Communications; QUICC Engine
RAM Controllers	DDR, DDR2
Graphics Acceleration	No
Display & Interface Controllers	·
Ethernet	10/100/1000Mbps (1)
SATA	
USB	USB 1.x (1)
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	740-LBGA
Supplier Device Package	740-TBGA (37.5x37.5)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mpc8360zuajdga

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Eight TDM interfaces on the MPC8360E and four TDM interfaces on the MPC8358E with 1-bit mode for E3/T3 rates in clear channel
- Sixteen independent baud rate generators and 30 input clock pins for supplying clocks to UCC and MCC serial channels (MCC is only available on the MPC8360E)
- Four independent 16-bit timers that can be interconnected as four 32-bit timers
- Interworking functionality:
 - Layer 2 10/100-Base T Ethernet switch
 - ATM-to-ATM switching (AAL0, 2, 5)
 - Ethernet-to-ATM switching with L3/L4 support
 - PPP interworking
- Security engine is optimized to handle all the algorithms associated with IPSec, SSL/TLS, SRTP, 802.11i®, iSCSI, and IKE processing. The security engine contains four crypto-channels, a controller, and a set of crypto execution units (EUs).
 - Public key execution unit (PKEU) supporting the following:
 - RSA and Diffie-Hellman
 - Programmable field size up to 2048 bits
 - Elliptic curve cryptography
 - F2m and F(p) modes
 - Programmable field size up to 511 bits
 - Data encryption standard execution unit (DEU)
 - DES, 3DES
 - Two key (K1, K2) or three key (K1, K2, K3)
 - ECB and CBC modes for both DES and 3DES
 - Advanced encryption standard unit (AESU)
 - Implements the Rinjdael symmetric key cipher
 - Key lengths of 128, 192, and 256 bits, two key
 - ECB, CBC, CCM, and counter modes
 - ARC four execution unit (AFEU)
 - Implements a stream cipher compatible with the RC4 algorithm
 - 40- to 128-bit programmable key
 - Message digest execution unit (MDEU)
 - SHA with 160-, 224-, or 256-bit message digest
 - MD5 with 128-bit message digest
 - HMAC with either SHA or MD5 algorithm
 - Random number generator (RNG)
 - Four crypto-channels, each supporting multi-command descriptor chains
 - Static and/or dynamic assignment of crypto-execution units via an integrated controller
 - Buffer size of 256 bytes for each execution unit, with flow control for large data sizes
 - Storage/NAS XOR parity generation accelerator for RAID applications
- Dual DDR SDRAM memory controllers on the MPC8360E and a single DDR SDRAM memory controller on the MPC8358E
 - Programmable timing supporting both DDR1 and DDR2 SDRAM
 - On the MPC8360E, the DDR buses can be configured as two 32-bit buses or one 64-bit bus; on the MPC8358E, the DDR bus can be configured as a 32- or 64-bit bus
 - 32- or 64-bit data interface, up to 333 MHz (for the MPC8360E) and 266 MHz (for the MPC8358E) data rate
 - Four banks of memory, each up to 1 Gbyte

- Programmable highest priority request
- Four groups of interrupts with programmable priority
- External and internal interrupts directed to communication processor
- Redirects interrupts to external INTA pin when in core disable mode
- Unique vector number for each interrupt source
- Dual industry-standard I²C interfaces
 - Two-wire interface
 - Multiple master support
 - Master or slave I²C mode support
 - On-chip digital filtering rejects spikes on the bus
 - System initialization data is optionally loaded from I²C-1 EPROM by boot sequencer embedded hardware
- DMA controller
 - Four independent virtual channels
 - Concurrent execution across multiple channels with programmable bandwidth control
 - All channels accessible by local core and remote PCI masters
 - Misaligned transfer capability
 - Data chaining and direct mode
 - Interrupt on completed segment and chain
 - DMA external handshake signals: DMA_DREQ[0:3]/DMA_DACK[0:3]/DMA_DONE[0:3]. There is one set for each DMA channel. The pins are multiplexed to the parallel IO pins with other QE functions.
- DUART
 - Two 4-wire interfaces (RxD, TxD, RTS, CTS)
 - Programming model compatible with the original 16450 UART and the PC16550D
- System timers
 - Periodic interrupt timer
 - Real-time clock
 - Software watchdog timer
 - Eight general-purpose timers
- IEEE Std. 1149.1[™]-compliant, JTAG boundary scan
- Integrated PCI bus and SDRAM clock generation

2 Electrical Characteristics

This section provides the AC and DC electrical specifications and thermal characteristics for the MPC8360E/58E. The device is currently targeted to these specifications. Some of these specifications are independent of the I/O cell, but are included for a more complete reference. These are not purely I/O buffer design specifications.

Characteristic	Symbol	Max Value	Unit	Notes
Storage temperature range	T _{STG}	-55 to 150	°C	

Notes:

- 1. Functional and tested operating conditions are given in Table 2. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.
- 2. Caution: MV_{IN} must not exceed GV_{DD} by more than 0.3 V. This limit may be exceeded for a maximum of 100 ms during power-on reset and power-down sequences.
- 3. Caution: OV_{IN} must not exceed OV_{DD} by more than 0.3 V. This limit may be exceeded for a maximum of 100 ms during power-on reset and power-down sequences.
- 4. **Caution:** LV_{IN} must not exceed LV_{DD} by more than 0.3 V. This limit may be exceeded for a maximum of 100 ms during power-on reset and power-down sequences.
- 5. (M,L,O)V_{IN} and MV_{REF} may overshoot/undershoot to a voltage and for a maximum duration as shown in Figure 3.
- 6. OV_{IN} on the PCI interface may overshoot/undershoot according to the PCI Electrical Specification for 3.3-V operation, as shown in Figure 4.

2.1.2 Power Supply Voltage Specification

This table provides the recommended operating conditions for the device. Note that the values in this table are the recommended and tested operating conditions. Proper device operation outside of these conditions is not guaranteed.

Table 2. Recommended	Operating Conditions
----------------------	----------------------

Characteristic	Symbol	Recommended Value	Unit	Notes
Core and PLL supply voltage for	V _{DD} & AV _{DD}	1.2 V ± 60 mV	V	1, 3
MPC8358 Device Part Number with Processor Frequency label of AD=266MHz and AG=400MHz & QUICC Engine Frequency label of E=300MHz & G=400MHz MPC8360 Device Part Number with Processor Frequency label of AG=400MHz and AJ=533MHz & QUICC Engine Frequency label of G=400MHz				
Core and PLL supply voltage for MPC8360 Device Part Number with Processor Frequency label of AL=667MHz and QUICC Engine Frequency label of H=500MHz	V _{DD} & AV _{DD}	1.3 V ± 50 mV	V	1, 3
DDR and DDR2 DRAM I/O supply voltage DDR DDR2	GV _{DD}	2.5 V ± 125 mV 1.8 V ± 90 mV	V	_
Three-speed Ethernet I/O supply voltage	LV _{DD} 0	3.3 V ± 330 mV 2.5 V ± 125 mV	V	
Three-speed Ethernet I/O supply voltage	LV _{DD} 1	3.3 V ± 330 mV 2.5 V ± 125 mV	V	—
Three-speed Ethernet I/O supply voltage	LV _{DD} 2	3.3 V ± 330 mV 2.5 V ± 125 mV	V	_

Power Sequencing

This table shows the estimated typical I/O power dissipation for the device.

Interface	Parameter	GV _{DD} (1.8 V)	GV _{DD} (2.5 V)	OV _{DD} (3.3 V)	LV _{DD} (3.3 V)	LV _{DD} (2.5 V)	Unit	Comments
DDR I/O	200 MHz, 1 \times 32 bits	0.3	0.46		_	_	W	—
65% utilization $R_s = 20 \Omega$	200 MHz, 1 \times 64 bits	0.4	0.58	_	_	_	W	—
$R_t = 50 \Omega$ 2 pairs of clocks	200 MHz, 2×32 bits	0.6	0.92	_	_	_	W	—
2 pairs of clocks	266 MHz, 1 \times 32 bits	0.35	0.56	_	_	_	W	—
	266 MHz, 1 \times 64 bits	0.46	0.7	_	_	_	W	—
	266 MHz, 2×32 bits	0.7	1.11	_	_	_	W	—
	333 MHz, 1 \times 32 bits	0.4	0.65	_	_	_	W	—
	333 MHz, 1 \times 64 bits	0.53	0.82	_	_	_	W	—
	333 MHz, 2×32 bits	0.81	1.3	_	_	_	W	—
Local Bus I/O	133 MHz, 32 bits	_	_	0.22	_	_	W	—
Load = 25 pf 3 pairs of clocks	83 MHz, 32 bits	_	_	0.14	_	_	W	—
	66 MHz, 32 bits	—	_	0.12	_	_	W	—
	50 MHz, 32 bits	_	_	0.09	_	_	W	—
PCI I/O	33 MHz, 32 bits	_	_	0.05	_	_	W	—
Load = 30 pF	66 MHz, 32 bits	—		0.07	_	_	W	—
10/100/1000	MII or RMII	—	_		0.01	—	W	Multiply by
Ethernet I/O Load = 20 pF	GMII or TBI	_			0.04	—	W	number of interfaces used.
	RGMII or RTBI	_				0.04	W	1
Other I/O	—	_		0.1			W	—

Table 6. Estimated Typical I/O Power Dissipation

4 Clock Input Timing

This section provides the clock input DC and AC electrical characteristics for the MPC8360E/58E.

NOTE

The rise/fall time on QUICC Engine block input pins should not exceed 5 ns. This should be enforced especially on clock signals. Rise time refers to signal transitions from 10% to 90% of V_{DD} ; fall time refers to transitions from 90% to 10% of V_{DD} .

RESET DC Electrical Characteristics

Table 9. GTX_CLK125 AC Timing Specifications

At recommended operating conditions with LV_{DD} = 2.5 ± 0.125 mV/ 3.3 V ± 165 mV (continued)

Parameter/Condition	Symbol	Min	Typical	Мах	Unit	Notes
GTX_CLK rise and fall time $LV_{DD} = 2.5 V \\ LV_{DD} = 3.3 V$	t _{G125R} /t _{G125F}			0.75 1.0	ns	1
GTX_CLK125 duty cycle GMII & TBI 1000Base-T for RGMII & RTBI		45 47	_	55 53	%	2
GTX_CLK125 jitter	—	—	_	±150	ps	2

Notes:

- 1. Rise and fall times for GTX_CLK125 are measured from 0.5 and 2.0 V for LV_{DD} = 2.5 V and from 0.6 and 2.7 V for LV_{DD} = 3.3 V.
- GTX_CLK125 is used to generate the GTX clock for the UCC Ethernet transmitter with 2% degradation. The GTX_CLK125 duty cycle can be loosened from 47%/53% as long as the PHY device can tolerate the duty cycle generated by GTX_CLK. See Section 8.2.2, "MII AC Timing Specifications," Section 8.2.3, "RMII AC Timing Specifications," and Section 8.2.5, "RGMII and RTBI AC Timing Specifications" for the duty cycle for 10Base-T and 100Base-T reference clock.

5 **RESET Initialization**

This section describes the DC and AC electrical specifications for the reset initialization timing and electrical requirements of the MPC8360E/58E.

5.1 **RESET DC Electrical Characteristics**

This table provides the DC electrical characteristics for the RESET pins of the device.

Characteristic	Symbol	Condition	Min	Мах	Unit
Input high voltage	V _{IH}	_	2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	-0.3	0.8	V
Input current	I _{IN}	—	_	±10	μA
Output high voltage	V _{OH} ²	I _{OH} = -8.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	_	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	_	0.4	V

Table 10. RESET Pins DC Electrical Characteristics ¹

Notes:

1. This table applies for pins PORESET, HRESET, SRESET, and QUIESCE.

2. HRESET and SRESET are open drain pins, thus V_{OH} is not relevant for those pins.

5.2 **RESET AC Electrical Characteristics**

This section describes the AC electrical specifications for the reset initialization timing requirements of the device. This table provides the reset initialization AC timing specifications for the DDR SDRAM component(s).

Parameter/Condition	Min	Max	Unit	Notes
Required assertion time of $\overrightarrow{\text{HRESET}}$ or $\overrightarrow{\text{SRESET}}$ (input) to activate reset flow	32	-	t _{PCI_SYNC_IN}	1
Required assertion time of $\overrightarrow{\text{PORESET}}$ with stable clock applied to CLKIN when the device is in PCI host mode	32	-	^t CLKIN	2
Required assertion time of PORESET with stable clock applied to PCI_SYNC_IN when the device is in PCI agent mode	32	-	t _{PCI_SYNC_IN}	1
HRESET/SRESET assertion (output)	512	_	t _{PCI_SYNC_IN}	1
HRESET negation to SRESET negation (output)	16	—	t _{PCI_SYNC_IN}	1
Input setup time for POR config signals (CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV) with respect to negation of PORESET when the device is in PCI host mode	4	—	^t CLKIN	2
Input setup time for POR config signals (CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV) with respect to negation of PORESET when the device is in PCI agent mode	4	-	^t PCI_SYNC_IN	1
Input hold time for POR config signals with respect to negation of $\overline{\text{HRESET}}$	0	—	ns	—
Time for the device to turn off POR config signals with respect to the assertion of HRESET		4	ns	3
Time for the device to turn on POR config signals with respect to the negation of \overrightarrow{HRESET}	1	-	t _{PCI_SYNC_IN}	1, 3

Table 11. RESET Initialization Timing Specifications

Notes:

- t_{PCI_SYNC_IN} is the clock period of the input clock applied to PCI_SYNC_IN. When the device is In PCI host mode the primary clock is applied to the CLKIN input, and PCI_SYNC_IN period depends on the value of CFG_CLKIN_DIV. Refer MPC8360E PowerQUICC II Pro Integrated Communications Processor Reference Manual for more details.
- t_{CLKIN} is the clock period of the input clock applied to CLKIN. It is only valid when the device is in PCI host mode. Refer MPC8360E PowerQUICC II Pro Integrated Communications Processor Reference Manual for more details.
- 3. POR config signals consists of CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV.

This table provides the PLL and DLL lock times.

Table 12. PLL and DLL Lock Times

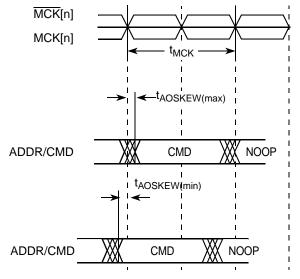
Parameter/Condition	Min	Max	Unit	Notes
PLL lock times	—	100	μs	
DLL lock times	7680	122,880	csb_clk cycles	1, 2

Notes:

1. DLL lock times are a function of the ratio between the output clock and the coherency system bus clock (csb_clk). A 2:1 ratio results in the minimum and an 8:1 ratio results in the maximum.

2. The csb_clk is determined by the CLKIN and system PLL ratio. See Section 21, "Clocking," for more information.

Table 21. DDR and DDR2 SDRAM Output AC Timing Specifications for Source Synchronous Mode (continued)

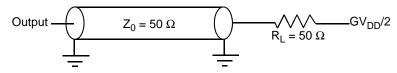

At recommended operating conditions with GV_{DD} of (1.8 V or 2.5 V) ± 5%.

Parameter ⁸	Symbol ¹	Min	Мах	Unit	Notes
MDQS epilogue end	t _{DDKHME}	-0.6	0.9	ns	7

Notes:

- The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. Output hold time can be read as DDR timing (DD) from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (AX or DX). For example, t_{DDKHAS} symbolizes DDR timing (DD) for the time t_{MCK} memory clock reference (K) goes from the high (H) state until outputs (A) are setup (S) or output valid time. Also, t_{DDKLDX} symbolizes DDR timing (DD) for the time t_{MCK} memory clock reference (K) goes low (L) until data outputs (D) are invalid (X) or data output hold time.
 </sub>
- 2. All MCK/ \overline{MCK} referenced measurements are made from the crossing of the two signals ±0.1 V.
- In the source synchronous mode, MCK/MCK can be shifted in ¼ applied cycle increments through the clock control register. For the skew measurements referenced for t_{AOSKEW} it is assumed that the clock adjustment is set to align the address/command valid with the rising edge of MCK.
- ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK, MCS, and MDQ/MECC/MDM/MDQS. For the ADDR/CMD setup and hold specifications, it is assumed that the clock control register is set to adjust the memory clocks by ½ applied cycle.
- 5. Note that t_{DDKHMH} follows the symbol conventions described in note 1. For example, t_{DDKHMH} describes the DDR timing (DD) from the rising edge of the MCK(n) clock (KH) until the MDQS signal is valid (MH). t_{DDKHMH} can be modified through control of the DQSS override bits in the TIMING_CFG_2 register. In source synchronous mode, this is typically set to the same delay as the clock adjust in the CLK_CNTL register. The timing parameters listed in the table assume that these two parameters have been set to the same adjustment value. Refer MPC8360E PowerQUICC II Pro Integrated Communications Processor Reference Manual for a description and understanding of the timing modifications enabled by use of these bits.
- Determined by maximum possible skew between a data strobe (MDQS) and any corresponding bit of data (MDQ), ECC (MECC), or data mask (MDM). The data strobe should be centered inside of the data eye at the pins of the device.
- All outputs are referenced to the rising edge of MCK(n) at the pins of the device. Note that t_{DDKHMP} follows the symbol conventions described in note 1.
- 8. AC timing values are based on the DDR data rate, which is twice the DDR memory bus frequency.
- In rev. 2.0 silicon, t_{DDKHMH} maximum meets the specification of 0.6 ns. In rev. 2.0 silicon, due to errata, t_{DDKHMH} minimum is –0.9 ns. Refer to Errata DDR18 in *Chip Errata for the MPC8360E, Rev. 1*.

This figure shows the DDR SDRAM output timing for address skew with respect to any MCK.



DDR and DDR2 SDRAM AC Electrical Characteristics

This figure provides the AC test load for the DDR bus.

Figure 8. DDR AC Test Load

Table 22. DDR and DDR2 SDRAM Measurement Conditions

Symbol	DDR	DDR2	Unit	Notes
V _{TH}	MV _{REF} ± 0.31 V	MV _{REF} ± 0.25 V	V	1
V _{OUT}	$0.5 \times \text{ GV}_{\text{DD}}$	$0.5 \times \text{ GV}_{\text{DD}}$	V	2

Notes:

1. Data input threshold measurement point.

2. Data output measurement point.

This figure shows the DDR SDRAM output timing diagram for source synchronous mode.

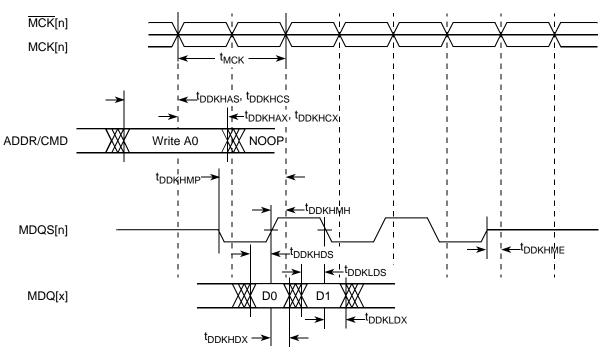


Figure 9. DDR SDRAM Output Timing Diagram for Source Synchronous Mode

GMII, MII, RMII, TBI, RGMII, and RTBI AC Timing Specifications

Physical Layer Device Specification Version 1.2a (9/22/2000). The electrical characteristics for the MDIO and MDC are specified in Section 8.3, "Ethernet Management Interface Electrical Characteristics."

8.1.1 10/100/1000 Ethernet DC Electrical Characteristics

The electrical characteristics specified here apply to media independent interface (MII), reduced gigabit media independent interface (RGMII), reduced ten-bit interface (RTBI), reduced media independent interface (RMII) signals, management data input/output (MDIO) and management data clock (MDC).

The MII and RMII interfaces are defined for 3.3 V, while the RGMII and RTBI interfaces can be operated at 2.5 V. The RGMII and RTBI interfaces follow the *Reduced Gigabit Media-Independent Interface (RGMII) Specification Version 1.3*. The RMII interface follows the *RMII Consortium RMII Specification Version 1.2*.

Table 25. RGMII/RTBI, GMII, TBI, MII, and RMII DC Electrical Characteristics (when operating at 3.3 V)

Parameter	Symbol	Conditions		Min	Max	Unit	Notes
Supply voltage 3.3 V	LV _{DD}	—		2.97	3.63	V	1
Output high voltage	V _{OH}	I _{OH} = -4.0 mA	LV _{DD} = Min	2.40	LV _{DD} + 0.3	V	_
Output low voltage	V _{OL}	I _{OL} = 4.0 mA	LV _{DD} = Min	GND	0.50	V	_
Input high voltage	V _{IH}	_	—	2.0	LV _{DD} + 0.3	V	_
Input low voltage	V _{IL}	_	—	-0.3	0.90	V	_
Input current	I _{IN}	0 V ≤V _{IN} ≤LV _{DD}		—	±10	μA	-

Note:

1. GMII/MII pins that are not needed for RGMII, RMII, or RTBI operation are powered by the OV_{DD} supply.

Table 26. RGMII/RTBI DC Electrical Characteristics	(when operating at 2.5 V)
--	---------------------------

Parameters	Symbol	Conditions		Min	Max	Unit
Supply voltage 2.5 V	LV _{DD}	—		2.37	2.63	V
Output high voltage	V _{OH}	I _{OH} = -1.0 mA	$LV_{DD} = Min$	2.00	LV _{DD} + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 1.0 mA	$LV_{DD} = Min$	GND – 0.3	0.40	V
Input high voltage	V _{IH}	—	$LV_{DD} = Min$	1.7	LV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	$LV_{DD} = Min$	-0.3	0.70	V
Input current	I _{IN}	0 V ≤V _{IN} ≤LV _{DD}		—	±10	μA

8.2 GMII, MII, RMII, TBI, RGMII, and RTBI AC Timing Specifications

The AC timing specifications for GMII, MII, TBI, RGMII, and RTBI are presented in this section.

8.2.1 GMII Timing Specifications

This sections describe the GMII transmit and receive AC timing specifications.

Local Bus DC Electrical Characteristics

8.3.3 IEEE 1588 Timer AC Specifications

This table provides the IEEE 1588 timer AC specifications.

Table 38. IEEE 1588 Timer AC Specifications

Parameter	Symbol	Min	Max	Unit	Notes
Timer clock frequency	t _{TMRCK}	0	70	MHz	1
Input setup to timer clock	t _{TMRCKS}	—	_	_	2, 3
Input hold from timer clock	t _{TMRCKH}	—	_	_	2, 3
Output clock to output valid	t _{GCLKNV}	0	6	ns	—
Timer alarm to output valid	t _{TMRAL}	—		_	2

Notes:

1. The timer can operate on rtc_clock or tmr_clock. These clocks get muxed and any one of them can be selected. The minimum and maximum requirement for both rtc_clock and tmr_clock are the same.

- 2. These are asynchronous signals.
- 3. Inputs need to be stable at least one TMR clock.

9 Local Bus

This section describes the DC and AC electrical specifications for the local bus interface of the MPC8360E/58E.

9.1 Local Bus DC Electrical Characteristics

This table provides the DC electrical characteristics for the local bus interface.

Table 39. Local Bus DC Electrical Characteristics

Parameter	Symbol	Min	Мах	Unit
High-level input voltage	V _{IH}	2	OV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	-0.3	0.8	V
High-level output voltage, I _{OH} = −100 μA	V _{OH}	OV _{DD} - 0.4	—	V
Low-level output voltage, I _{OL} = 100 μA	V _{OL}	—	0.2	V
Input current	I _{IN}	—	±10	μA

9.2 Local Bus AC Electrical Specifications

This table describes the general timing parameters of the local bus interface of the device.

Table 40. Local Bus General Timing Parameters—DLL Enabled

Parameter	Symbol ¹	Min	Max	Unit	Notes
Local bus cycle time	t _{LBK}	7.5	_	ns	2
Input setup to local bus clock (except LUPWAIT)	t _{LBIVKH1}	1.7	_	ns	3, 4
LUPWAIT input setup to local bus clock	t _{LBIVKH2}	1.9	_	ns	3, 4
Input hold from local bus clock (except LUPWAIT)	t _{LBIXKH1}	1.0		ns	3, 4

Local Bus AC Electrical Specifications

Parameter	Symbol ¹	Min	Max	Unit	Notes
Local bus clock to output valid	t _{LBKHOV}	—	3	ns	3
Local bus clock to output high impedance for LAD/LDP	t _{LBKHOZ}	—	4	ns	8

Table 41. Local Bus General Timing Parameters—DLL Bypass Mode⁹ (continued)

Notes:

- The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{LBIXKH1} symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t_{LBK} clock reference (K) goes high (H), in this case for clock one (1). Also, t_{LBKHOX} symbolizes local bus timing (LB) for the to the output (O) going invalid (X) or output hold time.
 </sub>
- 2. All timings are in reference to falling edge of LCLK0 (for all outputs and for LGTA and LUPWAIT inputs) or rising edge of LCLK0 (for all other inputs).
- 3. All signals are measured from OV_{DD}/2 of the rising/falling edge of LCLK0 to 0.4 × OV_{DD} of the signal in question for 3.3-V signaling levels.
- 4. Input timings are measured at the pin.
- 5. t_{LBOTOT1} should be used when RCWH[LALE] is not set and when the load on LALE output pin is at least 10 pF less than the load on LAD output pins.
- t_{LBOTOT2} should be used when RCWH[LALE] is set and when the load on LALE output pin is at least 10 pF less than the load on LAD output pins.
- 7. t_{LBOTOT3} should be used when RCWH[LALE] is set and when the load on LALE output pin equals to the load on LAD output pins.
- 8. For purposes of active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 9. DLL bypass mode is not recommended for use at frequencies above 66 MHz.

This figure provides the AC test load for the local bus.

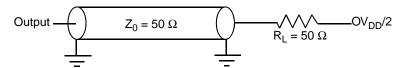


Figure 22. Local Bus C Test Load

These figures show the local bus signals.

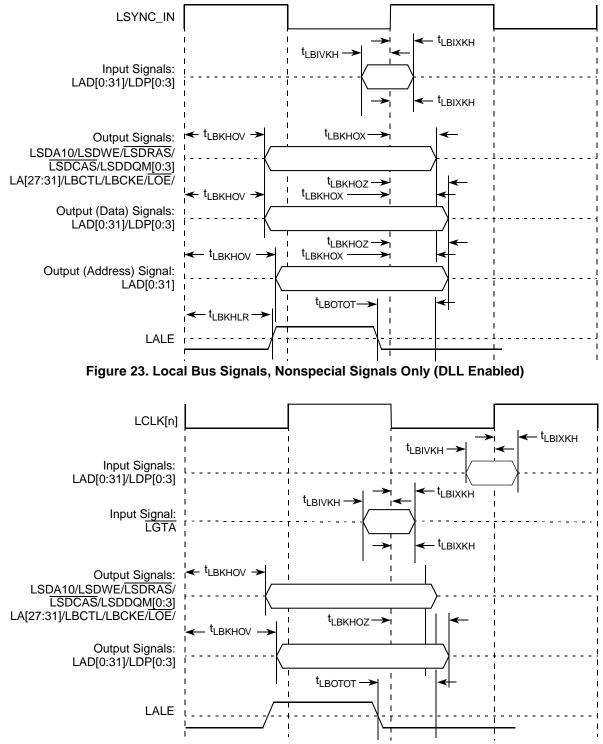


Figure 24. Local Bus Signals, Nonspecial Signals Only (DLL Bypass Mode)

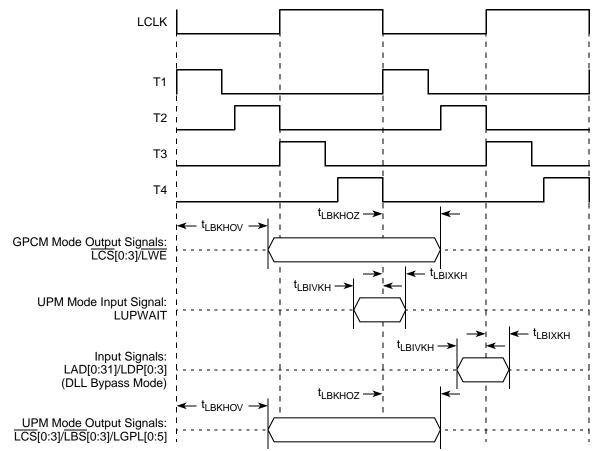


Figure 27. Local Bus Signals, GPCM/UPM Signals for LCRR[CLKDIV] = 4 (DLL Bypass Mode)

10.2 JTAG AC Electrical Characteristics

This section describes the AC electrical specifications for the IEEE 1149.1 (JTAG) interface of the device.

This table provides the JTAG AC timing specifications as defined in Figure 30 through Figure 33.

Table 43. JTAG AC Timing Specifications (Independent of CLKIN)¹

At recommended operating conditions (see Table 2).

Parameter	Symbol ²	Min	Max	Unit	Notes
JTAG external clock frequency of operation	f _{JTG}	0	33.3	MHz	—
JTAG external clock cycle time	t _{JTG}	30	—	ns	—
JTAG external clock duty cycle	t _{JTKHKL} /t _{JTG}	45	55	%	—
JTAG external clock rise and fall times	t _{JTGR} & t _{JTGF}	0	2	ns	—
TRST assert time	t _{TRST}	25	—	ns	3
Input setup times: Boundary-scan data TMS, TDI	t _{JTDVKH} t _{JTIVKH}	4 4		ns	4
Input hold times: Boundary-scan data TMS, TDI	t _{JTDXKH} t _{JTIXKH}	10 10	_	ns	4
Valid times: Boundary-scan data TDO	t _{JTKLDV} t _{JTKLOV}	2 2	11 11	ns	5
Output hold times: Boundary-scan data TDO	t _{jtkldx} t _{jtklox}	2 2	_	ns	5
JTAG external clock to output high impedance: Boundary-scan data TDO	t _{jtkldz} t _{jtkloz}	2 2	19 9	ns	5, 6

Notes:

- 2. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{JTDVKH} symbolizes JTAG device timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the t_{JTG} clock reference (K) going to the high (H) state or setup time. Also, t_{JTDXKH} symbolizes JTAG timing (JT) with respect to the time data input signals (D) went invalid (X) relative to the t_{JTG} clock reference (K) going to the high (H) state. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
- 3. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.
- 4. Non-JTAG signal input timing with respect to t_{TCLK}.
- 5. Non-JTAG signal output timing with respect to t_{TCLK}.
- 6. Guaranteed by design and characterization.

All outputs are measured from the midpoint voltage of the falling/rising edge of t_{TCLK} to the midpoint of the signal in question. The output timings are measured at the pins. All output timings assume a purely resistive 50-Ω load (see Figure 22). Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.

I2C AC Electrical Specifications

11.2 I²C AC Electrical Specifications

This table provides the AC timing parameters for the I²C interface of the device.

Table 45. I²C AC Electrical Specifications

All values refer to V_{IH} (min) and V_{IL} (max) levels (see Table 44).

Parameter	Symbol ¹	Min	Max	Unit	Note
SCL clock frequency	f _{I2C}	0	400	kHz	2
Low period of the SCL clock	t _{I2CL}	1.3	_	μs	—
High period of the SCL clock	t _{I2CH}	0.6	_	μs	—
Setup time for a repeated START condition	t _{I2SVKH}	0.6	_	μs	—
Hold time (repeated) START condition (after this period, the first clock pulse is generated)	t _{I2SXKL}	0.6	_	μs	_
Data setup time	t _{I2DVKH}	100	—	ns	3
Data hold time: CBUS compatible masters I ² C bus devices	t _{I2DXKL}	$\overline{0^2}$	 0.9 ³	μs	_
Rise time of both SDA and SCL signals	t _{I2CR}	20 + 0.1 C _b ⁴	300	ns	_
Fall time of both SDA and SCL signals	t _{I2CF}	20 + 0.1 C _b ⁴	300	ns	—
Set-up time for STOP condition	t _{I2PVKH}	0.6	_	μs	—
Bus free time between a STOP and START condition	t _{I2KHDX}	1.3	_	μs	—
Noise margin at the LOW level for each connected device (including hysteresis)	V _{NL}	$0.1 \times \text{OV}_{\text{DD}}$	_	V	—
Noise margin at the HIGH level for each connected device (including hysteresis)	V _{NH}	$0.2 \times \text{OV}_{\text{DD}}$	—	V	—

Notes:

1. The symbols used for timing specifications follow the pattern of t_{(first two letters of functional}

block)(signal)(state)(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{I2DVKH} symbolizes I²C timing (I2) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{I2C} clock reference (K) going to the high (H) state or setup time. Also, t_{I2SXKL} symbolizes I²C timing (I2) for the time that the data with respect to the start condition (S) went invalid (X) relative to the t_{I2C} clock reference (K) going to the low (L) state or hold time. Also, t_{I2PVKH} symbolizes I²C timing (I2) for the time that the data with respect to the start condition (S) went invalid (X) relative to the t_{I2C} clock reference (K) going to the low (L) state or hold time. Also, t_{I2PVKH} symbolizes I²C timing (I2) for the time that the data with respect to the stop condition (P) reaching the valid state (V) relative to the t_{I2C} clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

 The device provides a hold time of at least 300 ns for the SDA signal (referred to the V_{IH} min of the SCL signal) to bridge the undefined region of the falling edge of SCL.

3. The maximum t_{12DVKH} has only to be met if the device does not stretch the LOW period (t_{12CL}) of the SCL signal.

4. C_B = capacitance of one bus line in pF.

IPIC AC Timing Specifications

15.2 IPIC AC Timing Specifications

This table provides the IPIC input and output AC timing specifications.

Table 54. IPIC Input AC Timing Specifications¹

Characteristic	Symbol ²	Min	Unit
IPIC inputs—minimum pulse width	t _{PIWID}	20	ns

Notes:

1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are measured at the pin.

IPIC inputs and outputs are asynchronous to any visible clock. IPIC outputs should be synchronized before use by any
external synchronous logic. IPIC inputs are required to be valid for at least t_{PIWID} ns to ensure proper operation when
working in edge triggered mode.

16 SPI

This section describes the DC and AC electrical specifications for the SPI of the MPC8360E/58E.

16.1 SPI DC Electrical Characteristics

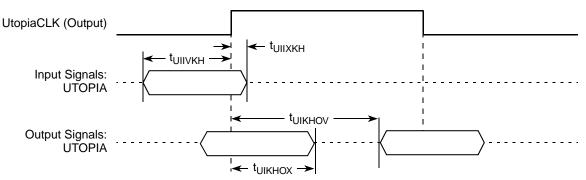
This table provides the DC electrical characteristics for the device SPI.

Table 55. SPI DC Electrical Characteristics

Characteristic	Symbol	Condition	Min	Max	Unit
Output high voltage	V _{OH}	I _{OH} = -6.0 mA	2.4	_	V
Output low voltage	V _{OL}	I _{OL} = 6.0 mA	—	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	—	0.4	V
Input high voltage	V _{IH}	—	2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	-0.3	0.8	V
Input current	I _{IN}	0 V ≤V _{IN} ≤OV _{DD}	—	±10	μA

16.2 SPI AC Timing Specifications

This table and provide the SPI input and output AC timing specifications.


Table 56. SPI AC Timing Specifications¹

Characteristic	Symbol ²	Min	Max	Unit
SPI outputs—Master mode (internal clock) delay	t _{NIKHOX} t _{NIKHOV}	0.3	8	ns
SPI outputs—Slave mode (external clock) delay	t _{NEKHOX} t _{NEKHOV}	2	 8	ns
SPI inputs—Master mode (internal clock) input setup time	t _{NIIVKH}	8	—	ns
SPI inputs—Master mode (internal clock) input hold time	t _{NIIXKH}	0	—	ns
SPI inputs—Slave mode (external clock) input setup time	t _{NEIVKH}	4		ns

HDLC, BISYNC, Transparent, and Synchronous UART DC Electrical Characteristics

This figure shows the UTOPIA timing with internal clock.

18 HDLC, BISYNC, Transparent, and Synchronous UART

This section describes the DC and AC electrical specifications for the high level data link control (HDLC), BISYNC, transparent, and synchronous UART protocols of the MPC8360E/58E.

18.1 HDLC, BISYNC, Transparent, and Synchronous UART DC Electrical Characteristics

This table provides the DC electrical characteristics for the device HDLC, BISYNC, transparent, and synchronous UART protocols.

Table 61. HDLC, BISYNC, Transparent, a	nd Synchronous UART DC Electrical Characteristics
--	---

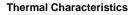
Characteristic	Symbol	Condition	Min	Мах	Unit
Output high voltage	V _{OH}	I _{OH} = -2.0 mA	2.4	_	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	_	0.5	V
Input high voltage	V _{IH}	—	2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}	_	-0.3	0.8	V
Input current	I _{IN}	0 V ≤V _{IN} ≤OV _{DD}	_	±10	μA

18.2 HDLC, BISYNC, Transparent, and Synchronous UART AC Timing Specifications

These tables provide the input and output AC timing specifications for HDLC, BISYNC, transparent, and synchronous UART protocols.

Table 62. HDLC, BISYNC, and Transparent AC Timing Specifications¹

Characteristic	Symbol ²	Min	Max	Unit
Outputs—Internal clock delay	t _{HIKHOV}	0	11.2	ns
Outputs—External clock delay	t _{HEKHOV}	1	10.8	ns


System PLL Configuration

			li	nput Clock Fre	equency (MHz) ²
CFG_CLKIN_DIV at Reset ¹	SPMF	<i>csb_clk</i> : Input Clock Ratio ²	16.67	25	33.33	66.67
				csb_clk Fred	quency (MHz)	
Low	0110	6:1	100	150	200	
Low	0111	7:1	116	175	233	
Low	1000	8:1	133	200	266	
Low	1001	9:1	150	225	300	
Low	1010	10:1	166	250	333	
Low	1011	11:1	183	275		
Low	1100	12:1	200	300		
Low	1101	13:1	216	325		
Low	1110	14:1	233		<u> </u>	
Low	1111	15:1	250	1		
Low	0000	16:1	266	1		
High	0010	2:1				133
High	0011	3:1			100	200
High	0100	4:1			133	266
High	0101	5:1			166	333
High	0110	6:1			200	
High	0111	7:1			233	
High	1000	8:1				
High	1001	9:1				
High	1010	10:1				
High	1011	11:1				
High	1100	12:1				
High	1101	13:1				
High	1110	14:1				
High	1111	15:1				
High	0000	16:1				

Table 72. CSB Frequency Options (continued)

¹ CFG_CLKIN_DIV is only used for host mode; CLKIN must be tied low and CFG_CLKIN_DIV must be pulled down (low) in agent mode.

 $^2\,$ CLKIN is the input clock in host mode; PCI_CLK is the input clock in agent mode.

Index	SPMF	CORE PLL	CEPMF	CEPDF	Input Clock (MHz)	CSB Freq (MHz)	Core Freq (MHz)	QUICC Engine Freq (MHz)	400 (MHz)	533 (MHz)	667 (MHz)
Α	1000	0000011	01001	0	33	266	400	300	8	8	8
В	0100	0000100	00110	0	66	266	533	400	8	8	8

Example 1. Sample Table Use

- **Example A.** To configure the device with CSB clock rate of 266 MHz, core rate of 400 MHz, and QUICC Engine clock rate 300 MHz while the input clock rate is 33 MHz. Conf No. 's10' and 'c1' are selected from Table 76. SPMF is 1000, CORPLL is 0000011, CEPMF is 01001, and CEPDF is 0.
- **Example B.** To configure the device with CSBCSB clock rate of 266 MHz, core rate of 533 MHz and QUICC Engine clock rate 400 MHz while the input clock rate is 66 MHz. Conf No. 's5h' and 'c2h' are selected from Table 76. SPMF is 0100, CORPLL is 0000100, CEPMF is 00110, and CEPDF is 0.

22 Thermal

This section describes the thermal specifications of the MPC8360E/58E.

22.1 Thermal Characteristics

This table provides the package thermal characteristics for the 37.5 mm \times 37.5 mm 740-TBGA package.

 Table 77. Package Thermal Characteristics for the TBGA Package

Characteristic	Symbol	Value	Unit	Notes
Junction-to-ambient natural convection on single-layer board (1s)	R _{θJA}	15	° C/W	1, 2
Junction-to-ambient natural convection on four-layer board (2s2p)	R _{θJA}	11	° C/W	1, 3
Junction-to-ambient (@1 m/s) on single-layer board (1s)	R _{θJMA}	10	° C/W	1, 3
Junction-to-ambient (@ 1 m/s) on four-layer board (2s2p)	R _{θJMA}	8	° C/W	1, 3
Junction-to-ambient (@ 2 m/s) on single-layer board (1s)	R _{θJMA}	9	° C/W	1, 3
Junction-to-ambient (@ 2 m/s) on four-layer board (2s2p)	R _{θJMA}	7	° C/W	1, 3
Junction-to-board thermal	$R_{ heta JB}$	4.5	° C/W	4
Junction-to-case thermal	$R_{ extsf{ heta}JC}$	1.1	° C/W	5

Part Numbers Fully Addressed by this Document

Device	Package	SVR (Rev. 2.0)	SVR (Rev. 2.1)
MPC8358E	TBGA	0x804A_0020	0x804A_0021
MPC8358	TBGA	0x804B_0020	0x804B_0021

25 Document Revision History

This table provides a revision history for this document.

Table 82. Revision History

Rev. Number	Date	Substantive Change(s)
5	09/2011	 Section 2.2.1, "Power-Up Sequencing", added the current limitation "3A to 5A" for the excessive current. Section 2.1.2, "Power Supply Voltage Specification, Updated the Characteristic for TBGA (MPC8358 & MPC8360 Device) with specific frequency for Core and PLL voltages. Added table footnote 3 to Table 2. Applied table footnotes 1 and 2 to Table 10. Removed table footnotes from Table 19. Applied table footnotes 8 and 9 to Table 40. Applied table footnotes 2 and 3 to Table 41. Applied table footnotes from Table 46. Applied table footnote to last three rows of Table 65.
4	01/2011	 Updated references to the LCRR register throughout Removed references to DDR DLL mode in Section 6.2.2, "DDR and DDR2 SDRAM Output AC Timing Specifications." Changed "Junction-to-Case" to "Junction-to-Ambient" in Section 22.2.4, "Heat Sinks and Junction-to-Ambient Thermal Resistance," and Table 78, "Heat Sinks and Junction-to-Ambient Thermal Resistance of TBGA Package," titles.